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Abstract

Control charts are commonly used in practice for detecting distributional shifts of sequential

processes. Traditional statistical process control (SPC) charts are based on the assumptions

that process observations are independent and identically distributed and follow a parametric

distribution when the process is in-control (IC). In practice, these assumptions are rarely valid,

and it has been well demonstrated that these traditional control charts are unreliable to use

when their model assumptions are invalid. To overcome this limitation, nonparametric SPC

has become an active research area, and some nonparametric control charts have been devel-

oped. But, most existing nonparametric control charts are based on data ordering and/or data

categorization of the original process observations, which would result in information loss in

the observed data and consequently reduce the effectiveness of the related control charts. In

this paper, we suggest a new multivariate online monitoring scheme, in which process observa-

tions are first sequentially decorrelated, the decorrelated data of each quality variable are then

transformed using their estimated IC distribution so that the IC distribution of the transformed

data would be roughly N(0, 1), and finally the conventional multivariate exponentially weighted

moving average (MEWMA) chart is applied to the transformed data of all quality variables for

online process monitoring. This chart is self-starting in the sense that estimates of all related IC

quantities are updated recursively over time. It can well accommodate stationary short-range

serial data correlation, and its design is relatively simple since its control limit can be determined

in advance by a Monte Carlo simulation. Because information loss due to data ordering and/or

data categorization is avoided in this approach, numerical studies show that it is reliable to use

and effective for process monitoring in various cases considered.

Key Words: Data decorrelation; Normalization; Recursive computation; Self-starting charts;

Sequential learning; Transformation.
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1 Introduction

Statistical process control (SPC) provides a major tool for online monitoring of sequential processes

in the manufacturing industry, environmental monitoring, disease surveillance, and many other

applications (Hawkins and Olwell 1998, Montgomery 2012, Qiu 2014). Traditional SPC charts

are based on the assumptions that process observations at different time points are independent

and identically distributed (i.i.d.) with a parametric distribution (e.g., normal) when the process

is in-control (IC). In practice, however, these assumptions are rarely valid. This paper aims to

develop a new charting scheme for online monitoring of multivariate processes in cases when process

observations are serially correlated and their distribution cannot be described in advance by a

parametric form.

In the SPC literature, many control charts have been developed, which can be classified roughly

into the following four categories: Shewhart, cumulative sum (CUSUM), exponentially weighted

moving average (EWMA), and change-point detection (CPD) charts (cf., Hawkins et al. 2003,

Page 1954, Roberts 1959, Shewhart 1931). Early control charts are designed mainly for cases

when the observed IC data are i.i.d. and normally distributed. In the literature, it has been well

demonstrated that these conventional charts would be unreliable to use in cases when their model

assumptions are invalid (e.g., Apley and Lee 2008, Chakraborti and Graham 2019, Qiu 2014). So,

some recent SPC research has considered cases when some of these assumptions are violated. For

instance, there have been much discussion on process monitoring of serially correlated data, and

various control charts have been developed in cases when serial data correlation can be described

by some parametric time series models (e.g., Capizzi and Masarotto 2008, Lee and Apley 2011) or

is assumed to be stationary and short-ranged (Qiu et al. 2020, Xue and Qiu 2021). In cases when

IC process distribution cannot be described properly by a parametric form, many nonparametric

control charts have been proposed (e.g., Chakraborti and Graham 2019, Qiu 2018). Some of them

are based on data ordering/ranking (e.g., Li et al. 2013, Qiu and Hawkins 2001, Zou et al. 2012),

while the others are based on data categorization (e.g., Li 2021, Qiu 2008). However, both data

ordering and data categorization could result in information loss in the observed data, which would

negatively affect the effectiveness of the nonparametric control charts for online process monitoring.

Therefore, much future research is needed to develop new control charts that are both reliable and

effective.
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In this paper, we propose a new charting scheme for online monitoring of multivariate processes

in cases when process observations are serially correlated and IC process distribution cannot be

described properly by a parametric form. The new method tries to avoid data ordering and/or data

categorization. Instead, it tries to transform the original process observations so that a conventional

control chart is (approximately) appropriate to use. It consists of the following several major

components. First, process observations are sequentially decorrelated. Second, the IC distribution

of the decorrelated data of each quality variable is first estimated and then the decorrelated data

are transformed using their estimated IC distribution so that the IC distribution of the transformed

data would be roughly N(0,1). Third, the conventional multivariate exponentially weighted moving

average (MEWMA) chart is applied to the transformed data of all quality variables for online process

monitoring. Fourth, this proposed chart is self-starting (Hawkins 1987) in the sense that estimates

of all related IC quantities are updated recursively over time. Fifth, it can well accommodate

stationary short-range serial data correlation, and its control limit can be determined in advance

by a Monte Carlo simulation. Numerical studies show that this new charting scheme is reliable

to use and effective for process monitoring in various cases considered, in comparison with some

representative alternative approaches.

The remainder of the paper is organized as follows. In Section 2, the proposed new method will

be described in detail. Some simulation studies are presented in Section 3 to evaluate its numerical

performance. A real-data example to demonstrate its application is discussed in Section 4. Finally,

some remarks conclude the article in Section 5.

2 Proposed Method

Assume that X = (X1, X2, . . . , Xp)
′ is a vector of p ≥ 1 numerical quality characteristics to moni-

tor about a sequential process, and its observation at time n is Xn = (Xn1, Xn2, . . . , Xnp)
′. To online

monitor the sequential process {Xn, n ≥ 1}, an initial IC dataset XIC = {X−m0+1,X−m0+2, . . . ,X0}

of size m0 is assumed to be available in advance. Another assumption needed by our proposed

method is that the IC serial data correlation in the observed data is stationary and short-ranged.

Namely, it is assumed that the covariance matrix γ(s) = Cov(Xi,Xi+s), for any i and s, depends

on s only, and two process observations become uncorrelated if their observation times are more

than bmax apart, where bmax denotes the time range of serial data correlation. The stationarity
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assumption is reasonable in some SPC applications because it is often assumed that the IC process

distribution, including the IC serial correlation, does not change over time in manufacturing ap-

plications. The short-range assumption implies that the correlation between two observations will

disappear if their observation times are far away, which should be (approximately) true in many

applications.

Our proposed method can be described intuitively as follows. First, a data decorrelation

procedure is applied to the initial IC data, and an initial estimate of the IC distribution of the

decorrelated data can be obtained. Second, at the current time point n during online process

monitoring, the observation Xn is first standardized and decorrelated with previous observations,

and then a transformation is applied to the decorrelated observation at time n such that the IC

distribution of each component of the transformed observation would be close to normal. Third,

a conventional MEWMA chart is applied to the transformed data to decide whether the process

is IC or not at time n. If the control chart does not give a signal at time n, then all estimates of

certain IC quantities used in the chart get updated after the IC data get expanded by combining

the existing IC data with the observed data at time n. These major components of the proposed

method are described in more details below.

2.1 Initial estimates of certain IC quantities

From the initial IC data XIC , we first calculate initial estimates of the IC mean µ and the IC

covariance matrix {γ(s), 0 ≤ s ≤ bmax}. Because no parametric forms are imposed on the IC

process distribution, maximum likelihood estimation is unavailable. As an alternative, we consider

the following moment estimates:

µ̂(0) =
1

m0

0∑
i=−m0+1

Xi (1)

γ̂(0)(s) =
1

m0 − s

−s∑
i=−m0+1

(
Xi+s − µ̂(0)

)(
Xi − µ̂(0)

)′
, for 0 ≤ s ≤ bmax.

Then, the initial IC data XIC can be standardized and decorrelated by a data decorrelation

algorithm described below. Let Wi = (X′i−b,X
′
i−b+1, . . . ,X

′
i)
′ be a long vector consisting of Xi and

all its previous observations that it needs to be decorrelated with, and êi = [(Xi−b−µ̂(0))′, (Xi−b+1−

µ̂(0))′, . . . , (Xi − µ̂(0))′]′ be the corresponding residuals, where b = min(i + m0 − 1, bmax) and
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−m0 + 1 ≤ i ≤ 0. Then, an estimated IC covariance matrix of Wi is

Σ̂i,i =


γ̂(0)(0) · · · γ̂(0)(b)

...
. . .

...

[γ̂(0)(b)]′ . . . γ̂(0)(0)

 =:

Σ̂i−1,i−1 Σ̂i−1,i

Σ̂′i−1,i γ̂(0)(0)

 .

By the Cholesky decomposition of Σ̂i,i, we have LiΣ̂i,iL
′
i = Qi, where Li =

 Li−1 0

−Σ̂′i−1,iΣ̂
−1
i−1,i−1 Ip×p

,

Qi = diag{D̂i−b, D̂i−b+1, . . . , D̂i}, and D̂i = γ̂(0)(0) − Σ̂′i−1,iΣ̂
−1
i−1,i−1Σ̂i−1,i. Then, the covariance

matrix of Q
−1/2
i Liêi would be close to the identity matrix. So, the decorrelated and standardized

IC observation at time i is defined to be

X∗i =

 [γ̂(0)(0)]−1/2
(
Xi − µ̂(0)

)
, when i = −m0 + 1,

D̂
−1/2
i

[
Xi − µ̂(0) − Σ̂′i−1,iΣ̂

−1
i−1,i−1êi−1

]
, when i > −m0 + 1.

In the above data decorrelation procedure, certain inverse matrices, including Σ̂−1i−1,i−1, Q
−1/2
i ,

[γ̂(0)(0)]−1/2 and D̂
−1/2
i , need to be computed. In practice, these inverse matrices may not always

exist, especially in cases when the IC sample size m0 is small. To overcome this difficulty, we suggest

using the matrix modification procedure proposed in Higham (1988) to modify a symmetric matrix

to a positive definite matrix, which can be accomplished using the R function nearPD() in the

package Matrix. For instance, when the matrix γ̂(0)(0) is singular, we can first use the above

matrix modification approach to modify it to be a positive definite matrix, denoted as γ̃(0)(0).

Then, the inverse of γ̃(0)(0) can be used to approximate the inverse of γ̂(0)(0). It should be pointed

out that the case when the related inverse matrices do not exist is rare when m0 ≥ p + bmax + 1

based on our numerical experience. So, the matrix modification procedure would not be used often.

After the above data decorrelation procedure, the decorrelated and standardized observations

{X∗i , i = −m0 +1,−m0 +2, . . . , 0} would be roughly i.i.d. with mean 0 and covariance matrix Ip×p.

Let Fj(x) be the cumulative distribution function (cdf) of the jth component of the decorrelated

data, for j = 1, 2, . . . , p. Then, Fj(x) can be estimated by the empirical cdf defined as follows:

F̂
(0)
j (x) =

1

m0

0∑
i=−m0+1

I
(
X∗ij ≤ x

)
(2)

where X∗ij denotes the jth component of X∗i , and I(u) is the indicator function that equals 1 when

u is “true” and 0 otherwise.
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2.2 Self-starting online process monitoring

In this part, we discuss online monitoring of the process observations {Xn, n ≥ 1}. At the current

time point n, we first decorrelate and standardize the observation Xn with all previous observations

using a data decorrelation procedure similar to the one discussed in Subsection 2.1. The decorre-

lated and standardized observation at time n is denoted as X∗n. Then, we consider the following

transformation for X∗n:

Zn =
(

Φ−1[F̂
(n−1)
1 (X∗n1)],Φ

−1[F̂
(n−1)
2 (X∗n2)], . . . ,Φ

−1[F̂ (n−1)
p (X∗np)]

)
, (3)

where Φ−1(·) is the inverse function of the standard normal cdf, and F̂
(n−1)
j (x) is the empirical

cdf of the jth component of the decorrelated data by the time point n− 1 (cf., Expressions in (6)

below). If the process under monitoring is IC at time n, then it is obvious that the distribution of

F̂
(n−1)
j (X∗nj) would be close to Uniform[0,1], for j = 1, 2, . . . , p, since F̂

(n−1)
j (x) would be close to the

true cdf of the jth component of the decorrelated data. Thus, the distribution of each component

of Zn would be close to N(0, 1). Furthermore, the p components of X∗n have been decorrelated.

Thus, the p components of Zn would be asymptotically uncorrelated. Therefore, it is natural to

apply the conventional MEWMA chart (cf., Lowry et al. 1992) to Zn as follows:

En = λZn + (1− λ)En−1, for n ≥ 1, (4)

where E0 = 0, and λ ∈ (0, 1] is a weighting parameter. Then, the chart gives a signal of process

distributional shift when

E′nΣ̂−1En
En > h, (5)

where Σ̂En = [λ/(2− λ)]Ip×p, and h > 0 is a control limit.

Because {Zn, n ≥ 1} can be regarded as a sequence of i.i.d. random vectors with the distribution

of Np(0, Ip×p) when the process under monitoring is IC, the control limit h in (5) can be determined

in advance using a Monte Carlo simulation to achieve a given value of the IC average run length

(ARL), denoted as ARL0. More specifically, a sequence of random vectors can be generated from

the distribution Np(0, Ip×p). Then, the chart (4)-(5) with a given h can be applied to that sequence.

The run length (RL) value, defined to be the number of observation times from the beginning of

process monitoring to the signal time, can then be recorded. This simulation of online process

monitoring can be repeated for B times, and the average of the corresponding B RL values can be

used as the estimate of the ARL0. Then, h can be searched so that a given level of ARL0 is reached.
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In this searching process, the bisection algorithm (Qiu 2014, Chapter 4) or its modifications (Capizzi

and Masarotto 2016) can be used. As a side note, it should be pointed out that other conventional

multivariate SPC charts, such as the multivariate Shewhart, CUSUM and CPD charts, can also be

applied to the transformed data {Zn, n ≥ 1}, although the MEWMA chart is used in (4)–(5).

If the chart (4)-(5) does not give a signal at time n, then the observation Xn needs to be

combined with the IC dataset and the estimates of the IC cdf’s {F̂j(x), 1 ≤ j ≤ p} and other

IC quantities µ and {γ(s), 0 ≤ s ≤ bmax} that are used in the construction of the chart should

be updated accordingly. Because the updates are implemented at each observation time before a

signal is given by the chart, efficient computation is critically important. To this end, the following

formulas for recursive updates of the estimates are derived: for 1 ≤ j ≤ p and 0 ≤ s ≤ bmax,

F̂
(n)
j (x) =

m0 + n− 1

m0 + n
F̂

(n−1)
j (x) +

1

m0 + n
I
(
X∗nj ≤ x

)
, (6)

µ̂(n) =
1

m0 + n
Xn +

m0 + n− 1

m0 + n
µ̂(n−1),

γ̂(n)(s) =
1

m0 + n− s

(
Xn − µ̂(n)

)(
Xn−s − µ̂(n)

)′
+
m0 + n− s− 1

m0 + n− s
γ̂(n−1)(s).

The proposed self-starting online monitoring scheme can then be summarized below.

Step 1 Initial Estimation of IC Quantities: Obtain the initial estimates µ̂(0), {γ̂(0)(s), 0 ≤

s ≤ bmax} and {F̂ (0)
j (x), 1 ≤ j ≤ p} from the initial IC data XIC , as discussed in Subsection

2.1.

Step 2 Data Decorrelation and Standardization: At the current time point n, if n = 1, then

define the standardized observation to be

X∗1 = [γ̂(0)(0)]−1/2
(
X1 − µ̂(0)

)
.

Otherwise, the estimated covariance matrix of (X′n−b,X
′
n−b+1, . . . ,X

′
n)′ is defined to be

Σ̂n,n =


γ̂(n−1)(0) · · · γ̂(n−1)(b)

...
. . .

...

[γ̂(n−1)(b)]′ . . . γ̂(n−1)(0)

 =:

Σ̂n−1,n−1 Σ̂n−1,n

Σ̂′n−1,n γ̂(n−1)(0)

 ,

where b = min(n− 1, bmax). Then, the decorrelated and standardized observation at time n

is defined to be

X∗n = D̂−1/2n

[
−Σ̂′n−1,nΣ̂−1n−1,n−1ên−1 + (Xn − µ̂(n−1))

]
,
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where D̂n = γ̂(n−1)(0) − Σ̂′n−1,nΣ̂−1n−1,n−1Σ̂n−1,n, and ên−1 = [(Xn−b − µ̂(n−1))′, (Xn−b+1 −

µ̂(n−1))′, . . . , (Xn−1 − µ̂(n−1))′]′.

Step 3 Decision-Making: Compute the transformed data {Zn, n ≥ 1} by (3) and then apply

the MEWMA chart (4)-(5) to the transformed data. The chart gives a signal when (5) is

true.

Step 4 Recursive Update of Estimates of IC Quantities: If the chart (4)-(5) does not give a

signal at the current time point n, then estimates of certain IC quantities should be updated

by the formulas in (6).

3 Simulation Studies

In this section, we investigate the numerical performance of the proposed chart (4)-(5), denoted as

NEW, for online process monitoring. In the numerical studies, besides NEW, the following four

competitive charts are also considered for comparison purpose.

• The self-starting multivariate EWMA chart suggested by Hawkins and Maboudou-Tchao

(2007), denoted as SS-MEWMA. The charting statistic of SS-MEWMA is

En,ss = λss(Xn − µ̂(n−1)) + (1− λss)En−1,ss, for n ≥ 1,

where E0,ss = 0, and λss ∈ (0, 1] is a weighting parameter. The chart gives a signal when

E′n,ssΣ̂
−1
En,ss

En,ss > hss,

where Σ̂En,ss = [λss/(2 − λss)]γ̂(n−1)(0), and hss > 0 is a control limit. This chart assumes

that the original process observations are i.i.d. and normally distributed when the process is

IC. So, its control limit can be determined by Monte Carlo simulations based on the assumed

IC normal distribution.

• The nonparametric multivariate EWMA chart suggested by Zou et al. (2012), denoted as SR-

MEWMA. This chart is based on spatial ranks of the process observations. More specifically,

the spatial sign of the observation Xn is defined to be U(Xn) = Xn‖Xn‖−1 when Xn 6= 0,

and 0 otherwise, where ‖Xn‖ denotes the Euclidean length of Xn. Then, the spatial rank
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of Xn is defined to be Rn(Xn) = 1
m0+n−1

n−1∑
i=−m0+1

U(Xn −Xi), and the charting statistic of

SR-MEWMA is defined to be

En,sr = λsrRn

(
[γ̂(n−1)(0)]−1/2Xn

)
+ (1− λsr)En−1,sr, for n ≥ 1,

where E0,sr = 0, λsr ∈ (0, 1] is a weighting parameter. The chart gives a signal when

E′n,srΣ̂
−1
En,sr

En,sr > hsr,

where hsr > 0 is a control limit, and Σ̂En,sr is the moment estimate of the covariance matrix of

En,sr that can be first estimated from the initial IC data and then updated recursively. Thus,

SR-MEWMA is a self-starting nonparametric control chart. But, it assumes that process

observations at different time points are independent.

• The nonparametric CPD chart suggested by Holland and Hawkins (2014), denoted as SR-

CPD. This chart is constructed based on the multivariate spatial rank test. Its charting

statistic is defined to be

max
1≤k<n−c

{
r̄(k)

′
n

[
n+m0 − k
(n+m0)k

γ̂(n−1)(0)

]−1
r̄(k)n

}
,

where c is the pre-specified number of observations at the end of the sequence that will not

be considered for a possible change point, and r̄
(k)
n = 1

k+m0

∑k
i=−m0+1 Rn(Xi). This chart

assumes that process observations at different time points are independent.

• The multivariate nonparametric CUSUM chart suggested by Xue and Qiu (2021), denoted as

XQ-CUSUM. The chart first decorrelates the observed data, and then applies the multivariate

nonparametric chart based on data categorization (cf., Qiu 2008) to the decorrelated data for

online process monitoring.

Regarding the IC process distribution and the IC serial data correlation, the following four

cases when p = 3 are considered.

Case I: Process observations {Xn, n ≥ 1} are i.i.d. with the IC distribution N3(0, I3×3).

Case II: Process observations Xn = (Xn1, Xn2, Xn3)
′ are i.i.d. at different observation times.

Their three components Xn1, Xn2 and Xn3 are independent with the distributions N(0, 1), the

standardized version with mean 0 and variance 1 of the χ2
3 distribution, and the standardized

version with mean 0 and variance 1 of the t3 distribution, respectively.

9



Case III: Process observations {Xn, n ≥ 1} follow the Vector AR(1) model Xn = AXn−1 + εn,

where A is a diagonal matrix with the diagonal elements 0.3, 0.2 and 0.1, and the p components

of the error term {εn} are independent with the distributions N(0, 1), the standardized version

with mean 0 and variance 1 of the χ2
3 distribution, and the standardized version with mean

0 and variance 1 of the t3 distribution, respectively.

Case IV: Process observations {Xn, n ≥ 1} follow the Vector AR(1) model Xn = AXn−1+C1/2εn,

where A is a diagonal matrix with the diagonal elements being 0.3, 0.2 and 0.1, {εn} are

generated in the same way as that in Case III, and C is
1 0.2 0.22

0.2 1 0.2

0.22 0.2 1

 .

About the four cases described above, Case I is the conventional case considered in the SPC

literature with i.i.d. process observations and the standard normal IC process distribution. Case II

considers a scenario when the IC distributions of some quality variables are not normal. Cases III

and IV consider two scenarios with stationary serial data correlation when the p quality variables

are independent (Case III) or mutually associated (Case IV).

Evaluation of the IC performance: We first evaluate the IC performance of the related con-

trol charts. In the simulation study, the IC sample size m0 can change among {100, 200, 300, 500}.

The nominal ARL0 values of all charts are fixed at 200. The weighting parameters in the charts

SS-MEWMA, SR-MEWMA and NEW are fixed at 0.05, and the allowance constant in the chart

XQ-CUSUM is chosen to be 0.1. In the charts XQ-CUSUM and NEW, bmax is chosen to be 10. The

control limits of SS-MEWMA and NEW are determined by simulation as discussed earlier, and the

control limits of SR-MEWMA, SR-CPD and XQ-CUSUM are computed as discussed in Zou et al.

(2012), Holland and Hawkins (2014) and Xue and Qiu (2021). For each method, its actual ARL0

value is computed as follows. First, an IC dataset of size m0 is generated, and some IC parameters

are estimated from the IC dataset. Then, each control chart is applied to a sequence of 2,000 IC

process observations for online process monitoring, and the RL value is recorded. This simulation

of online process monitoring is then repeated for 1,000 times, and the actual conditional ARL0

value conditional on the IC data is computed as the average of the 1,000 RL values. The entire

simulation described above, from generation of the IC dataset to computation of the conditional

ARL0 value, is then repeated for 100 times. The average of the 100 actual conditional ARL0 values
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is used as the estimated actual ARL0 value of the related control chart, and the standard error of

this estimated actual ARL0 value can also be computed. The estimated ARL0 values in different

cases considered are shown in Table 1.

From Table 1, we can have the following conclusions. First, SS-MEWMA performs well in

Case I since all its model assumptions are valid in that case. In all other cases, it does not perform

well since some of its model assumptions (e.g., normality, data independence) are violated in those

cases. Second, the performance of SR-MEWMA and SR-CPD is good in Cases I and II when

process observations are independent at different time points. But, their actual ARL0 values are

substantially different from the nominal ARL0 value of 200 in the other two cases when their “data

independence” assumption is violated. Third, the charts XQ-CUSUM and NEW both have a quite

reliable IC performance in all cases considered when m0 ≥ 300 since their actual ARL0 values

are within 5% of the nominal ARL0 value in such cases. Remember that the chart XQ-CUSUM

is based on nonparametric process monitoring by data categorization while the chart NEW is

based on data transformation and parametric process monitoring (cf., its description in Section 2).

From this example, it can be seen that the proposed chart NEW would not lose much reliability

in various cases when the normality and “data independence” assumptions are violated by using

data decorrelation, data transformation and parametric process monitoring, in comparison with its

peers, while the benefit to use NEW for effective detection of process distributional shifts is quite

profound, as will be seen from the examples below.

Besides the actual ARL0 values, we also use the false alarm rate (FAR) to compare the IC

performance of different methods, where FAR is defined to be the probability that the process

under monitoring is declared to be out-of-control (OC) when it is actually IC. Since all control

charts will eventually give a false signal in any IC simulation run, here FAR of a given chart is

defined to be the proportion of IC simulation runs in which the chart gives a false signal within the

first 50 observation times. Namely, it is defined to be P (RL ≤ 50) when the process is IC. When

m0 = 300 and all other setups are the same as those in the example of Table 1, the FAR results are

presented in Table 2. From the table, it can be seen that the charts SS-MEWMA, SR-MEWMA

and SR-CPD have reasonable performance only in cases when their model assumptions are valid

(e.g., Cases I and II for the nonparametric charts SR-MEWMA and SR-CPD). As a comparison,

the charts XQ-CUSUM and NEW both perform well in all cases considered, and NEW is slightly

better than XQ-CUSUM in this example.
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Table 1: Estimated ARL0 values and their standard errors (in parentheses) of different control

charts when their nominal ARL0 values are fixed at 200, and the IC sample size m0 changes among

{100, 200, 300, 500}.

Cases Methods m0 = 100 200 300 500

I SS-MEWMA 188(4.36) 195(3.92) 200(3.09) 199(2.50)

SR-MEWMA 188(3.68) 188(3.22) 194(2.55) 193(1.87)

SR-CPD 206(3.89) 206(3.32) 212(2.81) 201(2.03)

XQ-CUSUM 206(4.27) 213(3.85) 209(3.95) 202(3.09)

NEW 169(6.91) 174(6.39) 190(6.64) 202(5.45)

II SS-MEWMA 162(4.88) 160(3.82) 175(4.56) 182(4.31)

SR-MEWMA 187(3.32) 189(3.15) 188(2.28) 190(1.77)

SR-CPD 210(3.63) 202(3.31) 210(2.71) 201(1.91)

XQ-CUSUM 178(4.36) 181(3.86) 209(4.41) 201(3.30)

NEW 178(6.32) 176(6.82) 198(6.01) 201(5.35)

III SS-MEWMA 68.8(1.76) 67.4(1.27) 73.2(1.37) 74.6(1.11)

SR-MEWMA 64.7(1.02) 62.9(0.91) 65.7(0.61) 65.9(0.50)

SR-CPD 65.0(1.01) 62.8(0.82) 65.7(0.61) 65.4(0.48)

XQ-CUSUM 170(4.25) 178(3.99) 205(4.31) 208(3.32)

NEW 169(6.96) 171(6.74) 193(6.86) 198(5.24)

IV SS-MEWMA 68.7(1.76) 67.3(1.27) 73.2(1.36) 74.6(1.10)

SR-MEWMA 64.7(1.07) 62.8(0.91) 65.7(0.60) 65.9(0.49)

SR-CPD 65.2(1.01) 63.0(0.84) 65.5(0.64) 65.3(0.48)

XQ-CUSUM 161(4.24) 177(3.92) 205(4.21) 207(3.30)

NEW 168(6.71) 171(6.73) 194(6.85) 196(5.23)

Table 2: Estimated FAR values of different control charts when m0 = 300 and other setups are the

same as those in the example of Table 1.

Cases SS-MEWMA SR-MEWMA SR-CPD XQ-CUSUM NEW

I 0.173 0.179 0.165 0.201 0.198

II 0.215 0.191 0.169 0.196 0.191

III 0.474 0.513 0.505 0.222 0.196

IV 0.473 0.514 0.505 0.223 0.195

Evaluation of the OC performance: Next, we evaluate the OC performance of the related

charts in case when m0 = 300. In order to make the comparison more meaningful, we intentionally
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adjust the control limits of different control charts based on simulations so that their actual ARL0

values equal the nominal ARL0 value of 200 in all cases considered. In the next simulation exam-

ple, it is assumed that all quality variables have a same shift at the beginning of online process

monitoring with the shift size δ changing from −1.5 to 1.5 with a step of 0.25. Because different

control charts have different procedure parameters (e.g., the weighting parameters of SS-MEWMA,

SR-MEWMA and NEW) and their performance may not be comparable if their parameters are

set to be the same, here we compare their optimal OC performance to make the comparison fair.

Namely, to detect a given shift by a chart, the related procedure parameter is chosen by minimizing

the ARL1 value of the chart while maintaining its ARL0 value at 200. The resulting ARL1 value

is called optimal ARL1 value hereafter.

The results of the computed optimal ARL1 values of the five charts are presented in Figure 1

in Cases I-IV when m0 = 300. From the figure, we can have the following conclusions. i) All charts

perform reasonably well in Case I since their model assumptions are all satisfied. ii) The chart SS-

MEWMA performs the best in Case I when its normality and “data independence” assumptions

are valid, but is less effective in Cases II-V when one or both of these assumptions are invalid. iii)

The charts XQ-CUSUM and NEW perform better than the other three charts in Cases III and IV

when IC process observations are serially correlated. iv) Between the two charts XQ-CUSUM and

NEW, NEW has a better performance when the shift size is relatively large (e.g., δ ≥ 0.75), and is

slightly worse when the shift size is small.

The proposed chart NEW depends on the initial estimates {F̂ (0)
j (x), 1 ≤ j ≤ p} of the cdf’s of

the quality characteristics under monitoring, whose variability would be large when the IC sample

size m0 is small. To study the impact of m0 on the OC performance of NEW and other related

charts, next we consider an example with m0 = 1000 and all other setups being the same as those

in the example of Figure 1. The results of the computed optimal ARL1 values of the five charts

are presented in Figure 2. From the figure, it can be seen that similar conclusions to those in the

previous example can be made here, although the advantage to use the proposed method NEW

seems more obvious in this example, since its performance is the best or close to the best among

all five methods in different cases considered, even when the shift size is small. As a summary, the

simulation examples presented in this part confirm that the proposed chart NEW is more effective

for online process monitoring in most cases considered, in comparison with its peers.

To study the impact of the IC sample size m0 on the OC performance of the proposed method

13



NEW, next we consider an example in which m0 can take the values of 100, 200, 300, 500 and

1,000, and other setups remain the same as those in the example of Figure 1. Its calculated optimal

ARL1 values are presented in Figure 3. From the plots in the figure, it can be seen that i) the OC

performance of NEW is better when m0 is larger, and ii) its OC performance is reasonably stable

when m0 ≥ 300 in most cases considered in this example.
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Figure 1: Optimal ARL1 values of the five control charts when their nominal ARL0 values are fixed

at 200, p = 3, m0 = 300, and all quality characteristics have the same shift with the shift size δ

changing among ±0.25, ±0.5, ±0.75, ±1, ±1.25 and ±1.5.
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Figure 2: Optimal ARL1 values of the five control charts when their nominal ARL0 values are fixed

at 200, p = 3, m0 = 1000, and all quality characteristics have the same shift with the shift size δ

changing among ±0.25, ±0.5, ±0.75, ±1, ±1.25 and ±1.5.

4 A Case Study

In this section, a real-life dataset from a mining process is used to demonstrate the application

of the proposed chart NEW, which can be downloaded from the web page of Kaggle with the

link https://www.kaggle.com/edumagalhaes/quality-prediction-in-a-mining-process. The flotation
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Figure 3: Optimal ARL1 values of the chart NEW when its nominal ARL0 value is fixed at 200,

m0 changes among 100, 200, 300, 500, and 1000, and other setups are the same as those in Figure

1.

method is often used in mineral processing to concentrate ores by separating hydrophobic materials

from hydrophilic materials (cf., Crawford and Quinn 2017). See Figure 4 for a demonstration.

Online monitoring of data streams collected from the flotation process is especially important

because they would affect the impurity of ore concentrate if something unusual happens.

The data used here contain observations of three major characteristics of a flotation process: ore
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Figure 4: Demonstration of a flotation process in mineral processing to concentrate ores.

pulp flow, flotation air flow, and flotation level. The original data of these three variables are shown

in Figure 5. From the figure, it seems that the first 300 observations are quite stable, and thus they

are used as the IC data. The remaining 100 observations are used for online process monitoring.

For the IC data, we first check for serial data correlation using the Ljung–Box test. The p-values

of this test for the three quality characteristics are < 2.2× 10−16, < 2.2× 10−16, and 9.99× 10−16,

respectively. Thus, there is a significant autocorrelation in the observed data of all three variables.

The Augmented Dickey-Fuller (ADF) test for stationarity of the autocorrelation gives p-values of

< 0.01 for all three variables, which implies that the stationarity assumption is valid in this case.

To check the normality assumption for the data, the Shapiro test is performed, and its p-values for

the three quality characteristics are 0.006, 8.77 × 10−5, and 8.93 × 10−1, respectively. Thus, the

normality assumption is significantly violated for all three variables. Therefore, the IC data have

a significant stationary serial data correlation, and a non-normal distribution in this example.

Next, we apply the five control charts SS-MEWMA, SR-MEWMA, SR-CPD, XQ-CUSUM and

NEW to this data for online process monitoring starting from the 301st observation time. In all

control charts, the nominal ARL0 values is fixed at 200, and their control limits are computed in

the same way as that in the simulation study for evaluating their IC performance in Section 3. The

five control charts are shown in Figure 6. From the plots in the figure, the charts SS-MEWMA,

SR-MEWMA and SR-CPD give signals at many observation times. Since their model assumptions

of “data independence” and normality (for SS-MEWMA) are violated in this example, their results

may not be reliable, as discussed in Section 3. The charts NEW and XQ-CUSUM give their first
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Figure 5: Original observations of three variables in the mining process. The solid vertical line in

each plot separates the initial IC data from the data for online process monitoring, and the dashed

line indicates the signal time of our method NEW.

signals at the 326th and 341th observation times, respectively. By checking the original process

observations shown in Figure 5, the signal of NEW indicates the start of a systematic process mean

shift well.
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Figure 6: Control charts SS-MEWMA (plot (a)), SR-MEWMA (plot (b)), SR-CPD (plot (c)),

XQ-CUSUM (plot (d)) and NEW (plot (e)) for monitoring the last 100 process observations shown

in Figure 4. In each plot, the horizontal dotted line denotes the control limit of the related control

chart.

5 Concluding Remarks

Recently many nonparametric multivariate SPC charts have been developed for handling cases when

the IC process distribution do not have a parametric form. Most existing nonparametric multi-

variate SPC charts are based on data ordering and/or data categorization. Thus, a substantial

amount of information in the original process observations would be lost, which would negatively

affect the effectiveness of these charts for online process monitoring. To overcome this limitation,

we have proposed an alternative approach to handle the nonparametric multivariate SPC problem

in this paper. Instead of data ordering and/or data categorization, our proposed method is based

on data decorrelation, estimation of the IC process distribution, and data transformation. Numer-

ical studies presented in Sections 3 and 4 show that it performs well in various cases considered.

However, there are still some issues about the proposed method that need to be addressed in the

future research. For instance, when the number of quality variables is large, the required initial IC
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sample size also should also be large in order to have a reliable performance of the related chart. In

such cases, some variable selection approaches might be helpful (cf. Zou and Qiu 2009). Also, the

control limit of the proposed method is determined by the Monte Carlo simulation based on the

assumption that the transformed observations {Zn, n ≥ 1} are i.i.d. with a normal IC distribution.

Although the simulation results in Section 3 have shown that the proposed chart using the control

limit determined in that way performs reasonably well in all cases considered there, some theoretical

justifications are needed. All these issues will be studied carefully in our future research.
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