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Air pollution surveillance is critically important for public health. One
air pollutant, ozone, is extremely challenging to analyze properly, as it is a
secondary pollutant caused by complex chemical reactions in the air, and
does not emit directly into the atmosphere. Numerous environmental studies
confirm that ozone concentration levels are associated with meteorological
conditions, and long-term exposure to high ozone concentration levels is as-
sociated with the incidence of many diseases, including asthma, respiratory,
and cardiovascular diseases. Thus, it is important to develop an air pollu-
tion surveillance system to collect both air pollution and meteorological data
and monitor the data continuously over time. To this end, statistical process
control (SPC) charts provide a major statistical tool. But, most existing SPC
charts are designed for cases when the in-control (IC) process observations at
different times are assumed to be independent and identically distributed. The
air pollution and meteorological data would not satisfy these conditions due
to serial data correlation, high dimensionality, seasonality, and other complex
data structure. Motivated by an application to monitor the ground ozone con-
centration levels in the Houston-Galveston-Brazoria (HGB) area, we devel-
oped a new process monitoring method using principal component analysis
and sequential learning. The new method can accommodate high dimension-
ality, time-varying IC process distribution, serial data correlation, and non-
parametric data distribution. It is shown to be a reliable analytic tool for on-
line monitoring of air quality.

1. Introduction. Ozone has become one of the most harmful pollutants, and long-term
exposure to high ozone concentration levels can cause many health problems, including
asthma, respiratory and cardiovascular diseases (Carey et al. (2013), Jenkin and Clemitshaw
(2000), Health Effects Institute (2019)). It is growing into a major threat to public health in
many areas of the world. For example, Houston has been classified as a severe ozone non-
attainment area under the Clean Air Act. To demonstrate the ozone pollution in Houston,
Figure 1 presents four pictures of the Houston downtown area on a clear day versus ozone
days. From the pictures, it can be seen that heavy smog was lingering over the Houston
downtown area on ozone days.

Unlike other air pollutants, ozone is not emitted directly into the atmosphere from manu-
facturing factories and other industrial operations. Instead, it is produced by complex chemi-
cal reactions of nitrogen oxides and volatile organic compounds under some weather condi-
tions (Jenkin and Clemitshaw (2000), World Health Organization (1976)). It has been con-
firmed through environmental research that meteorological conditions can substantially in-
fluence air quality, especially ozone concentration (Gorai et al. (2015), Jacob and Winner
(2009), Liu et al. (2020)). Thus, to monitor the ozone concentration levels effectively, it is
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FIG 1. Pictures of the Houston Downtown area on a clear day (upper-left panel) and ozone days (remaining
panels).

important to monitor the observed data of certain meteorological variables properly. How-
ever, meteorological data often have complicated structures, including high dimensionality,
dynamic longitudinal pattern (e.g., seasonality), and serial data correlation (Ordóñez et al.
(2005), Zhao et al. (2009)).

Because of the importance of effective monitoring of ozone concentration levels, the Texas
Commission on Environmental Quality (TCEQ) has established a surveillance system to col-
lect meteorological data in Houston. They also developed a parametric model to predict ozone
concentration levels based on several meteorological variables, such as wind speed, air tem-
perature, and solar radiation (Environmental Protection Agency (1999)). However, this model
cannot properly accommodate the complicated data structure of the observed meteorologi-
cal data, including serial data correlation and complex dynamic patterns like seasonality and
day-of-the-week variation. In addition, the observed meteorological data often have high di-
mensionality, and the related meteorological variables are usually associated with each other
(Abdul-Wahab et al. (2005), Zhang and Fan (2008)). To address the issue of high dimension-
ality, principal component analysis (PCA) has been used in environmental studies to inves-
tigate the association between ozone concentration levels and meteorological variables (e.g.,
Abdul-Wahab et al. (2005), Statheropoulos et al. (1998)). The related PCA-based methods,
however, are all retrospective in the sense that the time interval of process observations needs
to be pre-specified. Thus, these methods cannot effectively monitor the air quality of a region
sequentially over time.

To monitor a sequential process online, a major statistical tool is the statistical process con-
trol (SPC) charts (cf., Montgomery (2012), Qiu (2014)), including various Shewhart charts,
cumulative sum (CUSUM) charts, exponentially weighted moving average (EWMA) chart,
and charts based on change-point detection (CPD) (cf., Hawkins et al. (2003), Page (1954),
Roberts (1959), Shewhart (1931)). Early SPC charts are designed mainly for monitoring pro-
cesses with a single quality variable. For monitoring multiple quality variables, a number of
multivariate SPC charts have also been developed, including the Hotelling’s T 2 chart, mul-
tivariate CUSUM chart, multivariate EWMA chart, and more (cf., Crosier (1988), Hotelling
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(1947), Lowry et al. (1992), Chapter 7 in Qiu (2014)). A related SPC problem is to monitor
profiles that describe the functional relationship between response variables and predictors.
See, for instance, Chicken et al. (2009), Qiu et al. (2010) and Noorossana et al. (2011) for
related discussions. To monitor high-dimensional processes, some control charts based on
variable selection have been developed (cf., Capizzi and Masarotto (2011), Wang and Jiang
(2009), Zou and Qiu (2009)). These methods require the sparsity assumption that shifts in
a high-dimensional process can only occur in a small number of quality variables. Some
other control charts designed for monitoring high-dimensional processes are based on the
maximum, summation, or other summaries of the CUSUM charting statistics constructed
for monitoring individual quality variables (cf., Mei (2010), Tartakovsky et al. (2006), Zou
et al. (2015)). In addition, some PCA-based control chart have been developed for monitoring
high-dimensional processes, where the PCA technique is used for reducing the dimensional-
ity of quality variables (cf., Ferrer (2007), Jackson (1991), Kourti and MacGregor (1996)).

However, most of these existing charts require various assumptions on the observed data,
including that the IC process distribution does not change over time, the process observa-
tions are independent at different observation times, and the IC process observations follow a
parametric (e.g., normal) distribution. These assumptions are rarely valid in applications like
air quality monitoring. In the SPC literature, it has been well demonstrated that such control
charts would become unreliable to use when one or more of their assumptions are violated
(Apley and Tsung (2002), Qiu (2018), Qiu and Xiang (2014)). To address this issue, some
new SPC charts have been developed recently. For instance, to monitor univariate correlated
data, many control charts have been developed based on parametric time series modelling
and sequential monitoring of the resulting residuals (cf., Apley and Tsung (2002), Capizzi
and Masarotto (2008), Knoth and Schmid (2004), Psarakis and Papaleonida (2007)). One
limitation of these residual-based charts is that their performance is sensitive to the assumed
parametric time series models that could be invalid in practice (cf., Qiu et al. (2020)). As
discussed in some previous studies (e.g., Ku et al. (1995), Vanhatalo and Kulahci (2016)),
the traditional PCA-based control charts would also become unreliable to use when the pro-
cess under monitoring has a time-varying IC distribution and the observed data are serially
correlated. So, some alternative PCA-based control charts have been developed to monitor
different processes with data autocorrelation. For instance, the dynamic PCA method accom-
modates autocorrelation by modelling time-lagged data together with the data at the current
observation time (e.g., Ku et al. (1995), Tsung (2000)). The PCA method based on latent
variables models the data correlation using latent factors (e.g., Dong and Qin (2018), Li et al.
(2014)). These alternative PCA methods can accommodate different types of dynamic data
correlation, including both serial correlation and cross-component correlation in multivari-
ate cases. But, they are designed for cases when the IC process distribution does not change
over time. To accommodate time-varying IC process distribution, some moving window PCA
methods have been developed by using a moving window of a pre-specified size to perform
PCA (e.g., Lennox et al. (2001), Wang et al. (2005)). For an overview on PCA-based con-
trol charts, see De Ketelaere et al. (2015). However, the existing PCA-based control charts
have several fundamental limitations. First, almost all of them are Shewhart charts that make
decisions about the process performance at a given time point based solely on the observed
data at that time point, and all historical data are ignored by them. Consequently, they are less
effective in detecting relatively small and persistent shifts, compared to other types of charts
such as the CUSUM, EWMA, and CPD charts (cf., Qiu (2014)). Second, a large IC dataset
is often needed for these existing charts for estimating certain IC parameters in order to have
a reliable IC performance, which is usually unavailable in the current air quality monitoring
problem. Third, they cannot handle cases with serial data correlation and time-varying IC
process distributions that are hard to describe by a parametric distribution family. However,
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such cases are realistic in the air quality monitoring applications. As far as we know, there are
no existing methods that can properly accommodate the complex data structure in air quality
monitoring applications. This paper aims to fill the gap.

In this paper, we suggest a flexible method for sequential monitoring of high-dimensional
dynamic processes with serially correlated data. The serial data correlation is assumed to be
short-ranged in the sense that the correlation between two process observations is weaker
when their observation times are farther away, which should be reasonable in air quality
monitoring applications. Because of this assumption, the correlation between two process
observations can be ignored if the two observation times are at least bmax apart, where bmax

denotes the autocorrelation range. The autocorrelation is assumed such that the correlation
between two process observations depends on the distance between the two observation times
only, which is routinely assumed in the SPC literature on monitoring processes with serially
correlated data (e.g., Apley and Tsung (2002), Capizzi and Masarotto (2008), Xie and Qiu
(2023)). The proposed method also requires an initial IC dataset to be available before online
process monitoring, from which an initial estimate of the IC temporal pattern of the process
under monitoring can be obtained. During online process monitoring, the observed data at the
current observation time are first standardized using the estimated IC temporal pattern, and
the PCA procedure is then applied to the standardized data for dimension reduction. After
proper data decorrelation for the selected principal components of the observed data, a multi-
variate CUSUM chart is constructed for process monitoring. In addition, our proposed chart
is self-starting (cf., Hawkins (1987)) in the sense that if the related process is declared to be
IC at the current observation time, then the observed data at that time point is combined with
the available IC data and the estimate of the IC temporal pattern of the process gets updated
using the combined IC data for process monitoring at the next observation time. For updating
the estimates of the related IC quantities, recursive formulas are derived to substantially save
the computing time, memory, and storage requirement for storing all previous data, since
the estimate updates need to be implemented at each observation time. Unlike the existing
PCA-based charts, the new method allows the IC process distribution to vary over time and
be unconstrained to a specific parametric distribution family. Numerical studies show that it
is reliable and effective for air quality monitoring applications.

The remainder of the paper is organized as follows. Our proposed new method is de-
scribed in detail in Section 2. Some simulation studies to evaluate its numerical performance
are presented in Section 3, in comparison with several representative existing methods. Its
applications to monitor two air quality data collected in the Houston area are discussed in
Sections 4. Some remarks conclude the paper in Section 5. Proof of a theoretical result and
some numerical examples are given in a supplementary file.

2. High-Dimensional Process Monitoring by PCA-Based Sequential learning. As-
sume that X = (X1,X2, . . . ,Xp)

′ is a vector of p numerical quality variables for mon-
itoring a sequential dynamic process. Its observation at time n is denoted as Xn =
(Xn1,Xn2, . . . ,Xnp)

′. To monitor the sequential process {Xn, n ≥ 1} online, an initial IC
dataset X (0)

IC = {X−m0+1,X−m0+2, . . . ,X0} of size m0 is assumed to be available in ad-
vance. The time period of the initial IC dataset is then set as a baseline time interval. The
main goal of online process monitoring is to detect any substantial deviation in the future
temporal pattern of the process from its regular temporal pattern in the baseline time inter-
val as promptly as possible. If seasonality is present in the temporal pattern of the process,
then the baseline time interval should contain at least one whole season. Then, our proposed
method proceeds in the following several steps, as demonstrated in Figure 2. First, it com-
putes initial estimates of the regular temporal pattern of the dynamic process under moni-
toring and other IC quantities from X (0)

IC . Second, at the current time point n during online
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process monitoring, the observed data Xn are first standardized using the estimated regular
temporal pattern, and then the PCA procedure is applied to the standardized data to reduce
their dimensionality and obtain the principal component (PC) data Yn. Third, the PC data
Yn at time n is decorrelated with the PC data at previous observation times. Fourth, a con-
trol chart is applied to the decorrelated PC data. If the control chart does not give a signal
at time n, then the observed data Xn at time n are combined with the IC data at the pre-
vious time point, denoted as X (n−1)

IC = {Xj ,−m0 + 1 ≤ j ≤ n − 1}. The estimates of the
regular temporal pattern and other IC quantities now get updated using the combined IC data
X (n)
IC = {Xj ,−m0 + 1 ≤ j ≤ n}. The online process monitoring then proceeds to the next

time point, n + 1. A more detailed description of the proposed method is given in several
subsections below.

FIG 2. Diagram of the proposed method for monitoring high-dimensional dynamic processes based on PCA and
sequential learning. The dashed rectangle highlights the proposed sequential learning procedure.

2.1. Initial estimation of the regular temporal pattern and other IC quantities. Assume
that process observations in the initial IC dataset X (0)

IC follow the nonparametric longitudinal
model

(1) Xj =µj + ϵj , for j =−m0 + 1,−m0 + 2, . . . ,0,

where µj = (µj1, µj2, . . . , µjp) is the mean of Xj , and ϵj is the p-dimensional zero-mean
error term. In Model (1), it is assumed that the serial correlation is short-ranged and stationary
in the sense that Cov(ϵj ,ϵj′) ≈ 0 when |j − j′| > bmax and Cov(ϵj ,ϵj′) depends on j and
j′ through |j − j′|, where bmax denotes the autocorrelation range. No parametric forms are
imposed on the error distribution and the temporal pattern of the mean vectors {µj}.
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In Model (1), the mean vector µj can be estimated by the local linear kernel (LLK)
smoothing procedure (cf., Xiang et al. (2013)). In matrix notation, let W(0) = (X−m0+1,1, . . . ,

X0,1, . . . ,X−m0+1,p, . . . ,X0,p)
′, Zj = [(1,−m0 + 1− j)′, . . . , (1,−j)′]′, and Kj = diag{K( i−j

hl
),

i=−m0 + 1,−m0 + 2, . . . ,0, l = 1,2, . . . , p}, where K(·) is a kernel function and {hl, l =
1,2, . . . , p} are bandwidths. Then, the initial estimate of µj , for j = −m0 + 1,−m0 +
2, . . . ,0, is given by:

(2) µ̂
(0)
j =

[
[S

(0)
j ]−1R

(0)
j

]′
(Ip×p ⊗ ξ1) ,

where ξ1 = (1,0)′, S(0)
j = (Ip×p⊗Zj)

′Kj(Ip×p⊗Zj), and R
(0)
j = (Ip×p⊗Zj)

′KjW
(0). In

the above LLK procedure, the kernel function K(·) is usually chosen to be the Epanechnikov
kernel function, i.e., K(u) = 3

4(1− u2)I(|u| ≤ 1), since it was shown to be optimal in esti-
mating µj under some regularity conditions (Epanechnikov (1969), Yang and Qiu (2018)).
Regarding the initial estimate µ̂

(0)
j in (2), its different components can be computed sepa-

rately since Kj is a diagonal matrix. Thus, the computation is relatively simple.
For choosing the bandwidths {hl, l = 1,2, . . . , p}, it has been well discussed in the liter-

ature that the conventional cross-validation (CV) procedure would not perform well when
process observations at different time points are serially correlated, since the CV procedure
cannot properly distinguish the data correlation structure from the data mean function (e.g.,
Altman (1990), Opsomer et al. (2001)). Thus, we propose choosing them by using a modified
cross-validation (MCV) procedure as suggested by De Brabanter et al. (2011) in the univari-
ate regression setup with correlated data. For each bandwidth hl, for l= 1,2, . . . , p, the MCV
score is defined to be:

MCV(hl) =
1

m0

0∑
j=−m0+1

(Xjl − µ̂−j,l)
′ (Xjl − µ̂−j,l) ,

where µ̂−j,l is the leave-one-out estimate of µjl by (2) when the observation Xjl is excluded
in the computation and the kernel function K(·) is modified into

Kε(u) =
4

4− 3ε− ε3

{ 3
4(1− u2)I(|u| ≤ 1), when |u| ≥ ε,
3(1−ε2)

4ε |u|, when |u|< ε,

where ε ∈ (0,1) is a small constant. The modified kernel function Kε(u) equals 0 at u = 0
and is small around u = 0, to diminish the impact of data autocorrelation on bandwidth
selection. Then, hl can be chosen by minimizing the above MCV score.

2.2. Dimension reduction by PCA for the initial IC data. PCA is a popular statistical tool
for reducing the dimensionality of a dataset by projecting the original dataset into a lower-
dimensional space without losing much information. The first principal component (PC) of
the p-dimensional random vector X is defined to be the linear combination u′

1X with the
maximum variance, where u1 is a coefficient vector with a unit length, and the second PC
is defined to be the linear combination u′

2X with the maximum variance, where u2 is a
coefficient vector with a unit length that is orthogonal to u1, and so forth. The PCs can be
obtained by the eigenvalue-eigenvector decomposition of the covariance matrix of X. In the
current research problem, dimension reduction is needed because p is assumed large, and
the related computation would be exceptionally extensive otherwise. To this end, the PCA
procedure is considered, which is described below for analyzing the initial IC data.

For the lth quality variable in X, its standardized observation at time j is defined to be

X̃jl =
(
Xjl − µ̂

(0)
jl

)
/σ̂

(0)
jl , for l= 1,2, . . . , p, j =−m0 + 1,−m0 + 2, . . . ,0,
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where µ̂(0)jl is defined in (2), and σ̂(0)jl is an initial estimate of the standard deviation of Xjl

defined to be σ̂(0)jl =
√
α
(0)
jl /β

(0)
jl in which

α
(0)
jl =

0∑
i=−m0+1

(
Xjl − µ̂

(0)
jl

)2
K

(
i− j

gl

)
,

β
(0)
jl =

0∑
i=−m0+1

K

(
i− j

gl

)
,

and gl is a bandwidth that can be chosen by the MCV procedure discussed earlier.
Then, the initial estimate of the covariance matrix of the standardized observations X̃j =

(X̃j1, X̃j2, . . . , X̃jp)
′ can be defined to be

Σ̂(0) =
1

m0

0∑
j=−m0+1

X̃jX̃
′
j .

For Σ̂(0), its eigenvalue-eigenvector decomposition is assumed to be Σ̂(0) = [Û(0)]Λ̂(0)[Û(0)]′,
where Λ̂(0) = diag(λ̂(0)1 , λ̂

(0)
2 , . . . , λ̂

(0)
p ) is a diagonal matrix with its diagonal elements

λ̂
(0)
1 ≥ λ̂

(0)
2 ≥ . . . ≥ λ̂

(0)
p being the eigenvalues of Σ̂(0), and Û(0) = (û

(0)
1 , û

(0)
2 , . . . , û

(0)
p )

is an orthonormal matrix with its columns being the corresponding eigenvectors of Σ̂(0).
The PCs of X̃j are the linear combinations (û(0)

l )′X̃j , for each j and l= 1,2, . . . , p. To de-
termine the number of PCs to use in the subsequent analysis, we suggest using the percentage
of data variation explained by the selected PCs as a criterion, as recommended in the liter-
ature (e.g., Johnson and Wichern (2008)). To this end, let v be a pre-specified thresholding
percentage value. Then, the first d(0) PCs will be selected, where d(0) is defined by

(3) d(0) =min

{
q :

(
q∑

l=1

λ̂
(0)
l

/
p∑

l=1

λ̂
(0)
l

)
× 100%> v,1≤ q ≤ p

}
.

In the literature, it has been well explained that λ̂(0)l measures the percentage of information
in the standardized observations {X̃j ,−m0+1≤ j ≤ 0} that can be explained by the lth PC,
for each l. Thus, Expression (3) implies that we select the first d(0) PCs such that the percent-
age of information contained in these PCs about the standardized initial IC data is at least the
pre-specified value of v. In practice, v is often selected to be 80%, 90% or 95%, depending on
the specific research problem, and the resulting d(0) is usually much smaller than p to achieve
the dimension reduction purpose. Then, instead of using the original standardized observa-
tions {X̃j ,−m0 + 1 ≤ j ≤ 0}, we can use the related PCs {Y−m0+1,Y−m0+2, . . . ,Y0}
for process monitoring, where Yj = (Û

(0)
d(0))

′X̃j and Û
(0)
d(0) = (û

(0)
1 , û

(0)
2 , . . . , û

(0)
d(0)) is the

(p× d(0))-dimensional PCA projection matrix.
As mentioned at the beginning of Subsection 2.1, two original process observations are

allowed to be correlated if their observation times are within bmax apart and their serial
correlation does not change over time. Because the selected PCs are linear combinations
of different components of the original process observations, they would share these serial
correlation properties. Let γ(0)(s) = Cov(Yj ,Yj+s), for each j and s. Then, γ(0)(s) can be
estimated by the following moment estimate:

(4) γ̂(0)(s) =
1

m0 − s

−s∑
j=−m0+1

Yj+sY
′
j , for 0≤ s≤ bmax.
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2.3. PCA-based sequential learning and online process monitoring. Next, we discuss
online monitoring of the p-dimensional dynamic process with the observations {Xn, n≥ 1}.
When the process is IC, it is assumed that it has the regular temporal pattern described by
Model (1). Namely, its observations follow the model

(5) Xn =µn + ϵn, for n≥ 1,

where µn =µn∗ , n∗ is an integer in [−m0 +1,0], n= n∗ + lm0, l≥ 1 is an integer, and the
error term ϵn has the same covariance structure as that in Model (1).

Data standardization and dimension reduction: At the current time point n, we first
standardize the observation Xn = (Xn1,Xn2, . . . ,Xnp)

′ by

X̃nl =
(
Xnl − µ̂

(n−1)
nl

)/
σ̂
(n−1)
nl , for l= 1,2, . . . , p,

where µ
(n−1)
n = (µ̂

(n−1)
n1 , µ̂

(n−1)
n2 , . . . , µ̂

(n−1)
np )′ and {σ̂(n−1)

nl } describes the updated regular
temporal pattern of the process under monitoring obtained at the previous time point n− 1,
which is defined in Equation (8) below. Then, the PCA procedure can be applied to the
standardized observation X̃n = (X̃n1, X̃n2, . . . , X̃np)

′ for dimension reduction. Let

Yn =
(
Û

(n−1)
d(n−1)

)′
X̃n,

where Û(n−1)
d(n−1) is the (p×d(n−1))-dimensional PCA projection matrix updated at the previous

time point n− 1, which is defined in the part “Update of the IC parameter estimates” below.
Then, Yn is a d(n−1)-dimensional vector, with d(n−1) being an integer that is often much
smaller than p.

Data decorrelation: Before monitoring the PCA-transformed observations {Yn, n≥ 1},
they should be decorrelated properly across different time points, since the conventional con-
trol charts in the SPC literature are designed mainly for monitoring processes with uncorre-
lated observations (cf., Qiu (2014), Chapter 7). To this end, the observation Yn at the current
time point n needs to be decorrelated with its previous bmax observations, since the serial cor-
relation is assumed to be short-ranged, as discussed in Subsection 2.1. Because the sequential
data decorrelation needs to be implemented at each observation time, reduction of comput-
ing time is substantially important. For that purpose, the concept of spring length, originally
discussed in Chatterjee and Qiu (2009), will be considered in the proposed method. This
concept is based on the restarting mechanism of a CUSUM chart. At the current time n, the
spring length Tn is defined to be the number of observation times from the last time that the
CUSUM charting statistic was reset to zero to the current time n. By combining this concept
and the assumed short-range serial correlation, the observation Yn at the current time point
n only needs to be decorrelated with its previous bn =min{Tn−1, bmax} observations. Here,
Tn−1 (instead of Tn) is used because the CUSUM chart has not yet made a decision about the
process status at n during the data decorrelation at time n. Since Tn−1 is often a single-digit
integer (cf., Chatterjee and Qiu (2009)), much computing time can be saved by using it. The
entire data decorrelation procedure is then briefly described below.

• When n = 1 or bn = 0, the decorrelated observation of Yn is defined to be en =[
γ̂(n−1)(0)

]−1/2
Yn, where γ̂(n−1)(0) is defined in (9) below.

• When n > 1 and bn > 0, the estimated covariance matrix of (Y′
n−bn

,Y′
n−bn+1, . . . ,Y

′
n)

′

is defined to be

Σ̂n,n =

 γ̂(n−1)(0) · · · γ̂(n−1)(bn)
...

. . .
...

γ̂(n−1)(bn) . . . γ̂(n−1)(0)

=:

(
Σ̂n−1,n−1 Σ̂n−1,n

Σ̂′
n−1,n γ̂(n−1)(0)

)
.
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Then, the decorrelated observation of Yn is defined to be

en = D̂−1/2
n

[
−Σ̂′

n−1,nΣ̂
−1
n−1,n−1Bn−1 +Yn

]
,

where D̂n = γ̂n−1(0)−Σ̂′
n−1,nΣ̂

−1
n−1,n−1Σ̂n−1,n, Bn−1 = (Y′

n−bn
,Y′

n−bn+1, . . . ,Y
′
n−1)

′,
and Σ̂−1

n,n(n) can be computed recursively by using the following formula: for n≥ 2,

Σ̂−1
n,n =

(
Σ̂−1

n−1,n−1 + Σ̂−1
n−1,n−1Σ̂n−1,nD̂

−1
n−1Σ̂

′
n−1,nΣ̂

−1
n−1,n−1,−Σ̂−1

n−1,n−1Σ̂n−1,nD̂
−1
n−1

−D̂−1
n−1Σ̂

′
n−1,nΣ̂

−1
n−1,n−1, D̂−1

n−1

)
.

By using the above sequential data decorrelation procedure, the resulting decorrelated obser-
vations {en, n ≥ 1} would be asymptotically uncorrelated with each other, and each would
have an asymptotic mean of 0 and an asymptotic identity covariance matrix.

It should be pointed out that the data decorrelation algorithm described above is imple-
mented on the PCA-transformed data Yn, for n ≥ 1, whose dimension dn is usually much
smaller than the dimension p of the original data. In addition, recursive computation has been
employed in the algorithm. It can be checked that the computational complexity to compute
en at time n is 4((bn + 1)dn)

2 +O((bn + 1)dn)), which is relatively low since both bn and
dn are usually small.

PCA-based sequential process monitoring: After implementing the PCA and data decor-
relation procedures, the original process observations {Xn, n≥ 1} have been transformed to
the asymptotically uncorrelated ones {en, n≥ 1} with lower dimensions. Because each ele-
ment of en is a linear combination of the original process observations, its distribution would
be close to N(0, Id(n−1)), under some regularity conditions. Consequently, the distribution of
e′nen would be close to χ2

d(n−1) . Thus, we suggest the following CUSUM chart for sequential
process monitoring:

(6) Cn =max

[
0,Cn−1 +

e′nen − d(n−1)

√
2d(n−1)

− k

]
,

where C0 = 0, and k > 0 is an allowance constant. The chart gives a signal when

(7) Cn > ρ,

where ρ > 0 is a control limit.
The performance of the CUSUM chart (6)-(7) can be measured by the IC average run

length (ARL), denoted as ARL0, and the out-of-control (OC) ARL, denoted as ARL1 (Qiu
(2014), Chapter 3). By definition, ARL0 is the average number of observation times from
the beginning of online process monitoring to the signal time of the chart when the process
is IC, and ARL1 is the average number of observation times from the occurrence of a shift
to the signal time of the chart after the process becomes OC. Usually, ARL0 is pre-specified,
and the chart performs better for detecting a given shift when its ARL1 is smaller. In the
chart (6)-(7), there are two parameters k and ρ to choose in advance. The allowance con-
stant k is usually pre-specified, and the control limit ρ is chosen to achieve the pre-specified
value of ARL0. If the distribution of en is exactly a multivariate normal distribution, then
we can determine the control limit ρ easily, using Monte Carlo simulations. But, when the
distribution of the original process observations is quite skewed and the dimension p is quite
small, the distribution of en could be substantially different from a normal distribution. In
such cases, the proposed chart, with its control limit determined based on the normal distri-
bution assumption, would be unreliable to use in the sense that its actual ARL0 value could
be quite different from the pre-specified ARL0 value (cf., Qiu (2018)). To make the proposed
chart more robust, we suggest determining its control limit ρ by using a bootstrap procedure
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(cf., Chatterjee and Qiu (2009)), as described below. First, compute the decorrelated PCA-
transformed observations {ej , j =−m0 + 1,−m0 + 2, . . . ,0} from the initial IC data X (0)

IC ,
as discussed above in the part “Data decorrelation”. Second, a bootstrap sample is drawn
randomly with replacement from these decorrelated PCA-transformed observations. Third,
the CUSUM chart (6)-(7) with a given control limit ρ is applied to the bootstrap sample to
obtain a run length (RL) value. Fourth, the bootstrap resampling procedure is repeated for
B = 1,000 times, and the average of the B RL values is used to approximate the actual
ARL0 value of the chart. Fifth, ρ can then be searched by a numerical algorithm, such as the
bisection search algorithm discussed in Qiu (2014), so that the pre-specified ARL0 value is
reached.

Update of the IC parameter estimates: If the control chart (6)-(7) does not give a signal
at time n, then the observation Xn can be combined with the IC data X (n−1)

IC = {Xj ,−m0+

1≤ j ≤ n− 1} at the previous time n− 1, and the combined IC data is denoted as X (n)
IC . The

estimates of the IC parameters obtained at time n − 1 can then be updated properly using
the combined IC data. To this end, the estimate of the IC mean µj can be updated by the
following formula: for n≥ 1,

(8) µ̂
(n)
j =

([
S
(n)
j

]−1
R

(n)
j

)′
(Ip×p ⊗ ξ1) , for j =−m0 + 1,−m0 + 2, . . . ,0,

where S
(n)
j and R

(n)
j can be updated recursively by

S
(n)
j = S

(n−1)
j + (kn ⊗Zn) (Ip×p ⊗Zn)

′ ,

R
(n)
j =R

(n−1)
j + (knXn)⊗Zn,

Zn = (1, n∗ − j)′, kn = diag
[
K(n

∗−j
h1

),K(n
∗−j
h2

), . . . ,K(n
∗−j
hp

)
]
, and n∗ is an integer in

[−m0+1,0] that is related to n through n= n∗+ lm0, for l≥ 1, as discussed at the beginning
of Subsection 2.3.

The estimate of the standard deviation of Xjl can be updated by: for n≥ 1,

σ̂
(n)
jl =

√
α
(n)
jl

/
β
(n)
jl , for l= 1,2, . . . , p, j =−m0 + 1,−m0 + 2, . . . ,0,

where α(n)
jl and β(n)jl can be updated recursively by

α
(n)
jl = α

(n−1)
jl +

(
Xjl − µ̂

(n)
jl

)2
K

(
n∗ − j

gl

)
,

β
(n)
jl = β

(n−1)
jl +K

(
n∗ − j

gl

)
.

The correlation estimates can be updated as follows: for n≥ 1,

γ̂(n)(s) =
1

m0 + n− s
YnY

′
n−s +

m0 + n− s− 1

m0 + n− s
γ̂(n−1)(s), for 0≤ s≤ bmax.(9)

The eigenvalues and eigenvectors of the sample covariance matrix can also be updated by
using the incremental PCA algorithm (Weng et al. (2003)) with the following formulas:

λ̂
(n)
l = ∥v(n)

l ∥, û
(n)
l =

v
(n)
l

∥v(n)
l ∥

, for l= 1,2, . . . , p,
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where

v
(n)
l =

m0 + n− 1

m0 + n
v
(n−1)
l +

1

m0 + n
P

(n)
l [P

(n)
l ]′û

(n−1)
l ,

P
(n)
l =P

(n)
l−1 − û

(n)
l−1[P

(n)
l−1]

′û
(n)
l−1, and P

(n)
1 = X̃n.

Finally, the proposed CUSUM chart (6)-(7) depends on the number of selected PCs,
d(n−1), which should also be updated if the chart does not give a signal at time n. This
quantity affects many components of the proposed method, from data decorrelation, compu-
tation of the control limit ρ of the chart, to decision making about the process status. It will
add much computing burden if its value changes frequently over time. For this reason, we
suggest updating the value of d(n−1) only at times when the CUSUM charting statistic gets
restarted (i.e., Cn = 0 in (6)). The reason for this consideration is that the evidence in the
observed data for a process shift is considered by the chart to be weak and thus updates of
the IC parameter estimates are the most needed at such times (cf., Qiu (2014), Chapter 4).
Based on our numerical experience, the value of d(n−1) changes slightly (e.g., from 4 to 5)
when n is small, and stabilizes when n gets large, which is justified theoretically by Theorem
1 below.

THEOREM 1. In the IC Model (1), let µj = µ((j +m0)/m0), for each j. Then, µ(t)
is the IC mean function, for t ∈ [0,1]. The variance function σ2(t) can be defined sim-
ilarly in [0,1]. Assume that both functions are twice continuously differentiable in [0,1],
and there are constants δ > 5 and 0 < Cϵ < ∞ such that E(|ϵjl|δ) < Cϵ, for all j and
l = 1,2, . . . , p. The time series of each component of {ϵj} is assumed to be weakly sta-

tionary with absolutely summable auto-covariances (i.e.,
∞∑

s=−∞
|Cov(ϵjl, ϵj−s,l)|<∞). The

kernel function K(·) is assumed to be a Lipschitz-1 continuous density function with the
support [−1,1], and the bandwidths {hl} and {gl} are assumed to satisfy the conditions
that hl = o(1), log2(m0)/(m0h

2
l ) = o(1), gl = o(1), and log2(m0)/(m0g

2
l ) = o(1), for

l= 1,2, . . . , p. Then, we have∣∣∣∣∣
k∑

l=1

λ̂
(0)
l −

k∑
l=1

λl

∣∣∣∣∣=OP

(
h4max + log2(m0)/(m0h

2
min) + g4max + log2(m0)/(m0g

2
min) +m

−1/2
0

)
,

where k = 1,2, . . . , p, {λl, l = 1,2, . . . , p} are the eigenvalues of the covariance ma-
trix of the standardized IC process observations, hmax = max{h1, h2, . . . , hp}, hmin =
min{h1, h2, . . . , hp}, gmax =max{g1, g2, . . . , gp}, and gmin =min{g1, g2, . . . , gp}.

By Theorem 1, we have limn→∞ d(n−1) = dv , where

dv =min

{
q :

(
q∑

l=1

λl

/
p∑

l=1

λl

)
× 100%> v,1≤ q ≤ p

}
.

So, the value of d(n−1) will indeed stabilize when n gets large. The proof of Theorem 1 is
given in the supplementary file.

As in other self-starting control charts (Hawkins (1987)), the updating mechanism de-
scribed above could contaminate the IC parameter estimates if a shift cannot be detected in a
timely manner, since the OC process observations collected after the undetected shift could
be used in computing the IC parameter estimates. See related discussions in Section 4.5 of
Qiu (2014). Based on our numerical experience, if the initial IC sample size is relatively
large, then the impact of such potential contamination on the chart performance is negligible.



12

However, if the initial IC sample size is small (e.g., < 100), then a process shift (or drift) can
be missed permanently by the chart if the shift cannot be detected soon after its occurrence.
To partially overcome this limitation, one solution is to update the IC parameter estimates
only in cases when the chart gets re-started at the current observation time. As explained
earlier, the chance for the process to be OC is small in such cases, and thus contamination of
the IC parameter estimates by OC process observations would also be unlikely.

Practical guidelines: To use the proposed chart (6)-(7), the following practical guidelines
are provided. i) The PCA procedure is considered in the proposed method for reducing the
computing burden of process monitoring. When p is relatively small (e.g., p≤ 10), the benefit
to use the PCA procedure would be limited. In such cases, we suggest using the proposed
chart without considering the PCA data transformation. ii) the performance of the proposed
chart would depend on the initial IC data size m0. Based on extensive numerical studies
(cf., Tables 1 and 2 in Section 3), we suggest choosing m0 ≥ 10p to ensure a reliable IC
performance of the proposed chart. iii) The proposed chart assumes that serial correlation
can be ignored when two observation times are at least bmax apart. In practice, however, bmax

is usually unknown. Based on extensive numerical studies, the performance of the proposed
chart can hardly be improved when bmax is chosen larger than 20, and its performance could
be negatively affected in certain cases if bmax is chosen smaller than 10. Thus, we suggest
choosing bmax ∈ [10,20].

3. Simulation Studies. In this section, we evaluate the numerical performance of the
proposed method by Monte Carlo simulations. The proposed chart (6)-(7) is denoted as PCA-
D-C, where the letter “D” means that it considers dynamic processes, and the following letter
“C” implies that serial correlation in the observed data is allowed. In the simulation studies,
the following four different cases are considered:

Case I: IC process observations {Xn, n ≥ 1} are independent and identically distributed
(i.i.d.) with the IC distribution Np(µ,Σ), where µ = (0,0, . . . ,0)′ and Σ = (σl1l2)p×p

with σl1l2 = 0.5|l1−l2|, for l1, l2 = 1,2, . . . , p.
Case II: IC process observations {Xn, n≥ 1} are generated from Model (5). Their means and

correlation structure are specified in Model (1), where the first five components of µj are

[tanh(j/m0), exp(j/m0), j/m0, cos(2πj/m0),0] , for j =−m0 + 1,−m0 + 2, . . . ,0,

the remaining components are replicated from the first five components (e.g., the sixth
component is tanh(j/m0), the seventh component is exp(j/m0), and so forth), the er-
ror terms {ϵj} are i.i.d. with the distribution Np(0,Σ), and Σ = (σl1l2)p×p with σl1l2 =
0.5|l1−l2|, for l1, l2 = 1,2, . . . , p.

Case III: Same as Case II, except that the error terms {ϵj} are assumed to follow the vector
autoregressive (VAR) model ϵj = 0.2ϵj−1 + ηj , where ϵ0 = 0, {ηj} are i.i.d. with the
distribution Np(0,Σ), and Σ= (σl1l2)p×p with σl1l2 = 0.5|l1−l2|, for l1, l2 = 1,2, . . . , p.

Case IV: Same as Case III, except that each component of ηj has the standardized χ2
3 distri-

bution and the covariance matrix of ηj remains the same as that in Case III.

For the four cases described above, Case I is the conventional case with i.i.d. IC process
observations generated from a zero-mean normal distribution. Cases II-IV consider three
different dynamic processes. The one in Case II has independent and normally distributed
IC observations at different observation times. Case III is the same as Case II, except that
process observations are serially correlated in Case III. Case IV considers a scenario when
process observations are serially correlated and the IC process distribution is skewed. In all
cases, the p quality variables are mutually correlated.

For comparison purposes, besides the proposed chart PCA-D-C, the following four alter-
native methods are also considered:
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• A simplified version of PCA-D-C, denoted as PCA-ND-C: This chart is the same as PCA-
D-C, except that the IC process distribution is assumed to be time-independent. Namely,
the process under monitoring is assumed to be non-dynamic.

• A simplified version of PCA-D-C, denoted as PCA-D-NC: This chart is the same as PCA-
D-C, except that process observations at different time points are assumed to be uncorre-
lated and thus the data decorrelation procedure described in Subsection 2.3 is not imple-
mented.

• The moving-window PCA method discussed in Wang et al. (2005), denoted as MWPCA:
The MWPCA method performs PCA at each observation time, using process observations
within a moving window of size w of the current observation time. Its charting statistic is

M2
n = (Xn − µ̂w)

′Ûd,wΛ̂
−1
d,wÛ

′
d,w(Xn − µ̂w),

where µ̂w is the sample mean of Xn,w = {Xn−w+1,Xn−w+2, . . . ,Xn}, Λ̂d,w is a diag-
onal matrix whose diagonal elements are the first d eigenvalues of the sample covariance
matrix of Xn,w, Ûd,w is a p× d matrix whose columns are the corresponding eigenvec-
tors, and d is the number of PCs determined similarly to that in (3). The MWPCA method
assumes that IC process observations are independent and normally distributed. Its control
limit is chosen to be Fd,w−d(α)[d(w

2− 1)]/[w(w− d)], where Fd,w−d(α) is the (1−α)th
quantile of the F distribution with d and w− d degrees of freedom, and α= 1/ARL0.

• The multivariate control chart discussed in Zou et al. (2015) for monitoring high-
dimensional data, denoted as ZCUSUM: This chart was developed based on a goodness-
of-fit test of the CUSUM statistics of the p individual quality variables. Its charting statistic
is defined to be

Ln =

p∑
l=1

{
log

[
U−1
n(l) − 1

(p− 1/2)(l− 3/4)− 1

]}2

I{Unl>(l−3/4)/p}

where Un(1) ≤ Un(1) ≤ · · · ≤ Un(p) are the order statistics of {Un1,Un2, . . . ,Unp}, Unl is
the cdf of Snl, for l= 1,2, . . . , p, and Snl is the CUSUM statistic of the lth quality variable
with an allowance constant kl. The control limit of the ZCUSUM chart can be determined
through simulations, since it assumes that the IC process distribution is normal.

In the simulation studies, the nominal ARL0 values of all charts are fixed at 200. In MW-
PCA, the moving window size w is chosen to be 10p, as suggested by Wang et al. (2005). By
the suggestion in Zou et al. (2015), the allowance constants {kl, l= 1,2, . . . , p} of ZCUSUM
are all chosen to be 0.5. In the three charts PCA-D-C, PCA-ND-C and PCA-D-NC, bmax is
chosen to be 10, and the allowance constants are all chosen to be 0.5. Their control limits
are chosen by the bootstrap procedure described in the paragraph below Expression (7). For
charts MWPCA, PCA-D-C, PCA-ND-C and PCA-D-NC, v is chosen to be 90% for deter-
mining the number of PCs (cf., (3)).

3.1. IC performance. We first study the IC performance of the related control charts. To
compute the actual ARL0 value of a chart, an IC dataset of size m0 is first generated from
an IC model. Then, a control chart is applied to a sequence of 2,000 IC process observations
for online process monitoring, and its RL value is recorded. The online process monitoring
is then repeated 1,000 times, and the average of the 1,000 RL values is used as the estimate
of the actual conditional ARL0 value, conditional on the IC data. Finally, all steps described
above, starting from the generation of the IC data, to computation of the estimate of the
actual conditional ARL0 value, are repeated 100 times. The actual ARL0 value of the chart
is then estimated by the average of the 100 estimates of the conditional ARL0 value. We first



14

assume that p= 100 (i.e., there are 100 quality variables to monitor), and the IC sample size
m0 is fixed at 1,200. The results of the estimated actual ARL0 values of the five charts in
various cases are presented in Table 1, along with their standard errors. From the table, it can
be seen that (i) MWPCA is reliable to use in Case I when process observations are i.i.d. and
normally distributed, but unreliable in all other cases because some of its model assumptions
are invalid. (ii) ZCUSUM is relatively reliable in Case I, but unreliable in all other cases,
because it requires a large IC dataset to estimate its IC parameters in Case I, and some of its
model assumptions are invalid in all other cases. (iii) PCA-ND-C and PCA-D-NC are reliable
only when their model assumptions are valid. For instance, PCA-D-NC is reliable in Cases
I and II when its “no serial correlation” assumption is valid, and unreliable in Cases III and
IV when this assumption is invalid. (iv) In comparison, the proposed chart PCA-D-C has a
reasonably good performance in all cases considered, since its estimated actual ARL0 values
are always within 10% of the nominal ARL0 level of 200.

TABLE 1
Actual ARL0 values and their standard errors (in parentheses) of the five control charts when p= 100,

m0 = 1,200, and the nominal ARL0 values of all charts are fixed at 200.

Cases PCA-D-C PCA-ND-C PCA-D-NC MWPCA ZCUSUM
I 190 (3.45) 193 (3.29) 190 (3.40) 193 (2.94) 163 (1.99)
II 189 (3.64) 67 (1.01) 194 (3.11) 143 (2.13) 56 (0.92)
III 187 (3.46) 75 (1.35) 136 (2.27) 125 (1.97) 48 (0.95)
IV 181 (3.29) 70 (1.44) 147 (2.45) 96 (1.87) 46 (0.93)

From the description of its construction in Section 2, the IC performance of the proposed
chart PCA-D-C may depend on the IC sample size m0 and the dimensionality p. To see
how m0 and p affect the IC performance of PCA-D-C, next we let p change between 50
and 100, m0 change among 400, 800, 1,200, 1,600, and 2,000, and the remaining setups
keep unchanged from those in the example of Table 1. The calculated actual ARL0 values of
PCA-D-C are presented in Table 2. From this table, we can have the following conclusions.
First, when p gets larger, the necessary IC data should also be larger. In Case I, for instance,
the estimated actual ARL0 value is already within 10% of the nominal ARL0 level when
m0 = 800 and p= 50, while the necessary IC data sizem0 needs to be 1,200 to have a similar
estimated actual ARL0 value when p = 100. Second, it seems that PCA-D-C has a better
IC performance when m0 is larger. Based on our numerical experience, its IC performance
is quite reliable when m0 ≥ 10p. It should be pointed out that compared to the proposed
method, the competing method ZCUSUM requires a larger IC dataset to achieve a reliable
IC performance in cases when its model assumptions are valid. For instance, Table 1 shows
that its actual ARL in Case I is about 20% smaller than the nominal ARL0 value when
m0 = 1,200 and p= 100. As a matter of fact, Zou et al. (2015) showed that when p = 100
and IC observations were independent and normally distributed, ZCUSUM required more
than 4,000 IC observations to achieve a reliable IC performance, since a large IC dataset was
required to obtain reliable estimates of its IC parameters.

3.2. OC performance. Next, we study the OC performance of the related control charts
in cases where p = 100, m0 = 1,200, and the nominal ARL0 values are all set at 200. To
this end, it is assumed that a mean shift occurs at the beginning of process monitoring and
the shifted mean becomes µn + δa, where a= (1,1, . . . ,1,0, . . . ,0)′ has ηp elements being
1 and the remaining elements being 0, and δ denotes the shift size. Two scenarios are consid-
ered in this example. In Scenario I, we fix the number of variables that have shifts to be 20
(i.e., η = 0.2), and let δ change among 0.2, 0.4, 0.6, 0.8, and 1. In Scenario II, the shift size
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TABLE 2
Actual ARL0 values and their standard errors (in parentheses) of the control chart PCA-D-C when p changes
between 50 and 100, m0 changes among 400, 800, 1,200, 1,600 and 2,000, and the nominal ARL0 value is

fixed at 200.

p Cases m0= 400 800 1200 1600 2000

50

I 169 (2.99) 192 (3.14) 194 (3.35) 196 (3.41) 201 (3.43)
II 165 (3.11) 190 (3.56) 196 (3.48) 205 (3.62) 204 (3.31)
III 161 (3.09) 184 (3.51) 193 (3.38) 196 (3.64) 202 (3.44)
IV 158 (2.94) 185 (3.20) 187 (3.26) 192 (3.01) 197 (3.23)

100

I 148 (3.09) 178 (3.86) 190 (3.45) 193 (3.21) 197 (3.53)
II 149 (3.17) 176 (3.97) 189 (3.64) 195 (3.57) 201 (3.27)
III 136 (3.86) 166 (3.40) 187 (3.46) 205 (3.97) 201 (3.30)
IV 130 (3.07) 156 (2.97) 181 (3.29) 186 (2.66) 194 (3.12)

δ is fixed at 0.6, and η changes among 0.1, 0.2, 0.3, 0.4, and 0.5. To make the comparison
among different charts as fair as possible, their control limits have been adjusted properly so
that their actual ARL0 values all equal the nominal ARL0 value of 200. Also, for detect-
ing a given shift, their procedure parameters have been searched so that their ARL1 values
reach the minimum. Namely, their optimal OC performance is compared here, which is com-
mon in the SPC literature for a fair comparison of the OC performance of different control
charts (e.g., Qiu and Xie (2022)). The computed optimal ARL1 values of the five charts are
presented in Figure 3. From the figure, we can have the following conclusions: i) all charts
perform reasonably well in Case I, ii) the charts PCA-D-C and PCA-D-NC perform better
than the other three charts in Case II when the process is dynamic and process observations
at different time points are independent, and iii) the proposed chart PCA-D-C performs better
than the other four charts in Cases III and IV when the process is dynamic and there is serial
correlation in process observations.

In practice, the true shift is usually unknown and thus consideration of the optimal OC
performance of a chart becomes impractical (Knoth et al. (2021)). Next, we consider an
example in which the procedure parameters of all charts are chosen to be the same as those
used in the example of Table 1 and all other setups are the same as those in the previous
example. The ARL1 values of the five charts in Cases I-IV of Scenario I considered in Figure
3 are shown in Figure S.1 in the supplementary file. From the figure, it can be seen that similar
conclusions to those in the previous example can be made here about the OC performance of
the five charts.

In the previous two examples, mean shifts are assumed to occur at the beginning of process
monitoring and the related results are called zero-state results in the literature (cf., Section
4.2, Qiu (2014)). In practice, however, a real shift usually occurs after the beginning of pro-
cess monitoring, making the zero-state OC performance impractical (Knoth et al. (2023)).
Next, we examine the steady-state OC performance of the related control charts when a shift
occurs at the time τ = 100 and other setups are the same as those in the example of Figure
S.1. The computed ARL1 values of the charts are presented in Figure S.2. From the figure, it
can be seen that similar conclusions to those in the example of Figure S.1 can be made here
regarding their steady-state OC performance.

As discussed in Section 2, the updating mechanism of the proposed chart has the limitation
that a process shift (or drift) could be missed permanently if it cannot be detected early after
it occurs. To over this limitation, we have proposed to update the IC parameter estimates
only when the CUSUM chart restarts. This modified chart is denoted as Mod-PCA-D-C.
To study its performance, we consider a new example in which a mean drift occurs at the
beginning of process monitoring in Case III, the OC mean function is µn +nψ1(1,1, . . . ,1)

′

(i.e., linear mean drift) or µn + n2ψ2(1,1, . . . ,1)
′ (i.e., quadratic mean drift), where ψ1 and
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FIG 3. Optimal ARL1 values of the five charts when their nominal ARL0 values are all fixed at 200, p= 100,
and m0 = 1,200. In Scenario I, η = 0.2, and the shift size parameter δ changes among 0.2, 0.4, 0.6, 0.8 and 1.0.
In scenario II, δ = 0.6 and η changes among 0.1, 0.2, 0.3, 0.4, and 0.5.

ψ2 are the drift sizes. In cases when the nominal ARL0 values of the charts Mod-PCA-D-
C and PCA-D-C are fixed at 200, ψ1 changes among {0,0.001,0.005,0.01,0.05,0.1}, and
ψ2 changes among {0,0.0001,0.0005,0.001,0.005,0.01}, their ARL1 values are presented
in Figure S.3. From the figure, it can be seen that (i) the modification can indeed improve
the performance of PCA-D-C in all cases considered, and (ii) the improvement is generally
small, especially when the drift size is relatively large.

4. Online Monitoring of Ozone Pollution In the Houston Area. Houston is one of
the largest cities in the U.S. that has been suffering severe ozone pollution (cf., Figure 1).
Under the Clean Air Act, it has been classified as a severe ozone non-attainment area. This is
mainly due to its large number of chemical manufacturing facilities and metal recycling facil-
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ities that generate abundant precursor pollutants (Sun et al. (2015)). In addition, the Houston-
Galveston-Brazoria (HGB) area has relatively high average temperatures and abundant sun-
shine that provides ideal meteorological conditions to accelerate chemical reactions for ozone
formation (Gorai et al. (2015)). In recent years, ozone pollution has attracted a lot of attention
from the Texas governments, and they have been making various efforts to improve air qual-
ity and prevent ozone pollution in the HGB area. For instance, the Clean-Air Plan has been
implemented in the HGB area to improve air quality by taking several preventive measures,
including requiring manufacturing facilities to install pollution-control equipment, limiting
industrial emissions, and improving the accessibility of public transportation (Sexton and
Linder (2015)). The government agency TCEQ also developed an air pollution surveillance
system to collect environmental data in the HGB area. In this section, we apply the proposed
method to two specific ozone datasets collected in the Houston area.

4.1. Application to a standard ozone dataset in the Houston area. The first dataset
is saved in the UC Irvine Machine Learning Repository (https://archive.ics.
uci.edu/ml/datasets/ozone+level+detection) that contains observations of
72 meteorological variables in the HGB area. These variables have been verified empirically
to be associated with ozone concentration, and used by environmental researchers for pre-
dicting ozone concentration levels (e.g., Draxler (2000), Sun et al. (2015)). In addition, the
dataset contains a binary variable indicating whether a given day was declared to be an ozone
day, based on certain meteorological criteria. Thus, it has been used as a standard dataset
to justify analytic models for predicting ozone condition from meteorological variables. See
Zhang and Fan (2008) for a detailed description about this dataset.

The dataset introduced above contains observations of the 72 meteorological variables
collected from January 1, 1999 to December 31, 2000. Among the 72 variables, one of them
is not reliable to use because most of its values are either zero or missing. So, in our data
analysis, it is excluded and the remaining 71 variables, including air temperature, wind speed
resultant, relative humidity, sea level pressure, and many more, are used. Some of these 71
variables have a few missing values, and they are imputed as follows: For each variable, the
LLK procedure discussed in Subsection 2.1 is considered, and its missing values are replaced
by their LLK estimates defined in Equation (2). To have an intuitive impression about the
dataset, observations of all 71 variables are displayed in Figure 4 by an image constructed
as follows. Because different variables could have different scales, each variable has been
re-scaled by subtracting its minimum from each of its observations, and then dividing the
difference by its range. Thus, the rescaled variable has a range of [0,1]. Then, the 71 rescaled
variables, denoted as V1, V2, . . ., V71, are shown in the 71 rows of the image, with a darker
color denoting a larger value. Besides the image in Figure 4, Figure 5 shows the observations
of the following six representative variables: daily average wind speed, daily average tem-
perature, relative humidity, sea level pressure, K index, and total totals index. Among these
variables, the variables K index and total totals index measure the thunderstorm potential and
the severe weather occurrence potential, respectively.

From Figures 4 and 5, it can be seen that there is a quite obvious yearly seasonality in
the observed data. Also, from the binary variable about the daily ozone status, the HGB area
seemed to have a good environmental status in the first six months of each year, since there
were only 7 and 8 ozone days in that period of time in 1999 and 2000, respectively. However,
starting from early July, the environmental status in year 2000 was much worse than that in
year 1999. During the two months of July and August, for instance, there were 10 ozone days
in 1999, and 23 ozone days in 2000. For this reason, the data of non-ozone days in the year
1999 are used as the IC data in this section for estimating the regular longitudinal pattern of
the related variables, and the data in the year 2000 are used for online process monitoring. It

https://archive.ics.uci.edu/ml/datasets/ozone+level+detection
https://archive.ics.uci.edu/ml/datasets/ozone+level+detection
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is our hope that the environmental deterioration in the second half of the year 2000 can be
detected promptly by our proposed method, so that proper interventions can be applied in a
timely manner to protect the environment in the HGB area.

V71
V70
V69
V68
V67
V66
V65
V64
V63
V62
V61
V60
V59
V58
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V56
V55
V54
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V47
V46
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V38
V37
V36
V35
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V25
V24
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V20
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FIG 4. Observations of the 71 rescaled meteorological variables in the environmental data of the HGB area in
1999 and 2000. A darker color denotes a larger value. The vertical solid line separates the initial IC data from
the data for online process monitoring.

To apply the proposed method, we first compute the initial LLK estimates µ̂(0)jl and σ̂(0)jl
from the initial IC data, for each j and l, as discussed in Subsections 2.1 and 2.2. Then, the
standardized IC observations X̃jl = (Xjl − µ̂

(0)
jl )/σ̂

(0)
jl are computed for all j and l. For the

second-year data, the standardized observations X̃nl = (Xnl− µ̂
(n−1)
jl )/σ̂

(n−1)
nl are computed

as discussed in Subsections 2.3, for all n and l. The standardized observations of the six rep-
resentative variables considered in Figure 5 are shown in Figure 6, where the vertical dotted
line in each plot separates the initial IC data from the data for online process monitoring, and
the small triangles denote the ozone days in year 2000. It can be seen that the standardized
data of these representative variables are quite stable throughout 1999 and the first several
months of the year 2000, before becoming unstable in the remaining months of 2000.

To check the normality of the IC data, the Shapiro-Wilk test is applied to the standardized
IC data, and the test gives a p-value of 2.2 × 10−26, implying that the data distribution is
significantly non-normal. To check the serial correlation, the Durbin-Watson test is applied
to the standardized data of individual variables, and the p-values of the test for all variables
are < 0.003, implying a significant autocorrelation in the IC data. We also verified the va-
lidity of the assumption of short-ranged serial correlation for the standardized IC data using
the R function acf() from the package stats. The analysis shows that for all variables, the
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FIG 5. Original observations of the six representative meteorological variables: daily average wind speed, daily
average temperature, relative humidity, sea level pressure, K index, and total totals index in the environmental
data of the HGB area in the years 1999 and 2000. The vertical dotted line in each plot separates the initial IC
data from the data for online process monitoring.

autocorrelation coefficients are not statistically significant beyond a lag of 5 observations,
indicating that the short-ranged serial correlation assumption holds in this application. The
PCA procedure discussed in Subsection 2.2 is then applied to the standardized IC data with
v = 90% (cf., (3)), and the first 15 PCs are selected. To check the stationarity of the serial
correlation in the observations of the selected PCs, the augmented DickeyFuller (ADF) test
is used for individual PCs and the p-values of the test for all PCs are < 0.02, implying that
the stationarity assumption cannot be rejected in this example.

Next, we apply the five charts considered in Section 3 to this dataset. In all control charts,
their nominal ARL0 values are fixed at 200, and their procedure parameters (e.g., the al-
lowance constant k) are chosen to be the same as those in the example of Table 1. Their
control limits are computed in the same way as that discussed in Section 3. The five charts
are shown in Figure 7. From the plots in the figure, it can be seen that MWPCA gives signals
at many observation times, starting in early January of 2000. Since its model assumptions are
violated in this example, this result may not be reliable. The remaining four charts PCA-D-
C, PCA-ND-C, PCA-D-NC, and ZCUSUM give their first signals on 7/22/2000, 9/6/2000,
7/26/2000, and 8/4/2000, respectively. Therefore, among these four charts, the proposed chart
PCA-D-C gives the earliest first signal in this example. If we check the standardized obser-
vations of the six representative meteorological variables shown in Figure 6, then it can be
seen that these variables seem to have some systematic changes around the first signal time
of PCA-D-C, and the frequency of ozone days starts to intensify around that specific time
as well. Therefore, the proposed chart PCA-D-C seems quite effective in detecting shifts in
the related meteorological variables in this example. As a sidenote, Figure 6 shows that some
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FIG 6. Standardized observations of the six representative meteorological variables considered in Figure 5. The
vertical dotted line in each plot separates the initial IC data from the data for online process monitoring, the
small triangles denote the ozone days in the year 2000, and the vertical dashed line indicates the signal time of
the proposed process monitoring method PCA-D-C.

ozone days exist before the first signal time of PCA-D-C, and thus they are not detected by
PCA-D-C. This is intuitively reasonable because the signal of a CUSUM chart like PCA-D-
C is usually given after the cumulative information in the observed data provides a strong
evidence of a shift. Therefore, its first signal is usually given after the shift occurs, and our
goal is to make the CUSUM chart react to the shift as quickly as possible.

4.2. Pollution surveillance after the COVID-19 pandemic. The COVID-19 pandemic
emerged recently had a profound impact on people’s daily lives worldwide. To prevent its
spread, our government implemented various measures, such as the closure of factories and
the promotion of remote work. Despite the significant challenges posed by the pandemic, it
had an unexpected positive outcome in terms of the environment. The reduction in traffic and
the closure of many factories led to a significant decrease in pollution levels (Venter et al.
(2020)). As the pandemic situation gradually improved and many factories reopened, indus-
trial production resumed to compensate for the losses incurred during the pandemic, resulting
in an increase in pollution levels post COVID-19 pandemic (Alava and Singh (2022), Barua
and Nath (2021) ). It is therefore important to monitor pollution levels continuously such that
the government can take proactive measures to reduce overproduction and pollution caused
by industrial activities to mitigate the adverse effects of pollution on human health and the
environment.

In this example, we have selected a total of 21 variables observed in the Houston area
to monitor, including some major air quality variables, such as the ozone concentration



ONLINE MONITORING OF AIR QUALITY 21

PCA−D−C PCA−ND−C

PCA−D−NC MWPCA ZCUSUM

Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct Dec

Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct Dec

0

50

100

150

200

0

50

100

150

0

100

200

300

400

0

10

20

30

40

50

0

10

20

30

FIG 7. Five control charts for online monitoring of the meteorological data in the HGB area during January 1
and December 30, 2000. The horizontal dashed line in each plot denotes the control limit of the related control
chart.

levels, Nitrogen Dioxide (NO2), and Carbon Monoxide (CO), and some important me-
teorological variables, such as the air temperature, dew point temperature (DEW), and
wind speed. The observed data of the air quality variables are downloaded from the U.S.
Environmental Protection Agency website (https://www.epa.gov), and the observed data
of the meteorological variables are downloaded from the Weather Underground website
(https://www.wunderground.com). The downloaded data span from January 1, 2020 to De-
cember 31, 2021. The observed data of four representative variables, including the ozone
concentration levels, CO, daily average wind speed, and DEW, are shown in Figure 8. Then,
the first-year data are used as the initial IC data to represent the environmental conditions
during the COVID-19 pandemic, and the data in the second year are used for online process
monitoring.

To use the proposed method, we first compute the initial IC estimates µ̂(0)jl and σ̂(0)jl from
the initial IC data, for each j and l. The estimated IC mean functions for the four represen-
tative variables are shown in Figure 8 by the solid lines. Then, the initial IC data are stan-
dardized using {µ̂(0)jl } and {σ̂(0)jl }. The normality assumption for the standardized initial IC
data is checked using the Shapiro-Wilk test, which gives a p-value of 2.2× 10−26, indicating
a significant violation of the normality assumption. The autocorrelation in the standardized
initial IC data is also checked using the Durbin-Watson test, which gives p-values< 1×10−4

for 20 out of the 21 variables, indicating a significant autocorrelation in the data. In addition,
the autocorrelation coefficients for all variables are not statistically significant beyond a lag
of 10 observations, implying that the short-ranged serial correlation assumption is reasonable
in this application.

Next, the five control charts PCA-D-C, PCA-ND-C, PCA-D-NC, MWPCA, and ZCUSUM
are used to monitor the observed data in the second year in the same way as that in Fig-
ure 7. The five charts are shown in Figure 9. From the figure, it can be seen that the first
signals of the charts PCA-D-C, PCA-ND-C, PCA-D-NC, MWPCA, and ZCUSUM are on
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FIG 8. Original observations of four representative variables: ozone concentration levels, CO, daily average
wind speed, and DEW in the years 2020 and 2021. In each plot, the solid curve denotes the estimated IC mean
function of the related variable, the vertical dotted line separates the initial IC data from the data for online
process monitoring, and the vertical dashed line denotes the first signal time of the proposed chart PCA-D-C.

1/15/2021, 2/16/2021, 1/17/2021, 1/17/2021, and 1/21/2021, respectively. Thus, the proposed
chart PCA-D-C gives the earliest signal in this example. By checking the original process
observations of the four representative variables shown in Figure 8, it can be seen that the
temporal pattern of the observations is indeed quite different from the estimated IC mean
functions around the first signal time of PCA-D-C that is indicated in the plots by the vertical
dashed lines.
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FIG 9. Five control charts for online monitoring of the air quality data in the Houston area during January 1 and
December 31, 2021. The horizontal dashed line in each plot denotes the control limit of the related control chart.
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5. Concluding Remarks. In recent years, ozone pollution has become a major global
public health risk factor. It has attracted much attention from governments, and a huge amount
of resource has been spent on reducing the negative impact of ozone pollution on public
health. In all the effort to handle ozone pollution, early detection of the deterioration of
ozone concentration levels is especially important, since it can help governments and in-
dividual people to take proper interventions in a timely manner to minimize the impact of
ozone pollution on public health. However, this is a challenging task because of the com-
plexity of the ozone data. Motivated by the ozone data observed in the Houston area, we
have developed a new method in this paper for air quality surveillance. The proposed online
process monitoring chart (i.e., the PCA-D-C chart) is flexible in the sense that the IC pro-
cess distribution is allowed to be time-varying and the IC process observations at different
time points are allowed to have serial correlation. Numerical studies have shown that it has a
reliable and effective performance in different cases considered. Because of its generality, be-
sides air quality surveillance, the proposed new method should also be useful for many other
applications, including infectious disease surveillance, seismic surveillance, and earthquake
monitoring.

We would like to point out that the current version of the proposed method still has some
issues to address in future research. For instance, this method mainly concerns the first shift
in the process distribution. In the current air quality surveillance problem, the underlying air
quality process cannot be stopped after a signal by the proposed method. Thus, continuing
online monitoring of the process after the signal is important, which has not been considered
by the current method. Furthermore, after the control chart gives a signal, it is important to
figure out which variables have the detected shifts and when the shifts start. In the SPC liter-
ature, there have been some discussions on post-signal fault diagnosis for high-dimensional
data (e.g., Li et al. (2020), Xiang et al. (2022)). It should be checked whether these existing
methods are appropriate to use in the current air quality surveillance problem. In addition,
the current method assumes that observation times are equally spaced. However, observation
times could be unequally spaced in some applications. For instance, medical facilities (e.g.,
clinics) are usually closed during weekends and holidays. Thus, the quality variables measur-
ing the performance of these medical facilities would not have observed data on such dates.
In such cases, ARL0 and ARL1 are obviously inappropriate for measuring the performance
of the proposed chart (6)-(7), and construction of the related chart should take into account
the inequality of the observation times. Also, description and estimation of serial correlation
for time series data with unequally spaced observation times could be challenging. Last but
not least, the current method assumes that serial correlation in the observed data is short-
ranged. However, there could be some processes in practice with long range data dependence
(cf., Beran (1992)). All these issues will be studied carefully in our future research.
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