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Abstract

Rapid advance of sensor technology is facilitating the collection of high-dimensional

data streams (HDS). Apart from real-time detection of potential out-of-control (OC)

patterns, post-signal fault diagnosis of HDS is becoming increasingly important in the

filed of statistical process control to isolate abnormal data streams. The major lim-

itations of the existing methods on that topic include i) they cannot achieve reliable

diagnostic results in the sense that their performance is highly variable, and ii) the

informative correlation among different streams is often neglected by them. This pa-

per elaborates the problem of reliable fault diagnosis for monitoring correlated HDS

using the large-scale multiple testing. Under the framework of hidden Markov model

dependence, new diagnostic procedures are proposed, which can control the missed dis-

covery exceedance (MDX) at a desired level. Extensive numerical studies along with

some theoretical results show that the proposed procedures can control MDX properly,

leading to diagnostics with high reliability and efficiency. Also, their diagnostic per-

formance can be improved significantly by exploiting the dependence among different

data streams, which is especially appealing in practice for identifying clustered OC

streams.

Keywords: Fault diagnosis; Hidden Markov models; Missed discovery exceedance;

Multiple tests; Reliability; Statistical process control.

Corresponding author: Wendong Li, wendongli01@gmail.com

1



1 Introduction

With the rapid development of modern sensor and data acquisition technologies, high-

dimensional data streams (HDS) that involve large-scale continuous sequential streaming

data have become ubiquitous nowadays, which brings tremendous challenges to the field

of multivariate statistical process control (SPC). In such a situation, if a complex high-

dimensional process operates abnormally, engineers are paying more attention to the iden-

tification of the data streams that are responsible for the anomaly condition in order to

locate and eliminate the root cause of the problem. This task is typically referred to as fault

diagnosis. While online monitoring of HDS has attracted a considerable attention recently

(Liu et al., 2015; Zou et al., 2015; Yan et al., 2018; Zhang et al., 2020; Li et al., 2020b),

high-dimensional fault diagnosis is still an active area with great potential.

In the literature of conventional multivariate SPC, post-signal fault diagnosis often re-

lies heavily on the assumption that the dimensionality of the underlying process is low-

to-moderate (Qiu 2014). Early works in this area tried to capture the relationship among

variables by interpreting and decomposing Hotelling’s T 2-type statistics (Mason, et al., 1995,

1997; Li et al., 2008), based on which many step-down procedures were further proposed

(Sullivan et al., 2007; Zhu and Jiang, 2009; Kim et al., 2016). Recently, one trend is to

reduce the dimension into a smaller number by using variable selection techniques. Zou

et al. (2011) introduced a multivariate diagnostic framework that integrates the Bayesian

information criterion (BIC) with the adaptive LASSO algorithm, which has been shown to

have a better performance than many conventional methods. Many variable-selection-based

control charts have also been proposed (Wang and Jiang, 2009; Zou and Qiu, 2009; Capizzi

and Masarotto, 2011; Li et al., 2017). Although they are designed mainly for online moni-

toring, they could be used for a rough fault diagnosis by regarding the selected variables as

out-of-control (OC) streams.

To handle the fault diagnosis problem for HDS, the conventional multivariate approaches

may fail. Specifically, when the dimensionality of the process is extremely high, the “curse of

dimensionality” arises, leading to a poor diagnostic performance. Besides, these approaches

are computationally too intensive to afford when they are applied to HDS. See Zou et al.

(2011) and Li et al. (2020a) for detailed discussions. More recently, in order to make fault
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diagnosis methods practically useful, Zhang et al. (2020) proposed a diagnostic framework

based on the square-root LASSO algorithm. Another seminal work is Li et al. (2020a), who

handled the problem of fault diagnosis for HDS based on large-scale multiple testing, and

controlled the weighted missed discovery rate (MDR) at a desired level while minimizing the

expected number of false positives. This multiple testing framework exhibits a higher diag-

nostic power and a better computational efficiency, compared to the conventional methods.

Xiang et al. (2021) further proposed a directional diagnostic approach based on a three-

classification multiple-testing framework to determine the shift directions systematically.

Unfortunately, most methods mentioned above share two major drawbacks. First, they

do not take into account the between-stream correlation properly, and some even assume that

the data streams are independent of each other, which is rarely valid in practice. For HDS,

between-stream correlation often exists, and the data streams physically located close to the

OC ones would be more likely to be OC. If such information is not considered systematically,

the resulting methods would suffer from a substantial loss of information and sacrifice their

diagnostic power. Second, these existing methods try to achieve their diagnostic goals from

the perspective of a large-sample theory in the sense that their diagnostic accuracy can

only be controlled on the basis of a large number of replicated diagnoses. For any single

diagnosis, the result could be highly variable. For example, in Li et al. (2020a), the target

accuracy measure to control is MDR, which is defined to be the mathematical expectation of

the missed discovery proportion (MDP, i.e., the proportion of false negatives among all the

OC streams in a single diagnosis). When MDR equals α, it means that the mathematical

expectation of MDP equals α, but the probability of MDP being larger than α in a single

diagnosis can still be very high, which will be shown in details later. In such a situation,

these methods may have a poor diagnostic performance in a single diagnosis.

In conclusion, so far there are no diagnostic procedures for HDS with a high reliability

that can accommodate the between-stream correlation. To fill the gap, this paper proposes a

reliable fault diagnostic procedure based on a novel accuracy measure, called missed discovery

exceedance (MDX), which is defined to be the probability that MDP exceeds a given value τ .

By controlling MDX at a desired level α, the probability that MDP is less than τ would be

1−α, which ensures a high diagnostic reliability. To properly model the correlation structure

among different streams, we suggest using a hidden Markov model (HMM), which has been
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shown an effective tool and widely used in many areas, including signal processing, speech

recognition, DNA sequence analysis, and influenza-like illness analysis (Ephraim and Merhav,

2002). In all these problems, the related variables are ordered by their spatial or procedural

locations, and their correlation is often described by a HMM model. Then, the fault diagnosis

problem for HDS under the HMM dependence structure is investigated in a novel MDX-based

multiple testing framework. To this end, an oracle diagnostic procedure is first proposed

under the assumption that all process parameters are known. Then, by plugging in consistent

estimates of the unknown parameters, a data-driven diagnostic procedure is proposed which

mimics the oracle one. Our method is different from the conventional diagnostic methods in

that it takes into account the large variability of MDP in a single diagnosis by controlling the

level of MDX, and is highly desirable in cases when the data streams are mutually correlated

by the use of HMM. Extensive numerical studies will show that it has a satisfactory diagnostic

performance in various cases considered.

To illustrate the major feature of the proposed method, let us consider the following toy

example. Let (θi)
m
1 ∈ {0, 1}m be a Markov chain with the initial state 0 and the transition

matrix  0.9 0.1

0.2 0.8

 ,

and x = (x1, ..., xm)T be an m-dimensional OC observation following the mixture model

xi|θi ∼ (1 − θi)N(0, 1) + θiN(2, 1), for each i, where m = 1000. A comparison of the

MDR-based procedure by Li et al. (2020a) and the proposed oracle MDX-based procedure

described in Section 3 is shown in Figure 1, where the density functions of the MDP levels of

the two methods are shown. In this example, both α and τ are set at 0.05 for simplicity. The

vertical solid line denotes the 100(1−α)th percentile of MDP of the MDX-based procedure,

and the vertical dashed line is the 50th percentile of MDP of the MDR-based procedure. It

can be seen that the chance for MDP to be above 0.05 is around 0.05 by using the MDX-

based procedure, while the chance of the same event is about 0.5 by using the MDR-based

procedure. Thus, nearly half of the diagnoses cannot control MDP at the nominal level if

the MDR-based procedure is used. In practice, it is nontrivial to adjust the nominal MDR

level so that MDP can be controled properly. More numerical examples will be presented in

later sections to compare the related procedures.
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Figure 1: Density curves of MDP in the toy example for comparing the proposed MDX-based
procedure with the MDR-based procedure by Li et al. (2020a). In this example, both α and
τ are set to be 0.05.

The remainder of the paper is organized as follows. In Section 2, the problem of reli-

able fault diagnosis of HDS under the HMM dependence is formulated in a multiple-testing

framework for controlling MDX. In Section 3, the oracle and data-driven diagnostic proce-

dures are described. Some simulation results are given in Section 4 to evaluate the numerical

performance of the proposed procedures in various cases considered. In Section 5, the data-

driven diagnostic procedure is applied to a real-world example. In Section 6, we conclude

the paper with several remarks.

2 A Reliable Fault Diagnosis Framework Using a Hid-

den Markov Model

Suppose there are m data streams in a high-dimensional process considered. When

the process is in-control (IC), the m-dimensional observation at time t is denoted as xICt .

Without loss of generality, it is assumed that the IC mean vector is 0. After an anomaly

occurs, the process becomes OC. An online monitoring control chart can give us a signal of

the process shift and a change-point detection approach can be used afterwards to estimate

the specific time when the shift occurs (cf., Qiu 2014, Samuel and Pignatiello 2001). This
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paper focuses on figuring out the OC data streams after a signal has been given by a control

chart and the shift location has been estimated by a change-point detection approach. For

simplicity of discussion, it is assumed here that the process shift has been signaled correctly

by a SPC method (e.g., Zamba and Hawkins, 2006; Zou et al., 2011), and a small number

of OC observations, denoted as {xOCj , j = 1, ..., n}, is available for fault diagnosis. Note

that these assumptions are made for both the proposed methods and all the alternative fault

diagnosis methods considered in the paper, and thus they would not change the comparative

results of the related methods. The OC process mean vector is denoted as µ. Apparently,

some components of µ would be non-zero due to the mean shift. In this paper, we further

assume that the OC observations {xOCj } are independent over time for simplicity, but the m

components of a given observation can be mutually correlated. That is, in terms of spatial-

temporal data analysis, we assume that observed data could be spatially correlated, but

independent in the time domain. In practice, the temporal data correlation can be removed

in advance by a time series model or another data decorrelation approach (e.g., Apley and

Tsung, 2002, Qiu et al., 2020).

We use the sample mean of the OC observations xOC =
n∑
j=1

xOCj /n to construct a

fault diagnosis procedure. Hereafter, the notation xOC is simplified to x = (x1, ..., xm)T

for convenience. Let θ = (θ1, ..., θm)T be the unknown hidden status of x, where θi = 1

means that the ith data stream is OC while θi = 0 means IC. In many real applications,

there might be correlation among the hidden statuses of different data streams, which is

highly informative but often ignored in the SPC research. In the literature, HMM is a

commonly-used model to describe such a dependence structure (Ephraim and Merhav, 2002;

Sun and Cai, 2009), which is briefly described below. Assume that the unobservable θis form

a stationary Markov chain. Specifically, let A = (ajk)2×2 be the transition matrix, where

ajk = P (θi = k|θi−1 = j), for j, k = 0, 1, are the transition probabilities that do not depend

on i and have the standard constraints that 0 < ajk < 1 and aj0 + aj1 = 1. If a positive

correlation exists among the hidden statuses, then the OC data streams would tend to appear

in clumps, which should be a natural feature of many high-dimensional applications. Then,

the observed data x can be generated from the following conditional distribution:

xi|θi ∼ (1− θi)F0i + θiF1i, i = 1, ...,m, (1)
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where F0i and F1i are respectively the IC and OC distributions of each random variable.

F0is are generally assumed known. Since normal inverse transformation Φ−1(F0i(·)) can be

applied, where Φ−1(·) is the inverse of the standard normal c.d.f., it is reasonable to assume

that F0is are standard normal. F1is suffer from mean shifts, and the shift sizes come from

certain prior distribution. To facilitate the derivation of the proposed procedures, we further

assume that the distribution of the mean shifts is a degenerate distribution, i.e., F1i = F1.

Such a mixture model and its variations have been used widely in high-dimensional data

analysis (cf., e.g., Sun and Cai, 2007, 2009; Zou et al., 2015; Li et al., 2020a). Because x

is actually the sample mean of n OC observations, as long as n is reasonably large, we can

assume based on the central limit theory that F1 is asymptotically normal.

It has been demonstrated in the literature that high-dimensional fault diagnosis (i.e.

find the OC data streams with non-zero θis) can be formulated properly as a large-scale

multiple-testing problem in which the following m hypotheses are tested simultaneously (Li

et al., 2020a):

H0
i : θi = 0 versus H1

i : θi = 1, i = 1, ...,m. (2)

The decision rule of the above hypothesis testing problem, denoted as δ = (δ1, ..., δm)T ∈
{0, 1}m, generally has the form

δi = I[Ti(x) < c], (3)

where δi equals 0 if we claim that the ith data stream is IC and 1 otherwise, Ti(x) is a

test statistic that maps x to a real value, c is a universal threshold, and I[·] is the indicator

function. Different choices of Ti(x) will lead to different diagnostic performance, which

will be discussed in detail in later sections. The performance of a single diagnosis can be

evaluated by the missed discovery proportion (MDP), which is defined to be the proportion

of false negatives out of all OC data streams as follows:

MDP =

m∑
i=1

θi(1− δi)

(
m∑
i=1

θi) ∨ 1
.
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Note that MDP is calculated based on a single diagnosis, which is highly variable. Therefore,

we suggest using the missed discovery exceedance MDX as the performance measure. Specif-

ically, let τ ∈ (0, 1) be a prespecified tolerance level. MDX at level τ can then be defined as

MDXτ = P (MDP > τ), i.e., the probability that MDP exceeds τ . By controlling MDXτ at

a desirable level, the issue of high unreliability of MDP can be avoided. In this paper, con-

trolling MDXτ at a desirable level is referred to as MDX-control. Obviously, MDX-control

has taken into account the large variability of MDP, which is desirable for a reliable fault

diagnosis of HDS. By the way, the idea to use the exceedance probability can also be found

in the literature when handling the large variability of the false discovery proportion (FDP).

See, for example, Pacifico et al. (2004) and Genovese and Wasserman (2006).

In practice, it is generally difficult to calculate MDXτ . The main reason is that the

distribution of MDP is very complicated, and its tail probability needs to be calculated

through a complex integral involving x and θ, which is often difficult in practice since the

sample mean of the OC observations only has a single vector value for a given diagnosis.

To overcome this difficulty, we introduce a useful alternative to MDXτ by considering the

following conditional probability:

MDXτ,x = P (MDP > τ |x).

It can be proved that if MDXτ,x = α for all possible values of x, then MDXτ = α. In the

rest of this paper, we will derive a reliable diagnostic procedure by controlling the value of

MDXτ,x at a desired level α.

3 New Statistical Methodology

Given the multiple-testing-based fault diagnosis framework discussed in Section 2, we

describe our proposed diagnostic procedures in this section for correlated HDS. First, let us

further discuss about the test statistic Ti(x) in (3). In order to properly handle between-

stream data dependence, we introduce the local index of significance (LIS) for the ith data
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stream by

LISi = P (θi = 0|x), (4)

which is the probability that the ith stream is IC given x (cf., Sun and Cai, 2009). Intuitively,

LISi would be small when the ith data stream is OC and vice versa. Note that when different

data streams are independent of each other, LISi only depends on xi and reduces to the local

false discovery rate (Lfdr) proposed by Efron (2004). Sun and Cai (2007) showed that

a multiple-testing procedure for FDR-control is optimal in the independent case by using

Lfdr. Nevertheless, LIS is much more appropriate than Lfdr when the data streams are

correlated. The main reason is that the OC streams tend to appear in clusters, and one

should treat a data stream surrounded by OC streams differently from the ones surrounded

by IC streams. In such cases, LIS is asymmetric in the sense that pooling information from

adjacent data streams can improve decision-making. By contrast, procedures that threshold

Lfdr are symmetric rules under which the data streams are exchangeable, making them

undesirable to handle correlated data streams. Therefore, we suggest thresholding LIS in

our diagnostic procedures. In Section 3.1, an oracle diagnostic procedure that uses LISs as

test statistics is developed. Note that “oracle” here means the situation that all distributional

information is assumed completely known. In such a case, the decision rule has the form

δi = I(LISi < c). (5)

In Section 3.2, a data-driven diagnostic procedure that mimics the oracle version is proposed

for practical use. The advantages of thresholding LISs over other alternative test statistics

are demonstrated numerically in Section 4.

3.1 Oracle Diagnostic Procedure

Based on the definitions of δis and MDXτ,x, it can be seen that MDXτ,x is a function of

the threshold value c. Therefore, in order to control MDXτ,x at the level α, c must be chosen

carefully. To this end, we suggest using the following two-step approach: (i) calculate the

value of MDXτ,x for a given c, and (ii) search the value of c such that MDXτ,x reaches the
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level α. These two steps are discussed in the two parts below.

Calculation of MDXτ,x. We propose an efficient approach to calculate the value of

MDXτ,x for a given value of c. After some simple algebraic manipulations, it can be checked

that MDXτ,x can be written as

MDXτ,x = P (MDP > τ |x) = E[I(MDP > τ)|x]

=
∑
θ

I(0,+∞)(MDP− τ)f(θ|x)

=
∑
θ

I(0,+∞)(MDP− τ)
f(θm, θm−1, ..., θ1,x)

f(θm−1, θm−2, ..., θ1,x)

f(θm−1, θm−2, ..., θ1,x)

f(θm−2, θm−3, ..., θ1,x)
· · · f(θ1,x)

f(x)

=
∑
θ

I(0,+∞)(MDP− τ)f(θm|θm−1, ..., θ1,x)f(θm−1|θm−2, ..., θ1,x) · · · f(θ1|x), (6)

where f(·) and f(·|·) stand for the density function and the probability mass function (p.m.f.),

respectively. From Equation (6), it can be seen that the computational complexity for

calculating MDXτ,x is O(2m), which is too intensive for real applications even when the

distributional information is assumed known. To overcome this difficulty, we suggest using

the Monte Carlo method to first generate a sufficiently large number of random vectors

and then calculate the corresponding values of MDP. Then, the value of MDXτ,x can be

approximated by
N∑
j=1

I[MDPj > τ ]/N, where MDPj is the MDP value calculated from the

jth random vector, and N is the number of random vectors generated. Such a Monte Carlo

approach has been used widely in the literature for obtaining numerical solutions to problems

that are too complicated to solve analytically.

After an observation x is collected, we can first determine the p.m.f. of θ given x as

follows. By Equation (6), this conditional p.m.f. can be written as

f(θ|x) = f(θ1|x)
m∏
i=2

f(θi|θi−1, ..., θ1,x). (7)

This motivates us the following recursive computation of f(θ|x): f(θ1|x) can be computed

first, then f(θ2|θ1,x) can be computed, and so forth. It can be shown easily that the

distribution of θi given θi−1, ..., θ1 and x is Bernoulli(f(θi = 1|θi−1, ..., θ1,x)). The calcu-

lation of f(θi = 1|θi−1, ..., θ1,x) can be further divided into calculating f(θi, ..., θ1,x) and
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f(θi−1, ..., θ1,x) based on the following conditional probability formula:

f(θi|θi−1, ..., θ1,x) =
f(θi, ..., θ1,x)

f(θi−1, ..., θ1,x)
.

After some simple manipulations, f(θi, ..., θ1,x) can be written as

f(θi, ..., θ1,x) =
1∑

θi+1,...,θm=0

m∏
k=1

[θkf1(xk) + (1− θk)f0(xk)]aθk−1θk

=

{
i∏

k=1

[θkf1(xk) + (1− θk)f0(xk)]aθk−1θk

}

·
1∑

θi+1,...,θm=0

m∏
k=i+1

[θkf1(xk) + (1− θk)f0(xk)]aθk−1θk

=

{
i∏

k=1

[θkf1(xk) + (1− θk)f0(xk)]aθk−1θk

}
f(xi+1, ..., xm|θi)

,

{
i∏

k=1

[θkf1(xk) + (1− θk)f0(xk)]aθk−1θk

}
βi(θi), i = 1, ...,m,

where βi(θi) = f(xi+1, ..., xm|θi). Consequently, f(θi|θi−1, ..., θ1,x) can be written as:

f(θi = j|θi−1, ..., θ1,x) = fj(xi)aθi−1,θi=j
βi(j)

βi−1(θi−1)
, j = 0, 1. (8)

Given Equation (8), we can now generate a group of θis based on their conditional distribu-

tions. In order to calculate MDP, we still need to calculate LISi defined in (4). To this end,

LISi can be written as

LISi = P (θi = 0|x) =
f(x, θi = 0)

f(x)

=
f(x1, ..., xi, θi = 0)f(xi+1, ..., xm|θi = 0)

f(x)

,
ηi(0)βi(0)

ηi(0)βi(0) + ηi(1)βi(1)
, (9)

where ηi(θi) = f(x1, ..., xi, θi). In Equations (8) and (9), ηi(θi) and βi(θi) both need to

be calculated. This task can be accomplished recursively by using the forward-backward

algorithm. To be more specific, after initializing η1(j) = P (θ1 = j)fj(x1) and βm(j) = 1, we
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Table 1: Monte-Carlo calculation of MDXτ,x.

Preparation Step:
Collect the observed data x.

Generation Step:
1. Generate a group of N θ values conditionally on x (N is chosen to be 104 in this
paper).
2. According to the decision rules δi = I(LISi < c), calculate Rj = I(MDP > τ), j =
1, ..., N.

Calculation Step:

Calculate the approximate value of MDXτ,x by
N∑
j=1

Rj/N.

can use the following recursive formulas:

ηi+1(j) =

{
1∑

k=0

ηi(k)akj

}
fj(xi+1),

and

βi(j) =
1∑

k=0

ajkfk(xi+1)βi+1(k), j = 0, 1.

More details can be found in Sun and Cai (2009).

After the LIS values are calculated, we can calculate MDP for a given c, and then

approximate the MDXτ,x value by using the Monte Carlo approach. The entire Monte-

Carlo-based calculation process is summarized in Table 1.

Searching for the optimal threshold c. After calculating the approximate value of

MDXτ,x for a given c, in this part we aim to find the optimal value of c so that MDXτ,x

can be controlled at the nominal level α. To this end, the following proposition confirms the

existence of such an optimal value theoretically.

Proposition 1. Consider the mixture model (1) under the HMM dependence and the deci-

sion rules δi defined in (5). Let Q(c) denote the value of MDXτ,x with the threshold c. Then,

for given τ ∈ (0, 1) and α ∈ (0, 1), we have the following results:
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(i) Q(c) is non-increasing in c, and

(ii) Q(c∗) = α, where

c∗ = inf{c : Q(c) ≤ α}.

The proof of Proposition 1 is quite straightforward. Specifically, MDP can be written as

MDP =

m∑
i=1

θiI(LISi ≥ c)

(
m∑
i=1

θi) ∨ 1
,

which is non-increasing in c. Thus, MDXτ,x = P (MDP > τ |x) is non-increasing in c as

well, making the existence and uniqueness of c∗ valid. By Proposition 1, we can search for

the optimal threshold c∗ numerically by using the bisection searching algorithm, which is

described below:

Step 1 Based on the proposed Monte-Carlo approach, we first find c1 and c2 such that Q(c1) <

α and Q(c2) > α.

Step 2 Calculate Q(c3), where c3 = (c1 + c2)/2.

Step 3 If Q(c3) > α, then assign c2 = c3; If Q(c3) < α, then assign c1 = c3.

Step 4 Repeat Steps 2 and 3 until Q(c3) is sufficiently close to α. Then, the last c3 value is

regarded as the searched value of c∗.

By now, we have defined all components of the oracle diagnostic procedure for MDX-control,

which is summarized below:

Let γ = {i : LISi < c∗}. Then, reject H0
i and claim that the ith data stream is OC if i ∈ γ.

3.2 Data-Driven Diagnostic Procedure

In the oracle diagnostic procedure discussed in the previous subsection, all the distribu-

tional information is assumed known, which is invalid in practice. To overcome this difficulty,

13



we propose a data-driven diagnostic procedure in this subsection for practical purposes in

cases when the underlying distribution is unknown.

We first need to estimate the unknown HMM parameters. Let ϑ = ({p0, p1}, {F0, F1},A)

be the collection of the HMM parameters, where pj = P (θi = j) denotes the asymptotic

stationary distribution of θi since 1
m

∑m
i=1 I(θi = j) → pj, for j = 0, 1, by the convergence

theorem of a Markov chain (cf., Durrett, 2005). In the literature, the maximum likelihood

estimate (MLE) has been widely used for estimating ϑ (Leroux, 1992; Bickel et al., 1998). By

MLE, the parameters are estimated by maximizing the likelihood function. In the current

problem, the likelihood function has the expression

L(ϑ;x,θ) = pθ1

m∏
i=2

aθi−1θi

m∏
i=1

fθi(xi).

Note that x is the sample mean of n OC observations. So, it is reasonable to assume based

on the central limit theorem that f0(·) and f1(·) are the density functions of N(µ0, σ
2) and

N(µ1, σ
2), respectively, where σ2 can be estimated by the sample variance. Let ϑ̂ denote

the MLE of ϑ. Then, it has been well demonstrated in the literature that ϑ̂ is consistent

and asymptotically normal under some regularity conditions. The MLE ϑ̂ can be obtained

by using a numerical optimization algorithm, such as the well-known EM algorithm and the

gradient search algorithm. The EM algorithm for obtaining the MLE ϑ̂ in our setting is

summarized in Table 2.

We now plug-in ϑ̂ to obtain the plug-in statistics f̂(θi|θi−1, ..., θ1,x) and L̂ISi, which can

be computed by using the forward-backward algorithm described in Section 3.1. Then, in

light of the oracle diagnostic procedure, the Monte Carlo method and the bisection search

algorithm in Section 3.1 can also be implemented to find the optimal threshold value nu-

merically, denoted as c∗∗. Finally, the proposed data-driven diagnostic procedure can be

summarized below:

Let γ∗ = {i : L̂ISi < c∗∗}. Then, reject H0
i and claim that the ith data stream is OC if i ∈ γ∗.

At the end of this section, we would like to point out that the proposed data-driven

diagnostic procedure is described above when the shift magnitudes of different OC data
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Table 2: The EM algorithm for estimating the HMM parameters.

Preparation Step:
Give initial values for the HMM parameters: p

(0)
j , a

(0)
jk , µ

(0)
0 , µ

(0)
1 . Set t = 0.

E Step:
Compute the following quantities:

• η
(t)
i (j) = f(x1, ..., xi, θi = j)

• β
(t)
i (j) = f(xi+1, ..., xm|θi = j)

• γ
(t)
i (j) = η

(t)
i (j)β

(t)
i (j)/[η

(t)
i (0)β

(t)
i (0) + η

(t)
i (1)β

(t)
i (1)]

• ξ
(t)
i (j, k) = P (θi = j, θi+1 = k|x) = γ

(t)
i (j)a

(t)
jk fk(xi+1)β

(t)
i+1(k)/β

(t)
i (j)

M Step:
Set t = t+ 1 and update the parameters:

• p
(t)
j = γ

(t−1)
1 (j)

• a
(t)
jk =

∑m−1
i=1 ξ

(t−1)
i (j, k)/

∑m−1
i=1 γ

(t−1)
i (j)

• µ
(t)
0 = [

∑m
i=1 γ

(t−1)
i (0)xi]/

∑m
i=1 γ

(t−1)
i (0)

• µ
(t)
1 = [

∑m
i=1 γ

(t−1)
i (1)xi]/

∑m
i=1 γ

(t−1)
i (1)

Iterate the E Step and the M Step until convergence.

streams are assumed to be the same. This assumption, however, can be lifted easily, by

changing F1 to a normal mixture
∑J

j=1wjN(µOCj , σ2) with
∑J

j=1wj = 1, where {µOCj , j =

1, 2, . . . , J} denote the OC means of the J OC data streams, and {wj, j = 1, 2, . . . , J} are

the weights. In such cases, the whole normal mixture is regarded as a single OC state, and

the parameters (i.e., {µOCj , wj}) can be estimated by the EM algorithm efficiently. See Sun

and Cai (2009) for a related discussion.
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4 Simulation Studies

In this section, we investigate systematically the numerical performance of the proposed

oracle and data-driven diagnostic procedures. The section is organized in three parts. In

Section 4.1, we study the impact of using different test statistics Ti(x). In Section 4.2, we

compare the proposed diagnostic procedures with the diagnostic procedure proposed by Li

et al. (2020a) which was shown to have a better performance than its rivals in the SPC

literature. In Section 4.3, we will confirm that the diagnostic performance of the oracle

procedure can be attained asymptotically by the data-driven procedure, which ensures the

latter procedure to be feasible for practical use. In Section 4.4, we study the robustness of

the proposed data-driven procedure when there is a false alarm.

4.1 Impact of Different Test Statistics

In this part, we focus on the proposed oracle procedure, and study its diagnostic per-

formance with different test statistics. Specifically, besides LIS, two other test statistics

are considered here: Lfdr and p-value. When determining the significance level for a data

stream, an Lfdr or p-value approach would consider each data stream separately. One can

expect that the approaches using Lfdr and p-value would be less efficient than the one using

LIS, since the former ones do not take into account the between-stream correlation.

In all simulation examples, we choose the data dimension to be m = 1000. The Markov

chain θ is generated with the initial state 0 and the transition matrixA = (ajk)2×2, j, k = 0, 1,

where A is chosen to be one of the following three matrices:

• Independent case: a00 = 0.5, a01 = 0.5, a10 = 0.5, a11 = 0.5.

• Weak correlation case: a00 = 0.6, a01 = 0.4, a10 = 0.35, a11 = 0.65.

• Strong correlation case: a00 = 0.9, a01 = 0.1, a10 = 0.2, a11 = 0.8.

The steady-state OC probability is p1 = a01/(a01 + a10), and the values of p1 in the above

three cases are 0.5, 0.53 and 0.33, respectively. The observed distribution of xi given θi is

assumed to be (1 − θi)N(0, 1) + θiN(µ, 1), where µ is the OC mean. For each simulation,
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we first generate 10,000 groups of θ and x with a given HMM model and the observed

distribution specified above. Then, the proposed oracle diagnostic procedure runs 10,000

times to calculate the actual MDP values. The diagnostic results of the proposed oracle

procedure using LIS, Lfdr and p values when µ = 2 are summarized in Figure 2, in which

the density functions of MDP and the corresponding expected numbers of false positives

(EFP), defined as EFP = E[
∑m

i=1(1 − θi)δi], are plotted. The vertical lines in the density

plots represent the 100(1 − α)th percentiles of MDP. It is important to note that while

controlling MDXτ at level α, a method with a smaller EFP value would be more preferable

in practice, as a smaller EFP value means less false positives. The nominal MDX level α and

the threshold value τ are both set at 0.05 for convenience. The simulation results of other

choices of α and τ are similar, and thus are omitted here.

From the plots in Figure 2, it can be observed that MDXτ can be properly controlled

under α by using all three test statistics, but the EFP values of the method using the p-value

are significantly larger than those of the method using the other two statistics. Also, in the

independent case, the performance of LIS and Lfdr is almost identical. This should not be

surprising since LIS reduces to Lfdr when the data streams are independent of each other.

As the between-stream correlation gets stronger, the advantage of LIS over Lfdr becomes

more and more obvious. This finding implies that, if the between-stream correlation can be

modelled appropriately, it can be a blessing for a reliable fault diagnosis (i.e., EFP would

decrease when a11 increases); but, if it is ignored, the between-stream correlation can cause a

problem. Therefore, we can conclude from this example that thresholding LIS is a reasonable

choice for MDX-control when between-stream correlation exists.

We also investigate the diagnostic performance under the three test statistics with various

different model parameter settings, including: (i) different shift sizes when µ changing among

1, 1.5 and 2; (ii) different numbers of variables when m changing among 1,000, 2,000 and

3,000; and (iii) different steady-state OC probabilities when

A =

 0.95, 0.05

0.05(0.8 + ξ)/(0.2− ξ), 1− 0.05(0.8 + ξ)/(0.2− ξ)

 ,

and ξ changing among 0.05, 0.1 and 0.15. For cases (i) and (ii), only the strong correlation

case is considered for simplicity. In case (iii), the steady-state OC probabilities corresponding
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Figure 2: Diagnostic performance of the oracle procedure for MDX-control by using the
three thresholding methods LIS, Lfdr, and p-value. The first row shows the density curves of
MDP and the second row shows the EFP levels. The vertical lines denote the 100(1− α)th
percentiles of MDP of the procedures for MDX-control.

to the three values of ξ are 0.15, 0.1 and 0.05, respectively. To save space in the main paper,

the simulation results in these three cases are shown in Figures 7-9 in the Supplementary

File. From the figures, we can make similar conclusions as those from Figure 2 that MDXτ

is controlled well in our proposed method in all cases considered and that thresholding LIS

would be better than the other two thresholding approaches.

4.2 Comparison Between MDX-control and Some Existing Meth-

ods

In this part, we compare the proposed diagnostic procedure for MDX-control that uses

the LIS thresholding approach with some existing representative diagnostic methods in the

literature. One existing method considered is the diagnostic procedure proposed by Li et

al. (2020a) that controls MDR. MDR is the mathematical expectation of MDP, and the
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MDR-based procedure tries to minimize EFP while controlling MDR at level α. Another

existing method considered is the LASSO-based multivariate diagnostic framework (denoted

as LASSO) suggested in Zou et al. (2011). It should be noted that the hype-parameters in

LASSO are tuned such that its nominal MDX is guaranteed. Figure 3 presents the diagnostic

performance of MDX-control and the above-mentioned two existing methods in the strong

correlation case. In the three plots of the upper row in the figure, the vertical dashed lines

denote the 50th percentiles (i.e., medians) of the MDP values of the procedure for MDR-

control, and the vertical solid and dotted lines are the 100(1− α)th percentiles of the MDP

values of the proposed procedure for MDX-control and the procedure LASSO, respectively.

From the plots, it can be seen that the probability for MDP being larger than τ can

be controlled properly by controlling the MDX at level α. As a comparison, by using the

procedure for MDR-control, even in cases when MDR can be controlled at α, it is likely

to result in a diagnosis with MDP being significantly larger than α, as evidenced by the

symmetrical structure of the density curves of MDP for the MDR-control procedure where

the approximate medians are close to α. In addition, given the fact that MDX-control

would miss less OC data streams than MDR-control, the numbers of IC data streams that

are diagnosed as OC for the MDX-control procedure would also be smaller than those by

the MDR-control procedure in all three cases considered. As for the LASSO procedure, it

can be observed from the figure that even when the MDX is controlled at level α, its EFP

values are significantly larger than those of the MDX-control procedure, and the difference

between their EFP values gets bigger as µ increases. Results in this example imply that the

proposed diagnostic procedure for MDX-control would be more reliable and effective than

the MDR-control and LASSO procedures in cases when the data streams are correlated.

4.3 Comparison Between the Proposed Oracle and Data-driven

Procedures

In this part, we compare the proposed data-driven diagnostic procedure for MDX-control

with the oracle version. We set µ at 0.5, and consider the strong correlation case considered in

Section 4.1. In order to study thoroughly the robustness and effectiveness of these procedures,

we consider three scenarios: (a) fix α and τ , and study the diagnostic performance for various
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Figure 3: Diagnostic performance of the MDX-control, MDR-control and LASSO procedures.
The first row shows the density curves of MDP and the second row shows the EFP levels.
The vertical solid lines denote the 100(1 − α)th percentiles of MDP of the MDX-control
procedure, the vertical dashed lines are the medians of MDP of the MDR-control procedure,
and the vertical dotted lines denote the 100(1 − α)th percentiles of MDP of the LASSO
procedure.

choices of n; (b) fix n and τ , and study the diagnostic performance for various choices of α;

and (c) fix n and α, and study the diagnostic performance for various choices of τ . Other

setups are kept to be the same as before. The simulation results are shown in Figure 4, where

the MDX and EFP values are shown as functions of n, τ and α in respective scenarios. From

the plots, it can be seen that the MDX levels of the oracle procedure are controlled well at the

nominal level α in all cases considered and the lines of the oracle and data-driven procedures

are almost identical, which indicates that the diagnostic performance of the proposed oracle

procedure for MDX-control can be asymptotically attained by the data-driven procedure,

and that the reliability and effectiveness of the data-driven procedure for MDX-control can

be guaranteed in real-data applications. Furthermore, it can be noticed that the EFP level

decreases as the two hype-parameters τ and α increases, which implies that our method

tends to be more conservative when τ and α are smaller.
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Figure 4: Comparison of the proposed oracle and data-driven diagnostic procedures for
MDX-control. The first row shows the MDX levels and the second row shows the EFP
levels. The blue dashed lines in the plots of the first row denote the nominal MDX levels.

4.4 Sensitivity Analysis

In this subsection, we conduct some sensitivity analysis to demonstrate the robustness

and effectiveness of the proposed data-driven diagnostic procedure for MDX-control in cases

with various invalid model assumptions.

Diagnostic Performance Under Model Misspecifications. In some applications,

the model assumptions required by the proposed methodology may not be valid. To inves-

tigate the robustness of our procedure, we perform the following simulation studied in cases

when the model is misspecified. First, we study the sensitivity of our method to the HMM

assumption. To this end, the OC observations are generated from a multivariate normal

distribution N(µ,Σ), where the (i, j)th element of Σ is set to be 0.5|i−j|, for all i and j, all

non-zero values in µ are set to be 2, each element of µ has 50% chance to be 0 or 1, and all

elements of µ are independently generated in each simulation. The other settings are the

same as that in Figure 2. The simulation results of the proposed data-driven procedure are

21



0.01 0.03 0.05 0.07

0
10

30
50

70

MDP

D
en

si
ty

LIS
Lfdr
p−value

Multivariate Normal

0.01 0.03 0.05 0.07

0
10

30
50

70

MDP

t

0.01 0.03 0.05 0.07

0
10

30
50

70

MDP

Uniform

0.01 0.03 0.05 0.07

0
20

40
60

80

MDP

Normal

LIS Lfdr p−value

E
F

P

0
1

2
3

4
5

6

LIS Lfdr p−value

0
20

40
60

80

LIS Lfdr p−value

0
5

10
15

20

LIS Lfdr p−value

0
1

2
3

4
5

Figure 5: Sensitivity analysis of the proposed data-driven diagnostic procedure for MDX-
control against: HMM (first column), marginal normality (second and third columns) and
degenerate OC distribution (fourth column). The first row shows the density curves of MDP
and the second row shows the EFP levels. The vertical lines in the plots of the first row
denote the 100(1 − α)th percentiles of MDP of the MDX-control procedure using different
thresholding approaches.

shown in the first column of Figure 5, from which we can see that MDX is still controlled

at the nominal level by our procedure, and thresholding LIS can obtain the smallest EFP

among the three thresholding choices.

Second, we study the sensitivity of our method to the marginal normality assumption.

To this end, the following two distributions are considered:

• t distribution: xi|θi ∼ t(4) + 2θi,

• Uniform distribution: xi|θi ∼ θiU(0, 4) + (1− θi)U(−2, 2),

where θ is generated based on the HMM model in the strong correlation case. The simulation

results are shown in the second and third columns of Figure 5. It can be seen as expected

that our procedure for MDX-control is quite robust against non-normal distributions, mainly

because it is based on the sample mean of n OC observations.

Third, we study the sensitivity of our method to the assumption of degenerate OC
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distribution. To this end, the OC observations are generated from the following model:

xi|µi ∼ N(µi, 1),

where µi|θi ∼ θiU(1.5, 2.5)+(1−θi)δ0(µi), δ0(·) is the Dirac delta function, and θ is generated

from the HMM model in the strong correlation case. The simulation results are shown in

the fourth column of Figure 5, from which we can have similar conclusions to those in other

cases in this example that our procedure for MDX-control is robust against non-degenerate

OC distribution. Therefore, this example shows that our proposed diagnostic procedure for

MDX-control is quite robust against model misspecifications, which is appealing for practical

use.

Diagnostic Performance Under A False Alarm. In SPC, control charts could

trigger false OC signals in cases when the related process is actually IC. In this part, we

study the diagnostic performance of the proposed data-driven procedure for MDX-control

under a false alarm. In such a case, the indices MDP and EFP become meaningless since there

are no OC data streams with θi = 1. Instead, we focus on the expected number of positives

(EP), defined to be E(
∑m

i=1 δi). In the example of Figure 2, set m = 1, 000 and n = 10, and

consider the strong correlation case. The EP values of the data-driven procedure for MDX-

control with various combinations of α and τ based on 10,000 simulations are summarized

in Table 3. From the table, it can be seen that the EP values are all very small (< 17),

compared to the value of m = 1, 000, in all scenarios considered, which implies that only a

few data streams would be diagnosed mistakenly by the proposed method as OC. Therefore,

it can be concluded that the proposed diagnostic procedure is quite robust under a false

alarm.

Table 3: EP values of the data-driven procedure for MDX-control under a false alarm. Their
standard errors are included in parentheses.

α = 0.01 α = 0.05 α = 0.1
τ = 0.01 16.6(1.98) 11.5(1.25) 9.4(1.03)
τ = 0.05 13.1(1.46) 8.5(0.94) 7.2(0.77)
τ = 0.1 10.2(1.17) 6.7(0.70) 4.8(0.46)
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5 Application to a Semiconductor Manufacturing Dataset

The modern semiconductor manufacturing process (SMP) is one of the most complicated

processes nowadays. The increased complexity of high-tech devices gives a tremendous chal-

lenge for proper quality control. SMP typically involves a series of complicated steps, and the

key variables in the whole process are monitored constantly based on data streams collected

from hundreds of sensors. As a motivating example, we analyze a real SMP dataset available

from the UCI Machine Learning Repository. It contains 1,463 conforming samples and 104

nonconforming samples, and each sample is a high-dimensional observation of 590 variables.

These variables are ordered by the manufacturing procedural steps that they belong to. For

demonstration purposes, the 1,463 conforming samples are regarded as the IC dataset and

the 104 nonconforming samples are regarded as the OC dataset for fault diagnosis in this

section.

When the SMP changes from IC to OC, the mean values of certain data streams may

shift abruptly. The timely and accurate fault diagnosis of the OC status is thus critically

important to identify the OC data streams and repair the manufacturing process accordingly.

High-dimensional fault diagnosis involves simultaneous testing of a large number of data

streams, where good reliability and sensitivity are among the top considerations. To this

end, we demonstrate how the proposed data-driven diagnostic procedure can be applied to

this SMP example for identifying the OC data streams.

To analyse the data properly, pre-processing of the data is often needed. First, the

constant data streams and the extremely discrete data streams can be deleted from the

analysis, resulting in m = 453 remaining streams for further analysis. Also, because there

are a small number of missing values in the data, the mean imputation approach is used to

substitute each missing value with the mean value of the corresponding data stream. Such

imputation would not change the sample mean for each data stream. The Shapiro-Wilks

test for normality indicates that many data streams are not normally distributed. Thus, the

transformation Φ−1(F̂k(Xkt)), for k = 1, ...,m, is implemented to each data stream, where

F̂k is the empirical c.d.f. of the kth data stream estimated from the IC dataset, Xkt is

the observed value of the kth data stream at the time point t, and Φ−1(·) is the inverse

of the standard normal c.d.f.. After this transformation, each data stream would have a
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distribution that is close to normal, but the joint distribution of all m data streams may not

be normal.

The observed data are assumed to be a normal mixture of two hidden patterns, with

one for the IC data streams with the normal distribution N(µIC , σ
2) and the other for

the OC data streams with the distribution N(µOC , σ
2). The hidden states of the data

streams θ are assumed to form a Markov chain. The HMM parameters are estimated by

using the EM algorithm. The estimation results with n = 20 are summarized in Table 4,

where â11 = 0.89 indicates that a positive correlation exists among the hidden statuses, and

that the OC streams tend to appear in clusters. It should be noted that if x follows an

HMM-based mixture distribution, then the estimation results in Table 4 by using the EM

algorithm should be close to the true underlying distribution. Motivated by this intuition,

we performed the chi-square goodness-of-fit test to see whether sample frequencies follow the

estimated mixture distribution well. Specifically, sample data are divided into intervals, and

the numbers of sample data in individual intervals are compared with the expected numbers

of sample data under the HMM model by constructing the chi-square test statistic. The

resulting p-value is 0.216 in this case, which implies that the observed data can be described

properly by the HMM model.

The proposed data-driven LIS-based diagnostic procedure for MDX-control is then ap-

plied to the SMP data. After setting α = τ = 0.05, the diagnostic results are displayed in

Figure 6, where the estimated LIS values are plotted. The threshold value c∗∗ = 0.7556 is

obtained by using the proposed Monte Carlo method. It can be seen that a total of 301 data

streams are identified as OC, and most of them appear in clusters, which indicates that the

hidden states of the data streams are correlated.

Table 4: The estimated mixture model for the SMP data.

IC distribution OC distribution Transition matrix A

N(−0.05, 0.422) N(0.25, 0.422)

(
0.94 0.06
0.11 0.89

)
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Figure 6: The diagnostic results of the SMP data by using the data-driven procedure for
MDX-control.

6 Concluding Remarks

In this paper, we have focused on the reliable fault diagnosis problem for high-dimensional

and mutually correlated data streams, which is formulated into a large-scale multiple testing

framework for controlling MDX under the HMM dependence structure. Both the oracle and

data-driven diagnostic procedures for MDX-control are discussed based on LIS thresholding.

A Monte-Carlo method is proposed for estimating MDX, and then the optimal threshold

value can be found numerically by using the bisection search algorithm. Based on extensive

simulation results and a real-data analysis, we can see that the proposed procedures for

MDX-control are reliable and effective for fault diagnosis of high-dimensional data streams.

Several issues still need to be studied in the future research. First, the proposed diag-

nostic procedures for MDX-control are designed mainly for detecting abnormal mean shifts.

After certain modifications, they should be able to diagnose covariance shifts as well, which

has not be discussed in the paper yet. Second, the HMM assumption might be strong for cer-

tain applications. Much future research is needed to develop reliable diagnostic procedures

under more flexible data dependence structures. Third, in many real-world applications, it

should be important to accommodate both spatial and temporal data correlations in the

context of fault diagnosis, which will be one of the main research directions in the future. To

this end, our proposed multiple-testing based method could be combined with the existing
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data decorrelation procedures (e.g., Qiu et al., 2020; Li and Qiu, 2020; Xue and Qiu, 2020;

Qiu and Xie, 2021). But, this is beyond the scope of the current paper, and will be stud-

ied elsewhere. Finally, SPC of network and image data becomes more and more important

in real applications (e.g., Dong et al., 2020; Ebrahimi et al., 2020; Feng and Qiu, 2018;

Menafoglio et al., 2018; Qiu 2020; Wang and Xie, 2021). The problem of fault diagnosis for

network and image data is challenging, which also needs be studied in the future.

Supplementary Materials

Supplementary File: The Supplementary File contains additional simulation results.

Code and Data: The Code and Data contain codes for performing MDX-control and the

real dataset.
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