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Abstract Some control charts based on machine learning approaches have been
developed recently in the statistical process control (SPC) literature. These charts are
usually designed for monitoring processes with independent observations at different
observation times. In practice, however, serial data correlation almost always exists
in the observed data of a temporal process. It has been well demonstrated in the
SPC literature that control charts designed for monitoring independent data would
not be reliable to use in applications with serially correlated data. In this chapter,
we suggest using certain existing machine learning control charts together with a
recursive data de-correlation procedure. It is shown that the performance of these
charts can be substantially improved for monitoring serially correlated processes
after data de-correlation.

Xiulin Xie
Department of Biostatistics, University of Florida, 2004 Mowry Road, Gainesville, FL 32610.
e-mail: xiulin.xie@ufl.edu

Peihua Qiu
Department of Biostatistics, University of Florida, 2004 Mowry Road, Gainesville, FL 32610.
e-mail: pqiu@ufl.edu

1



2 Xiulin Xie and Peihua Qiu

1 Introduction

In recent years, machine learning approaches have attracted much attention in differ-
ent research areas, including statistical process control (SPC) (e.g., Aggarwal 2018,
Breiman 2001, Carvalho et al. 2019, Göb 2006, Hastie et al. 2001). Some control
charts based on different machine learning algorithms have been developed in the
SPC literature. For instance, the k-nearest neighbors (KNN), random forest (RF) and
support vector machines (SVM) have been used in developing SPC control charts.
Most of these existing machine learning control charts are based on the assumption
that process observations at different observation times are independent of each
other. In practice, however, serial data correlation almost always exists in a time
series data. It has been well demonstrated in the SPC literature that control charts
designed for monitoring independent data would not be reliable to use when serial
data correlation exists (e.g. Apley and Tsung 2002, Knoth and Schmid 2004, Lee and
Apley 2011, Li and Qiu 2020, Psarakis and Papaleonida 2007, Qiu, Li, and Li 2020,
Runger and Willemain 1995, Weiß 2015, Xue and Qiu 2020). Thus, it’s necessary to
improve these machine learning control charts by overcoming that limitation. This
paper aims to address this important issue by suggesting to apply a recursive data
de-correlation procedure to the observed data before an existing machine learning
control chart is used.

In the SPC literature, there has been some existing discussion about process
monitoring of serially correlated data (e.g., Alwan and Roberts 1995, Capizzi and
Masarotto 2008, Prajapati and Singh 2012, Psarakis and Papaleonida 2007). Many
such existing methods are based on parametric time series modeling of the observed
process data and monitoring of the resulting residuals. For instance, Lee and Ap-
ley (2011) proposed an exponentially weighted moving average (EWMA) chart for
monitoring correlated data by assuming the in-control (IC) process observations to
follow an ARMA model. In practice, however, the assumed parametric time series
models may not be valid, and consequently these control charts may be unreliable
to use (e.g., Li and Qiu 2020). Recently, Qiu, Li, and Li (2020) suggested a more
flexible data de-correlation method without using a parametric time series model
for univariate cases. It only requires the serial data correlation to be stationary and
short-range (i.e., the correlation between two observations become weaker when
the observation times get farther away). A multivariate extension of that method
was discussed in Xue and Qiu (2020). Numerical studies show that such sequential
data de-correlation approaches perform well in different cases. In this paper, we
suggest improving some existing machine learning control charts by applying such
a data de-correlation procedure to the observed process observations in advance.
The modified machine learning control charts can handle cases with multiple nu-
merical quality variables, and the quality variables could be continuous numerical
or discrete. Numerical studies show that the performance of these modified ma-
chine learning control charts is substantially better than their original versions for
monitoring processes with serially correlated data in various different cases.

The remaining parts of this paper are organized as follows. In Section 2, the pro-
posed modification for some existing machine learning control charts are described
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in detail. Numerical studies for evaluating their performance are presented in Section
3. A real-data example to demonstrate the application of the modified control charts
is discussed in Section 4. Finally, some remarks conclude the article in Section 5.

2 Improve Some Machine learning Control Charts for
Monitoring Serially Correlated Data

This section is organized in three parts. In Subsection 2.1, some representative
existing machine learning control charts are briefly described. In Subsection 2.2, a
recursive data de-correlation procedure for the observed sequential data is introduced
in detail. Then, the modified machine learning control charts, in which the recursive
data de-correlation procedure is applied to the observed data before the original
machine learning control charts, are discussed in Subsection 2.3.

2.1 Description of some representative machine learning control charts

Classification is one of themajor purposes of supervisedmachine learning, andmany
machine learning algorithms like the artificial neural networks, RF and SVM have
demonstrated a good performance in accurately classifying input data after learning
the data structure from a large training data. Since an SPC problem can be regarded
as a binary class classification problem, in which each process observation needs
to be classified into either the IC or the out-of-control (OC) status during phase
II process monitoring, several machine learning algorithms making use of both IC
and OC historical data have been employed for process monitoring. For instance,
Zhang, Tsung, and Zou (2015) proposed an EWMA control chart based on the
probabilistic outputs of a SVM classifier that needs to be built by using both IC and
OC historical data. Several other classifiers like the KNN and linear discriminant
analysis were also proposed for process monitoring (e.g., Li, Zhang, Tsung, and
Mei 2020; Sukchotrat, Kim, Tsui, and Chen 2011). In many SPC applications,
however, few OC process observations would be available in advance. For instance,
a production process is often properly adjusted during the Phase I SPC, and a set of
IC data is routinely collected afterwards for estimating the IC process distribution or
some of its parameters (Qiu 2014, Chapter 1). Thus, for such applications, an IC data
is usually available before the Phase II SPC, but the OC process observations are
often unavailable. To overcome this difficulty, some creative ideas like the artificial
contrast, real-time contrast, and one class classification were proposed to develop
control charts without assuming the availability of OC process observations during
the design stage of the related charts. Several representative machine learning control
charts based on these ideas are briefly introduced below.
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2.1.1 Control chart based on artificial contrasts

Tuv and Runger (2004) proposed the idea of artificial contrast to overcome the
difficulty that only IC data are available before the Phase II process monitoring
in certain SPC applications. By this idea, an artificial dataset is first generated
from a given off-target distribution (e.g., Uniform) and observations in that dataset
are regarded as OC observations. Then, a machine learning algorithm (e.g., RF) is
applied to the training dataset that consists of the original IC dataset, denoted asXIC ,
and the artificial contrast dataset, denoted as XAC . The classifier obtained by the RF
algorithm is then used for online process monitoring. Hwang et al. (2007) studied
the performance of such machine learning control charts by using both the RF and
SVMalgorithms. Thesemachine learning control charts suffer twomajor limitations.
First, their classification error rates cannot be transferred to the traditional average
run length (ARL) metric without the data independence assumption. Second, their
decisions at a given time point during phase II process monitoring are made based
on the observed data at that time point only, and they have not made use of history
data. To overcome these limitations, Hu and Runger (2010) suggested the following
modification that consisted of two major steps. i) For process observation Xn at a
given time point n, the log likelihood ratio is first calculated as

ln = log [p̂1(Xn)] − log [p̂0(Xn)] ,

where p̂1(Xn) and p̂0(Xn) are the estimated probabilities ofXn in each class obtained
by the RF classifier. ii) Amodified EWMA chart is then suggested with the following
charting statistic:

En = λln + (1 − λ)En−1,

where λ ∈ (0, 1] is a weighting parameter. This control chart is denoted as AC,
representing “artificial contrast”. Obviously, like the traditional EWMA charts, the
charting statistic En of AC is a weighted average of the log likelihood ratios of all
available observations up to the time point n.

As suggested by Hu and Runger (2010), the control limit of AC can be determined
by the following 10-fold cross-validation (CV) procedure. First, 90%of the IC dataset
XIC and the artificial contrast dataset XAC is used to train the RF classifier. Then,
the En with a control limit h is applied to the remaining 10% of the IC dataset XIC
to obtain a run length (RL) value. The above CV procedure is then repeated for
C = 1, 000 times, and the average of the C RL values is used to approximate the
ARL0 value for the given h. Finally, h can be searched by a numerical algorithm
(e.g., the bisection searching algorithm) so that the assumed ARL0 value is reached.

2.1.2 Control chart based on real time contrasts

The artificial contrasts XAC used in AC are generated from a subjectively chosen
off-target distribution (e.g., Uniform), and thus may not represent the actual OC
observations well. Consequently, the RF classifier trained using XIC and XAC may
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not be effective for monitoring certain processes. To improve the chart AC, Deng,
Runger, and Tuv (2012) propose a real time contrast (RTC) approach, in which the
most recent observations within a moving window of the current time point are
used as the contrasts. In their proposed approach, the IC dataset is first divided
into two parts: a randomly selected N0 observations from XIC , denoted as XIC0 ,
is used for training the RF classifier, the remaining IC data, denoted as XIC1 , is
used for determining the control limit. The process observations in a window of
the current observation time point n are treated as OC data and denoted as XACn =

{Xn−w+1,Xn−w+2, . . . ,Xn}, where w is the window size. Then, the RF classifier can
be re-trained sequentially over time using the training dataset that combinesXIC0 and
XACn , and the decision rule can be updated accordingly once the new observation
Xn is collected at time n.

Deng et al. (2012) suggested using the following estimated “out-of-bag” correct
classification rate for observations in XIC0 as the charting statistic:

Pn =

∑
POOB(Xi)I(Xi ∈ XIC0 )

|XIC0 |
,

where |XIC0 | denotes the number of observations in the set XIC0 , and POOB(Xi) is
the estimated “out-of-bag” correct classification probability for the IC observation
Xi that is obtained from the RF classification. As discussed in Deng et al. (2012),
there could be several alternative charting statistics, such as the estimated “out-of-
bag” correct classification rate for observations in XACn . But, they found that the
chart based on the above Pn, denoted as RTC, had some favorable properties.

The control limit of the chart RTC can be determined by the following bootstrap
procedure suggested by Deng et al. (2012). First, we draw with replacement a
sample from the dataset XIC1 . Then, the chart RTC with control limit h is applied to
the bootstrap sample to obtain a RL value. This bootstrap re-sampling procedure is
repeated B = 1, 000 times, and the average of the B RL values is used to approximate
the ARL0 value for the given h. Finally, h can be empirically selected so that assumed
ARL0 is reached. Finally, h be searched by a numerical algorithm so that the assumed
ARL0 value is reached.

2.1.3 Distance based control chart using SVM

The charting statistic of the RTC chart discussed above actually take discrete values,
because the estimated “out-of-bag” correct classification probabilities {POOB(Xi)}

are obtained from an ensemble of decision trees (Breiman 2001 and He, Jiang, and
Deng 2018). As an alternative, He, Jiang, and Deng (2018) suggested a distance-
based control chart under the framework of SVM, which is denoted as DSVM.
The DSVM method uses the distance between the support vectors and the process
observations in the dataset XACn as a charting statistic. Unlike charting statistic
Pn of the RTC chart, this distance-based charting statistic is a continuous variable.
Because the distance from a sample of process observations to the boundary surface
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defined by the support vectors can be either positive or negative, He, Jiang, and Deng
suggested transforming the distance using the standard logistic function

g(a) =
1

1 + exp(−a)
.

Then, the following average value of the transformed distances from individual
observations in XACn to the boundary surface can be defined to be the charting
statistic:

Mn =

∑
g(d(Xi))I(Xi ∈ XACn )

|XACn |
,

where d(Xi) is the distance from the observationXi to decision boundary determined
by the SVM algorithms at time n.

In the above DSVM chart, the kernel function and the penalty parameter need
to be selected properly. He, Jiang, and Deng (2018) suggested using the following
Gaussian radial basis function (RBF): for any X,X′ ∈ Rp ,

K(X,X′) = exp
(
‖X − X′‖2

σ2

)
as the kernel function, where p is dimension of the process observations, and the
parameter σ2 was chosen to be larger than 2.8. They also suggested choosing the
penalty parameter to be 1. The control limit of the chart DSVM can be determined
by a bootstrap procedure, similar to the one described above for the RTC chart.

2.1.4 Control chart based on the KNN classification

Another approach to develop machine learning control charts is to use one-class
classification (OCC) algorithms. Sun and Tsung (2003) developed a nonparametric
control chart based on the so-called support vector data description (SVDD) approach
(Tax andDuin 2004), described below. By SVDD, the boundary surface of an IC data
can be defined so that the volume within the boundary surface is as small as possible
while the Type-I error probability is controled within a given level of α. Then, the
boundary surface is used as the decision rule for online processmonitoring as follows:
a new observation is claimed to be OC if it falls outside of the boundary surface, and
IC otherwise. See Camci et al. (2008) for some modifications and generalizations.
However, determination of this boundary surface is computationally intensive. To
reduce the computation burden, Sukchotrat, Kim and Tsung (2009) suggested a
control chart based on the KNN classification, denoted as KNN. In KNN, the average
distance between a given observation Xi and its k nearest neighboring observations
in the IC dataset is first calculated as follows:

K2
i =

k∑
j=1
‖Xi − NNj(Xi)‖

k
,
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where NNj(Xi) is the j th nearest neighboring observation of Xi in the IC dataset,
and ‖ · ‖ is the Euclidean distance. Then, the (1 − α)th quantile of all such distances
of individual observations in the IC data can be computed. This quantile can be used
as the decision rule for online process monitoring as follows. At the current time n,
if the average distance from Xn to its k nearest neighboring observations (i.e., K2

n)
is less than the quantile, then Xn is claimed as IC. Otherwise, it is claimed as OC.

In the above KNN chart, the control limit (i.e., the (1 − α)th quantile of {K2
i }

of individual observations in the IC data) can be refined by the following bootstrap
procedure suggested by Sukchotrat et al (2009). First, a total of B = 1, 000 bootstrap
samples are obtained from the IC dataset by the simple random sampling procedure
with replacement. Then, the (1−α)th quantile of {K2

i } of individual observations in
each bootstrap sample can be computed. Then, the final control limit is chosen to be
the mean of the B such quantiles. The KNN chart assumes that process observations
at different time points are independent. Thus, its ARL0 value equals 1/α.

2.2 Sequential Data De-Correlation

In this subsection, the sequential data de-correlation procedure for multivariate
serially correlated data is described in detail. It is assumed that the IC process
mean is µ and the serial data correlation is stationary with the covariances γ(s) =
Cov(Xi,Xi+s), for any i and s, that depend only on s.

For the first observation X1, its covariance matrix is γ(0). Then, its standardized
vector can be defined to be

X∗1 = γ(0)−1/2(X1 − µ).

After the second observation X2 is collected, let us consider the long vector

(X′1,X
′
2)
′. Its covariance matrix can be written as Σ2,2 =

(
γ(0) σ1
σ′1 γ(0)

)
, where σ1 =

γ(1). The Cholesky decomposition of Σ2,2 is given by Φ2Σ2,2Φ
′
2 = D2, where Φ2 =(

Ip 0
−σ′1γ(0)

−1 Ip

)
, and D2 =

(
d1 0
0 d2

)
= diag(d1, d2), d1 = γ(0), and d2 = γ(0) −

σ′1γ(0)
−1σ1. Therefore, we haveCov(Φ2e2) = D2, where e2 = [(X1−µ)

′, (X2−µ)
′]′.

Since Φ2e2 =

(
Ip 0

−σ′1γ(0)
−1 Ip

) (
(X1 − µ)

′

(X2 − µ)
′

)
= (ε ′1, ε

′
2)
′, where

ε1 = X1 − µ,

ε2 = −σ
′
1Σ
−1
1,1(X1 − µ) + (X2 − µ),

ε1 and ε2 are uncorrelated. Therefore, the de-correlated and standardized vector of
X2 can be defined to be

X∗2 = d−1/2
2 ε2 = d−1/2

2
[
−σ′1Σ

−1
1,1(X1 − µ) + (X2 − µ)

]
.
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It is obvious that X∗1 and X∗2 are uncorrelated, and both have the identity covariance
matrix Ip .

Similarly, for the third observation X3, which could be correlated with X1 and
X2, consider the long vector (X′1,X

′
2,X

′
3)
′. Its covariance matrix can be written as

Σ3,3 =

(
Σ2,2 σ2
σ′2 γ(0)

)
, where σ2 = ([γ(2)]′, [γ(1)]′)′. If we define Φ3 =

(
Φ2 0

−σ′2Σ
−1
2,2 Ip

)
and D3 =

©«
d1 0 0
0 d2 0
0 0 d3

ª®¬ = diag(d1, d2, d3), where d3 = Σ3,3 − σ
′
2Σ
−1
2,2σ2, then we have

Φ3Σ3,3Φ
′
3 = D3. This motivates us to consider Φ3e3 , where e3 = [(X3 − µ)

′, (X1 −
µ)′, (X2 − µ)

′]′. It can be checked that Φ3e3 = (ε
′
1, ε
′
2, ε
′
3)
′, where

ε3 = −σ
′
2Σ
−1
2,2e2 + (X3 − µ).

SinceCov(Φ3e3) = D3, e3 is uncorrelatedwith e1 and e2. Therefore, the de-correlated
and standardized vector of X3 is defined to be

X∗3 = d−1/2
3 ε3 = d−1/2

3 (−σ′2Σ
−1
2,2e2 + (X3 − µ)),

which is uncorrelated with X∗1 and X∗2 and has the identity covariance matrix Ip .
Following the above procedure, we can define the de-correlated and standardized

vectors sequentially after a new observation is collected.More specifically, at the j-th
observation time, the covariance matrix of the long vector (X′1,X

′
2, . . . ,X

′
j)
′ can be

written as Σj, j =
(
Σj−1, j−1 σj−1
σ′

j−1 γ(0)

)
, where σj−1 = ([γ( j − 1)]′, . . . , [γ(2)]′, [γ(1)]′)′.

It can be checked that ΦjΣj, jΦ
′
j = Dj , where Φj =

(
Φj−1 0

−σ′
j−1Σ

−1
j−1, j−1 Ip

)
, Dj =

diag(d1, d2, . . . dj), and dj = Σj, j − σ
′
j−1Σ

−1
j−1, j−1σj−1. Therefore, if we define

εj = −σ
′
j−1Σ

−1
j−1, j−1ej−1 + (Xj − µ),

then Φjεj = (e′1, e
′
2, . . . , e

′
j)
′ and Cov(Φjεj) = Dj , which implies that ej is uncorre-

lated with {e1, . . . , ej−1}. Therefore, the de-correlated and standardized vector of Xj

is defined to be

X∗j = d−1/2
j εj = d−1/2

j (−σ′j−1Σ
−1
j−1, j−1ej−1 + (Xj − µ)),

which is uncorrelated with X∗1, . . . ,X
∗
j−1 and has the identity covariance matrix Ip .

By the above sequential data de-correlation procedure, we can transform the origi-
nally correlated process observations to a sequence of uncorrelated and standardized
observations, each of which has the mean 0 and the identity covariance matrix Ip .
In reality, the IC parameters µ and {γ(s)} are usually unknown and should be esti-
mated in advance. To this end, µ and {γ(s)} can be estimated from the IC dataset
XIC = {X−m0+1,X−m0+2, . . . ,X0} as follows:
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µ̂ =
1

m0

0∑
i=−m0+1

Xi (1)

γ̂(s) =
1

m0 − s

−s∑
i=−m0+1

(Xi+s − µ̂) (Xi − µ̂)
′ .

2.3 Machine Learning Control Charts for Monitoring Serially
Correlated Data

Tomonitor a serially correlated processwith observationsX1,X2, . . . ,Xn, . . ., we can
sequentially de-correlate these observations first by using the procedure described in
the previous subsection and then apply the machine learning control charts described
in Subsection 2.1. However, at the current time point n, to de-correlate Xn with all its
previous observations X1,X2, . . . ,Xn−1, will take much computing time, especially
when n becomes large. To reduce the computing burden, Qiu et al. (2020) suggested
that the observationXn only need to be de-correlated with its previous bmax observa-
tions, based on the assumption that two process observations becomes uncorrelated
if their observation times are more than bmax apart. This assumption basically says
that the serial data correlation is short-ranged, which should be reasonable in many
applications. Based on this assumption, a modified machine learning control chart
for monitoring serially correlated data is summarized below.

• When n = 1, the de-correlated and standardized observation is defined to be
X̂∗1 = γ̂(0)−1/2(X1 − µ̂). Set an auxiliary parameter b to be 1, and then apply a
machine learning control chart to X̂∗1.

• When n > 1, the estimated covariance matrix of (X′
n−b

, . . . ,X′n)′ is defined to be

Σ̂n,n =
©«
γ̂(0) · · · γ̂(b)
...

. . .
...

γ̂(b) . . . γ̂(0)

ª®®¬ =:
(
Σ̂n−1,n−1 σ̂n−1
σ̂′
n−1 γ̂(0)

)
.

Then, the de-correlated and standardized observation at time n is defined to be

X̂∗n = d̂−1/2
n

[
−σ̂′n−1Σ̂

−1
n−1,n−1̂en−1 + (Xn − µ̂)

]
,

where d̂j = Σ̂j, j − σ̂′
j−1Σ̂

−1
n−1,n−1σ̂j−1, and ên−1 = [(Xn−b − µ̂)′, (Xn−b+1 −

µ̂)′, . . . , (Xn−1 − µ̂)′]′. Apply a machine learning control chart to X̂∗n to see
whether a signal is triggered. If not, set b = min(b + 1, bmax) and n = n + 1, and
monitor the process at the next time point.
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3 Simulation Studies

In this section, we investigate the numerical performance of the four existingmachine
learning control charts AC, RTC, DSVM and KNN described in Subsection 2.1, in
comparison with their modified versions AC-D, RTC-D, DSVM-D and KNN-D
discussed in Subsection 2.3, where "-D" indicates that process observations are
de-correlated before each method is used for process monitoring. In all simulation
examples, the nominal ARL0 values of all charts are fixed at 200. If there is no further
specification, the parameter λ in the chart AC is chosen to be 0.2, as suggested in He
et al. (2010), the moving window size w in the charts RTC and DSVM is chosen to be
10, as suggested in Deng et al. (2012) and He et al.(2018), and the number of nearest
observations k in the chart KNN is chosen to be 30, as suggested in Sukchotrat et
al. (2009). The number of quality variables is fixed at p = 10, the parameter bmax is
chosen to be 20, and the IC sample size is fixed at m0 = 2, 000. The following five
cases are considered:

• Case I: Process observations {Xn, n ≥ 1} are i.i.d. with the IC distribution
N10(0, I10×10).

• Case II: Process observations {Xn, n ≥ 1} are i.i.d. at different observation times,
the 10 quality variables are independent of each other, and each of them has the
IC distribution χ2

3 , where χ
2
3 denotes the chi-square distribution with the degrees

of freedom being 3.
• Case III: Process observations Xn = (Xn1, Xn2, . . . , Xn10)

′ are generated as fol-
lows: for each i, Xni follows the AR(1) model Xni = 0.1Xn−1,i + εni , where
X01 = 0 and {εn1} are i.i.d. random errors with the N(0, 1) distribution. All 10
quality variables are assumed independent of each other.

• Case IV: Process observations Xn = (Xn1, Xn2, . . . , Xn10)
′ are generated as fol-

lows: for each i, Xni follows the ARMA(3,1) model Xni = 0.8Xn−1,i −0.5Xn−2,i +
0.4Xn−3,i + εni − 0.5εn−1,i , where X1i = X2i = X3i = 0 and {εni} are i.i.d. random
errors with the distribution χ2

3 . All 10 quality variables are assumed independent
of each other.

• Case V: Process observations follow the model Xn = AXn−1+εn, where {εn} are
i.i.d. random errors with the N10(0, B) distribution, A is a diagonal matrix with
the diagonal elements being 0.5, 0.4, 0.3, 0.2, 0.1, 0.1, 0.2, 0.3, 0.4, 0.5, and B is a
10 × 10 covariance matrix with all diagonal elements being 1 and all off-diagonal
elements being 0.2.

In all five cases described above, each variable is standardized to have mean 0 and
variance 1 before process monitoring. Obviously, Case I is the conventional case
considered in the SPC literature with i.i.d. process observations and the standard
normal IC process distribution. Case II also considers i.i.d. process observations,
but the IC process distribution is skewed. Cases III and IV consider serially correlated
process observations across different observation times; but the 10 quality variables
are independent of each other. In Case V, process observations are serially correlated
and different quality variables are correlated among themselves as well.
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Evaluation of the IC performance. We first evaluate the IC performance of
the related control charts. The control limits of the four control charts AC, RTC,
DSVM and KNN are determined as discussed in Subsection 2.1. For each method,
its actual ARL0 value is computed as follows. First, an IC dataset of size m0 = 2, 000
is generated, and some IC parameters (e.g. µ and γ(s)) are estimated from the
IC dataset. Then, each control chart is applied to a sequence of 2,000 IC process
observations for online process monitoring, and the RL value is recorded. This
simulation of online process monitoring is then repeated for 1,000 times, and the
actual conditional ARL0 value conditional on the given IC data is computed as
the average of the 1,000 RL values. Finally, the previous two steps are repeated
for 100 times. The average of the 100 actual conditional ARL0 values is used as
the approximated actual ARL0 value of the related control chart, and the standard
error of this approximated actual ARL0 value can also be computed. For the four
modified charts AC-D, RTC-D, DSVM-D and KNN-D, their actual ARL0 values are
computed in a same way, except that process observations are de-correlated before
online monitoring.

Table 1 Actual ARL0 values and their standard errors (in parentheses) of four machine learning
control charts and their modified versions when their nominal ARL0 values are fixed at 200.

Methods Case I Case II Case III Case IV Case V
RF 189(3.98) 194(4.20) 105(1.42) 119(2.05) 106(1.33)
RF-D 193(3.22) 182(3.49) 188(3.61) 193(3.70) 194(3.37)
RTC 203(4.66) 207(5.23) 252(5.97) 133(3.02) 269(6.01)
RTC-D 194(3.68) 196(3.64) 201(4.00) 188(3.49) 190(3.96)
DSVM 213(5.20) 195(4.77) 263(6.99) 118(2.87) 277(6.34)
DSVM-D 193(4.33) 198(3.50) 193(4.16) 190(3.72) 188(3.73)
KNN 196(4.77) 188(3.88) 156(3.70) 266(6.02) 134(4.03)
KNN-D 191(4.20) 194(3.69) 194(4.01) 187(3.20) 190(3.18)

From Table 1, we can have the following results. First, the IC performance of the
charts AC, RTC, DSVM and KNN all have a reasonably stable performance in Cases
I and II when process observations are assumed to be i.i.d. at different observation
times and different quality variables are assumed independent as well. Second, in
Cases III-V when there is a serial data correlation across different observation times
and data correlation among different quality variables, the IC performance of the
charts AC, RTC, DSVM and KNN becomes unreliable since their actual ARL0
values are substantially different from the nominal ARL0 value of 200. Third, as a
comparison, the IC performance of the four modified charts AC-D, RTC-D, DSVM-
D and KNN-D is stable in all cases considered. Therefore, this example confirms
that the IC performance of the machine learning control charts can be improved in
a substantial way by using the suggested modification discussed in Subsection 2.3.

Evaluation of the OC performance. Next, we evaluate the OC performance of
the related charts in the five cases discussed above. In each case, a shift is assumed
to occur at the beginning of online process monitoring with the size 0.25, 0.5, 0.75
and 1.0 in each quality variable. Other setups are the same as those in Table 1. To
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make the comparison among different charts fair, the control limits of the charts have
been adjusted properly so that their actual ARL0 values all equal to the nominal level
of 200. The results of the computed ARL1 values of these charts in Cases I-V are
presented in Figure 1.
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Fig. 1 Computed ARL1 values of the original and modified versions of the four control charts AC,
RTC, DSVM and KNN when their nominal ARL0 values are fixed at 200, the parameters of the
charts are chosen as in the example of Table 1, all quality variables have the same shift, and the
shift size changes among 0.25, 0.5, 0.75 and 1.0.

From the Figure 1, it can be seen that the modified versions of the four control
charts all have a betterOCperformance inCases III-Vwhen the serial data correlation
exists. In Cases I and II when process observations are independent at different
observation times, the OC performance of the modified versions of the four charts
have a slightly worse performance than the original versions of the related charts.
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The main reason for the latter conclusion is due to the “masking effect” of data de-
correlation, as discussed in You and Qiu (2019). Remember that the de-correlated
process observations are linear combinations of the original process observations.
Therefore, a shift in the original data would be attenuated during data de-correlation,
and consequently the related control charts would be less effective in cases when
serial data correlation does not exist.

4 A Real-Data Application

In this section, a dataset from a semiconductor manufacturing process is used to
demonstrate the application of the modified machine learning control charts dis-
cussed in the previous sections. The dataset is available in the UC Irvine Machine
Learning Repository (http://archive.ics.uci.edu /ml/datasets/SECOM). It has a total
of 590 quality variables and 1,567 observations of these variables. A total of 600
observations of five specific quality variables are selected here. The original data are
shown in Figure 2. From the figure, it seems that the first 500 observations are quite
stable, and thus they are used as the IC data. The remaining 100 observations are
used for online process monitoring. In Figure 2, the training and testing datasets are
separated by the dashed vertical lines.

For the IC data, we first check for existence of serial data correlation. To this end,
the p-values of the Durbin-Watson test for the five quality variables are 1.789×10−3,
4.727×10−1, 4.760×10−4, 1.412×10−4, and 9.744×10−2. Thus, there is a significant
autocorrelation for the first, third and fourth quality variables. The Augmented
Dickey-Fuller (ADF) test for stationality of the autocorrelation gives p-values that
are< 0.01 for all quality variables. This result suggests that the stationary assumption
is valid in this data. Therefore, the IC data have a significant stationary serial data
correlation in this example, and the modification for the machine learning charts
discussed in Sections 2 and 3 should be helpful.

Next, we apply the four modified control charts AC-D, RTC-D, DSVM-D and
KNN-D to this data for online processmonitoring starting from the 501st observation
time. In all control charts, the nominal ARL0 values is fixed at 200, and their control
limits are computed in the same way as that in the simulation study of Section 3. All
four control charts are shown in Figure 3. From the plots in the figure, the charts AC-
D, RTC-D, DSVM-D and KNN-D give their first signals at the 539th, 529th, 525th ,
and 534th observation times, respectively. In order to determinewhether these signals
are false alarms or not, the change-point detection approach based on the generalized
maximum likelihood estimation (cf., Qiu 2014, Section 7.5) is applied to the test data
(i.e., the data between the 501st and 600th observation times). The detected change-
point position is at 517. The Hotelling’s T2 test for checking whether the mean
difference between the two groups of data with the observation times in [501,516]
and [517,600] is significantly different from 0 gives the p-value of 4.426 × 10−3.
Thus, there indeed is a significant mean shift at the time point 517. In this example,
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it seems that all four charts can detect the shift and the chart DSVM-D can give the
earliest signal among them.
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Fig. 3 Control charts AC-D, RTC-D, DSVM-D, and KNN-D for online monitoring of a semicon-
ductor manufacturing data. The horizontal dashed line in each plot denotes the control limit of the
related control chart.
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5 Concluding Remarks

Recently, several multivariate nonparametric control charts based on different ma-
chine learning algorithms have been proposed for online process monitoring. Most
existing machine learning control charts are based on the assumption that the mul-
tivariate observations are independent of each other. These control charts have a
reliable performance when the data independence assumption is valid. However,
when the process data are serially correlated, they may not be able to provide a
reliable process monitoring. In this paper, we have suggested a modification for
these machine learning control charts, by which process observations are first de-
correlated before they are used for monitoring serially correlated data. Numerical
studies have shown that the modified control charts have a more reliable performance
than the original charts in cases when the serial data correlation exists.

There are still some issues to address in the future research. For instance, the
“masking effect” of data de-correlation could attenuate the shift information in the
de-correlated data. One possible solution is to use the modified data de-correlation
procedure discussed inYou andQiu (2017). By this approach, the process observation
at the current time point is de-correlated only with a small number of previous
process observations within the so-called “spring length” (cf., Chatterjee and Qiu
2009) of the current observation time. Another issue is related to the assumption
of short-range stationary serial data correlation that has been used in the proposed
modification procedure. In some applications, the serial data correlation could be
long-range and non-stationary (cf., Beran 1992). Thus, the proposed modification
could be ineffective for such applications.
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