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Abstract

Machine learning methods have been widely used in different applications, including process

control and monitoring. For handling statistical process control (SPC) problems, the existing

machine learning approaches have some limitations. For instance, most of them are designed for

cases in which in-control (IC) process observations at different time points are assumed to be

independent and identically distributed. In practice, however, serial correlation almost always

exists in the observed sequential data, and the longitudinal pattern of the process to monitor

could be dynamic in the sense that its IC distribution would change over time (e.g., seasonality).

It has been well demonstrated in the literature that control charts could be unreliable to use when

their model assumptions are invalid. In this paper, we modified some representative existing

machine learning control charts using nonparametric longitudinal modeling and sequential data

decorrelation algorithms. The modified machine learning control charts can well accommodate

time-varying IC process distribution and serial data correlation. Numerical studies show that

their performance are improved substantially for monitoring different dynamic processes.

Key Words: Control chart; Data correlation; Dynamic processes; Machine learning; Seasonal-

ity; Statistical process control.

1 Introduction

Statistical process control (SPC) provides a major tool for online monitoring of sequential processes

(Hawkins and Olwell 1998, Montgomery 2012, Qiu 2014). Most conventional SPC charts are

designed for detecting process distributional shifts under the assumptions that process observations

at different time points are independent and identically distributed (i.i.d.) with a parametric (e.g.,

Normal) distribution when the process under monitoring is in-control (IC). In practice, however,

observed data of a sequential process are often serially correlated, and dynamic in the sense that
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their IC distribution varies over time. This paper focuses on online monitoring of dynamic processes

with serially correlated data.

In the SPC literature, many control charts have been developed, which can be roughly classified

into the following four categories: Shewhart, cumulative sum (CUSUM), exponentially weighted

moving average (EWMA), and change-point detection (CPD) charts (cf., Hawkins et al. 2003, Page

1954, Roberts 1959, Shewhart 1931). As mentioned above, early control charts are designed mainly

for cases when the observed IC data are i.i.d. and parametrically distributed. After SPC finds more

and more applications for disease surveillance, environmental monitoring, business management,

and many others, the conventional model assumptions mentioned above are rarely valid in these

applications. It has been well demonstrated in the literature that control charts would be unreliable

to use in cases when one or more of their model assumptions are invalid (e.g., Apley and Lee 2008,

Li 2021, Qiu 2018). So, some recent SPC research has considered cases when the IC process

distribution does not have a parametric form (e.g., Chakraborti and Graham 2019, Qiu 2018),

process observations are serially correlated (e.g., Apley and Tsung 2002, Qiu and Xie 2022, Xue

and Qiu 2021), or the IC process distribution is time-varying (e.g., Qiu and Xiang 2014, Xie and

Qiu 2022a).

In recent years, machine learning methods have been under rapid development (e.g., Aggarwal

2018, Breiman 2001, Hastie et al. 2001). Since an SPC problem can be regarded as a binary

class classification problem, in which each process observation needs to be classified into either the

IC or the out-of-control (OC) status during sequential process monitoring, some machine leaning

methods using both the IC and OC historical data have been used for process monitoring in the SPC

literature. For instance, support vector machine (SVM), linear discriminant analysis (LDA), and

k-nearest neighbors (KNN) methods have been employed for various process monitoring problems

(i.e., Zhang et al. 2015, Li et al. 2021). However, unlike the conventional classification problem,

most SPC applications only involve IC training data before online process monitoring. To overcome

this difficulty, some machine leaning algorithms, such as KNN, SVM, and random forest (RF), have

been adapted to develop control charts using the one-class classification, artificial contrast, real-

time contrast, and some other novel ideas (e.g., Deng et al. 2012, Li et al. 2021, Tuv and Runger

2003). An attractive feature of these control charts based on machine learning algorithms is that

they usually do not impose restrictive model assumptions explicitly. However, most of them require

the implicit assumptions that process observations at different observation times are independent
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and identically distributed in order to define their decision rules properly. Therefore, such machine

learning approaches have much room for improvement.

In Xie and Qiu (2022b), we modified some representative existing machine learning control

charts so that the modified charts can properly accommodate serial correlation in process ob-

servations. However, these modified charts still assume the IC process distribution to be time-

independent. Thus, they cannot be used in cases when the IC distribution is actually time-varying.

In this paper, we further modify the representative existing machine learning control charts con-

sidered in Xie and Qiu (2022b) so that the modified charts can accommodate both serial data

correlation and time-varying IC process distribution, by using nonparametric longitudinal model-

ing and sequential data decorrelation algorithms. More specifically, in a modified control chart,

an IC dataset is required to obtain an initial estimate of the IC longitudinal pattern of the dy-

namic process under monitoring using a nonparametric longitudinal modeling approach. Then, at

the current time point during online process monitoring, the observed data are first standardized

using the estimated IC longitudinal pattern and then decorrelated with all historical data using a

sequential data decorrelation algorithm. Next, a machine learning control chart is applied to the

standardized and decorrelated data for making a decision whether the process has a distributional

shift at the current time point or not. Numerical studies show that the modified machine learning

control charts are substantially improved for monitoring different dynamic processes after such a

modification.

The remaining parts of the article are organized as follows. In Section 2, some representative

existing machine learning control charts are briefly described. In Section 3, the proposed modifi-

cation for certain machine learning control charts are described in detail. Some simulation studies

are presented in Section 4 to evaluate their numerical performance. A real-data example to demon-

strate the application of the modified machine learning control charts is discussed in Section 5.

Finally, some remarks conclude the article in Section 6.

2 Some Representative Machine Learning Control Charts

In this section, we introduce some representative recent machine learning control charts. Assume

that X = (X1, X2, . . . , Xp)
′ is a vector of p ≥ 1 numerical quality characteristics to monitor about

a sequential process, and its observation at time n is Xn = (Xn1, Xn2, . . . , Xnp)
′. To online monitor
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the sequential process {Xn, n ≥ 1}, an initial IC dataset XIC = {X−m0+1,X−m0+2, . . . ,X0} of size

m0 is assumed to be available in advance for all methods.

2.1 Control chart based on artificial contrasts

To solve a classification problem by a supervised machine learning method, a training dataset

containing observations of both classes (e.g., IC and OC) is required. However, in many SPC

applications, we only have an IC dataset before online process monitoring, and no OC process

observations would be available in advance. To overcome this difficulty, Tuv and Runger (2003)

proposed the idea of artificial contrast. By this idea, artificial data are generated from a given

distribution (e.g., Uniform) to represent the off-target data from the process. More specifically,

for individual variables Xl, their artificial contrasts are generated independently from uniform

distributions whose ranges are the same as those of Xl values in the IC dataset, for l = 1, 2, . . . , p.

Then, these artificial observations can be used as OC observations. By generating an artificial OC

dataset, it converts the process monitoring problem to a supervised learning problem so that any

machine learning classifiers, such as SVM and RF, can be used. However, this type of control

charts are basically Shewhart charts, since the decision at a given time point during online process

monitoring only relied on the observation at that time point. To overcome these limitations, Hu

and Runger (2010) suggested a modification by using the ideas of generalized likelihood ratio

test and EWMA. To make a decision about the status of the process under monitoring at the

current time point n, the log likelihood ratio of observed data Xn is first calculated as ln =

log [p̂1(Xn)] − log [p̂0(Xn)] , for n ≥ 1, where p̂1(Xn) and p̂0(Xn) are the estimated probabilities

of Xn in each class obtained by the RF classifier. Then, they considered the following univariate

EWMA charting statistic (cf., Robert 1959):

En = λln + (1− λ)En−1, for n ≥ 1, (1)

where λ ∈ (0, 1] is a weighting parameter. The chart gives a signal of process mean shift at time n

if

En > hAC , (2)

where hAC is a control limit. The chart (1)-(2) is called AC chart hereafter to represent “artificial

contrast.”
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For the AC chart (1)-(2), its control limit hAC can be determined by a 10-fold cross-validation

(CV) procedure to achieve a given value of the IC average run length (ARL), denoted as ARL0.

More specifically, 90% of the IC dataset XIC and the artificial contrast dataset is first used to train

the RF classifier. Then, a bootstrap sample can be drawn with replacement from the remaining 10%

of the IC dataset, and the chart (1)-(2) with a given hAC can be applied to the bootstrap sample.

The run length (RL) value, defined to be the number of observation times from the beginning of

process monitoring to the signal time, can then be recorded. Finally, the above procedure can be

repeated for V times, and the average of the corresponding V values of RL can be used as the

estimate of the ARL0. Then, hAC can be searched so that a given level of ARL0 is reached. In

this searching process, the bisection algorithm (Qiu 2014, Chapter 4) or its modifications (Capizzi

and Masarotto 2016) can be used.

2.2 Control chart based on real time contrasts

The classifier in the method AC is trained only one time using the IC dataset XIC and the artificial

OC dataset, which may not represent the actual off-target process observations well in a given

application. To overcome this limitation, Deng et al. (2012) suggested the so-called real-time

contrast (RTC) method. The RTC method treats the process monitoring problem as a real-time

classification problem, in which process observations in the IC dataset and those within a moving

window of the current time point form a training dataset, with the former as IC observations and

the latter as OC observations. More specifically, a dataset with N0 observations, which is denoted

as S0, is first randomly selected from the IC dataset XIC . Then, during online process monitoring,

process observations in a window of the current observation time point n are treated as OC data

and denoted as Sn = {Xn−w+1,Xn−w+2, . . . ,Xn}, where w is the window size. Then, the RF

classifier can be retrained sequentially overtime using the training dataset that combines S0 and

Sn. As discussed in Deng et al. (2012), there could be several possible charting statistics based on

the RF algorithm. As in their simulation studies, the average estimated classification rate in the

dataset S0 can be used as the charting statistic, which is defined to be

Rn =
0∑

i=−m0+1

p̂
(n)
0 (Xi)I(Xi ∈ S0)/N0, for n ≥ 1, (3)

where p̂
(n)
0 (Xi) are the estimated probabilities of Xi in the IC class obtained by the RF classifier

trained at time n, and I(u) is the indicator function that equals 1 when u is “true” and 0 otherwise.
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The chart gives a signal at time n if

Rn > hRTC , (4)

where hRTC is a control limit of the RTC chart.

The control limit of the RTC chart (3)-(4) can be determined by the following bootstrap

procedure suggested by Deng et al. (2012). First, we draw with replacement a sample from the

IC dataset after the observations in S0 are excluded. Then, the chart (3)-(4) with the control

limit hRTC is applied to the bootstrap sample to obtain a RL value. This bootstrap re-sampling

procedure is repeated for B = 1, 000 times, and the average of the B values of RL is used to

approximate the ARL0 value for the given hRTC . Finally, hRTC can be searched by a numerical

algorithm so that the assumed ARL0 value is reached.

2.3 Control chart based on support vector machine

Even though the RTC chart based on the RF classifier is useful and can be applied to a variety

of monitoring problems, its charting statistic takes discrete values, which makes it less effective in

some cases. As an alternative, He et al. (2018) proposed a distance-based control chart. It uses the

SVM framework to measure the distance between the support vectors and real time observations

in Sn. As discussed in He et al. (2018), the distance from a sample of process observations to the

boundary surface defined by the support vectors can be either positive or negative. They suggested

transforming the distance using the following standard logistic function:

g(d) =
1

1 + exp(−d)
.

Then, the following average value of the transformed distances from individual observations in Sn

to the boundary surface can be defined to be the charting statistic:

Mn =

n∑
j=n−w+1

g(d(Xi))/w, for n ≥ 1, (5)

where d(Xi) is the distance from the observation Xi to decision boundary determined by the SVM

classifier obtained at time n. The chart gives a signal at time n if

Mn > hSVM , (6)

where hSVM is the control limit of the chart. The chart (5)-(6) is denoted as DSVM hereafter, to

reflect the fact that it is a Distance-based control chart using SVM. The control limit of DSVM can

be determined by a bootstrap procedure, similar to the one described above for the RTC chart.
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In the above DSVM chart (5)-(6), the SVM algorithm needs to be implemented, and there are

several qualititess involved that need to be selected in advance, including the kernel function and

the penalty parameter (Cortes and Vapnik 1995). In SVM, one of the most commonly used kernel

functions is the Gaussian radial basis function (RBF), which is defined as: for any two observations

Xi,Xj ,

G(Xi,Xj) = exp

(
‖Xi −Xj‖2

σ2

)
,

where σ2 is the spread parameter. He et al. (2018) suggested using the above RBF as the kernel

function with σ2 > 2.8. They also suggested choosing the penalty parameter to be 1 for training

SVM.

2.4 Control chart based on the KNN classification

Another machine learning control chart, proposed by Sukchotrat et al. (2009), is based on the KNN

data description procedure. This chart is denoted as KNN hereafter. The charting statistic of KNN

is defined as the average distance between a given observation Xn and its k nearest observations

in the IC dataset XIC , and it is defined as follows:

C2
n =

k∑
j=1

‖Xn −Nj(Xn)‖/k, for n ≥ 1, (7)

where Nj(Xn) is the jth nearest neighboring observation of Xn in the IC dataset XIC , and ‖ · ‖ is

the Euclidean distance. Then, for online process monitoring, the process is declared to be OC at a

given time n if the charting statistic C2
n of the related process observation exceeds the control limit

hKNN .

In the above KNN chart, the control limit hKNN can be determined by the following bootstrap

procedure: i) a total of B = 1, 000 bootstrap samples are obtained from the training dataset by

the random sampling procedure with replacement and each bootstrap sample has the same size as

the training dataset, ii) the C2
n values defined in (7) of the individual observations in the bootstrap

sample can be computed, iii) the (1− α)th percentile of all C2
n values can be computed from each

bootstrap sample, and iv) hKNN is chosen to be the mean of the B such percentiles.
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3 Suggested Modified Machine learning Control Charts for Dy-

namic Process Monitoring

For many longitudinal processes, their distributions could change over time, even when their per-

formance is considered to be IC. One example is about sequential monitoring of environmental

variables, such as air temperature and various pollutant levels. These variables usually have sea-

sonal variation. To monitor such dynamic processes, the machine learning control charts introduced

in the previous section are obviously inappropriate to use because they require the IC process dis-

tribution to be unchanged over time. Recently, Xie and Qiu (2022a) suggested a new method for

dynamic process monitoring. The basic idea of that method is to specify a time period as a baseline

time period, estimate the regular longitudinal pattern of the quality variables in that period, and

then compare the future performance of the process under monitoring with its performance in the

baseline time period. In this section, a procedure for estimating the regular longitudinal pattern is

first discussed in detail. Then, the suggested modification of some representative machine learning

control charts for monitoring dynamic processes using is discussed.

3.1 Estimation of the regular multivariate longitudinal pattern

The time period of the initial IC dataset XIC is set as a baseline time interval, and the IC dataset

is assumed to follow the nonparametric longitudinal model:

Xj = µj + εj , for j = −m0 + 1,−m0 + 2, . . . , 0, (8)

where µj = (µj1, µj2, . . . , µjp)
′ is the mean of Xj , and εj is the p-dimensional zero-mean error

term. In Model (8), the covariance structure is described by Cov(εj , εj∗), for any j, j∗ ∈ [−m0 +

1, 0]. Furthermore, it is assumed that the serial correlation among the IC process observations is

stationary, and the serial correlation exists only when two observations are within bmax > 0 in their

observation indices. More specifically, it is assumed that γ(s) = Cov(εj , εj+s) only depends on s

when j changes, and γ(s) = 0 when s > bmax. The above assumptions should be reasonable in

many applications.

To obtain an initial estimate of µj , we can compute the local linear kernel (LLK) smooth-

ing estimates of all components of µj (cf., Xiang et al. 2013). In matrix notation, let W =

(X−m0+1,1, . . . , X0,1, . . . , X−m0+1,p, . . . , X0,p)
′, Zj = [(1,−m0 + 1− j)′, . . . , (1,−j)′]′, and Kj =
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diag{K( i−jhl
), i = −m0 + 1,−m0 + 2, . . . , 0, l = 1, 2, . . . , p}, where K(·) is a kernel function and

{hl, l = 1, 2, . . . , p} are bandwidths. Then, the initial estimate of µj , for j = −m0+1,−m0+2, . . . , 0,

can be obtained by the following LLK smoothing procedure:

min
β∈R2p

[W − (Ip×p ⊗ Z)β]′Kj [W − (Ip×p ⊗ Z)β] , (9)

where ⊗ denotes the Kronecker product, Ip×p is the p × p identity matrix, and β = (β01, β11, . . . ,

β0p, β1p)
′ are coefficients. The solution of (9) has the expression

β̂ = [(Ip×p ⊗ Zj)
′Kj(Ip×p ⊗ Zj)]

−1(Ip×p ⊗ Zj)
′KjW.

Then, the initial estimate of µj , for j = −m0 + 1,−m0 + 2, . . . , 0, is given by:

µ̂j = β̂′(Ip×p ⊗ ξ1), (10)

where ξ1 = (1, 0)′. In the above LLK procedure, the kernel function K(·) is usually chosen to be

the Epanechnikov kernel function, i.e., K(u) = 3
4(1− u2)I(|u| ≤ 1), because of its good properties

(Epanechnikov 1969). For the bandwidths {hl, l = 1, 2, . . . , p}, it has been well discussed in the

literature that the conventional cross-validation (CV) procedure would not perform well when

process observations at different time points are serially correlated, since the CV procedure cannot

properly distinguish the data correlation structure from the data mean function (e.g., Altman 1990,

Opsomer et al. 2001). Thus, we suggest choosing them using the following modified cross-validation

(MCV) procedure that was originally suggested by Brabanter et al. (2001) for handling bandwidth

selection in a univariate regression setup with correlated data. By this approach, the bandwidths

{hl, l = 1, . . . , p} can be chosen by minimizing the following MCV score:

MCV(h1, h2, . . . , hp) =
1

m0

0∑
j=−m0+1

(Xj − µ̂−j)′ (Xj − µ̂−j) ,

where µ̂−j is the leave-one-out estimate of µj by (10) when the observation Xj is excluded in the

computation and when the kernel function K(·) is modified to be

Kε(u) =
4

4− 3ε− ε3

 3
4(1− u2)I(|u| ≤ 1), when |u| ≥ ε,
3(1−ε2)

4ε |u|, when |u| < ε,

where ε ∈ (0, 1) is a small constant. The modified kernel function Kε(u) equals 0 at u = 0 and is

small around u = 0, to diminish the impact of data autocorrelation on bandwidth selection.

As mentioned above, two original process observations are allowed to be correlated if their

observation times are within bmax apart and the serial correlation is assumed to be stationary.
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Then, the covariance matrices γ(s), for 0 ≤ s ≤ bmax, can be estimated by the following moment

estimates:

γ̂(s) =
1

m0 − s

−s∑
j=−m0+1

(Xj+s − µ̂j+s) (Xj − µ̂j)
′ , for 0 ≤ s ≤ bmax.

3.2 Dynamic process monitoring

Next, we discuss online monitoring of the p-dimensional dynamic process with the observations

{Xn, n ≥ 1}. When the process is IC, it is assumed that it follows the regular longitudinal pattern

described by Model (8) in the sense that

Xn = µn + εn, for n ≥ 1, (11)

where µn = µn∗ , n∗ is an integer in [−m0 + 1, 0], n = n∗+ Tm0, T ≥ 1 is an integer, and the error

term εn has the same covariance structure as that in Model (8).

Then, for monitoring dynamic processes using machine learning control charts, we suggest first

standardizing the observed data at the current time point using the estimated IC longitudinal

pattern in (10), and then decorrelating the observed data with historical data. After a proper data

standardization and decorrelation of the observed data, a machine learning control chart can be

used to make a decision whether the process is IC or not at the current time point. The modified

machine learning control charts for monitoring dynamic processes with serial data correlation can

then be summarized below.

Proposed Dynamic Process Monitoring Scheme using Machine Learning Control Charts

Step 1 Initial Estimation: Obtain the initial estimates {µ̂j ,−m0 + 1 ≤ j ≤ 0} and {γ̂(s), 0 ≤

s ≤ bmax} from the initial IC data XIC , as discussed in Subsection 3.1.

Step 2 Data Standardization and Decorrelation: At the current time point n, if n = 1, then

define the standardized observation to be

e∗1 = [γ̂(0)]−1/2 (X1 − µ̂1) .
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Otherwise, the estimated covariance matrix of (X′n−b,X
′
n−b+1, . . . ,X

′
n)′ is defined to be

Σ̂n,n =


γ̂(0) · · · γ̂(b)

...
. . .

...

[γ̂(b)]′ . . . γ̂(0)

 =

Σ̂n−1,n−1 Σ̂n−1,n

Σ̂′n−1,n γ̂(0)

 ,

where b = min(n− 1, bmax). Then, the decorrelated and standardized observation at time n

is defined to be

e∗n = D̂−1/2n

[
−Σ̂′n−1,nΣ̂−1n−1,n−1ên−1 + (Xn − µ̂n)

]
,

where D̂n = γ̂(0)−Σ̂′n−1,nΣ̂−1n−1,n−1Σ̂n−1,n, and ên−1 = [(Xn−b−µ̂n−b)
′, (Xn−b+1−µ̂n−b+1)

′, . . . ,

(Xn−1 − µ̂n−1)
′]′.

Step 3 Decision-Making: Apply a machine learning control chart to the decorrelated and stan-

dardized data {e∗n, n ≥ 1} to see whether a signal is triggered.

4 Simulation Studies

In this section, we investigate the numerical performance of the four existing machine learning

control charts AC, RTC, DSVM and KNN described in Section 2, in comparison with their two

modified versions. The first modified version of these four control charts are denoted as AC-D-

WOC, RTC-D-WOC, DSVM-D-WOC and KNN-D-WOC, where “D” indicates that the Dynamic

nature of the process under monitoring is considered in the chart, and “WOC” represents ‘With-

Out considering serial Correlation. The second modified version of these four control charts are

denoted as AC-D-C, RTC-D-C, DSVM-D-C and KNN-D-C, where the last letter “C” denotes serial

Correlation has been considered. This modified version is discussed in Subsection 3.2. In all sim-

ulation examples, the nominal ARL0 values of all charts are fixed at 200. The number of quality

characteristics is set to be p = 5, and the parameter bmax is chosen to be 15. Regarding the IC

process distribution and the IC serial data correlation, the following four cases are considered:

Case I: IC process observations {Xn, n ≥ 1} are i.i.d. with the IC distribution Np(0, Ip).

Case II: IC process observations {Xn, n ≥ 1} are generated from Model (11). Their mean and

correlation structures are specified in Model (8), where the means are defined to be

µj =
[
sin(2πtj), cos(2πtj), sin

2(2πtj), cos
2(2πtj), sin(2πtj) + cos(2πtj)

]
,
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tj = (j +m0)/m0 for j = −m0 + 1,−m0 + 2, . . . , 0, each component of the error term εj has

the standardized χ2
3 distribution, and the covariance matrix of εj is Ip.

Case III: Same as Case II, except that the error terms {εj} are assumed to follow the vector-

AR(1) model εj = 0.2εj−1 +ηj , where ε0 = 0, each component of ηj has the standardized χ2
3

distribution, and the covariance matrix of ηj is Ip.

Case IV: Same as Case III, except that the covariance matrix of ηj is Σ = (σl1l2)p×p with σl1l2 =

0.5|l1−l2|, for l1, l2 = 1, 2, . . . , p.

For the four cases described above, Case I is the conventional case with i.i.d. mean 0 IC process

observations and the normal IC process distribution. Cases II-IV consider three different dynamic

processes. The dynamic process in Case II still has independent observations at different observation

times, and the p quality variables are independent with each other as well. The dynamic process

in Case III is the same as that in Case II, except that process observations are serially correlated.

Dynamic process observations in Case IV are serially correlated and the p quality variables are

mutually associated as well.

4.1 Evaluation of the IC performance:

We first evaluate the IC performance of the related control charts. In the simulation study, the IC

sample size m0 is fixed at 2,000. The weighting parameter λ in the chart AC and its two modified

versions are chosen to be 0.2, as suggested in Hu and Runger (2010), the moving window size w in

the charts RTC and DSVM and their modified versions are chosen to be 10, as suggested in Deng

et al. (2012) and He et al.(2018), and the number of nearest observations k in the chart KNN and

its modified versions is chosen to be 30, as suggested in Sukchotrat et al. (2009). For each method,

its actual ARL0 value is computed as follows. First, an IC dataset of size m0 is generated from

the IC model, and the IC parameters are estimated from the IC data. Second, the conditional

ARL0 value of the chart given the IC dataset is calculated based on 1,000 replicated simulations of

online process monitoring of 2,000 sequential process observations. Third, the previous two steps

are repeated for 100 times, and the sample average of the 100 conditional ARL0 values is used as

the estimated actual ARL0 value of the chart. The standard error of the estimated actual ARL0

value can also be computed as the standard deviation of the 100 conditional ARL0 values divided

by
√

100. The estimated ARL0 values in different cases considered are shown in Table 1.
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From Table 1, we can have the following conclusions. (i) The four original machine learning

control charts all have a reasonable performance in Case I when the process observations are i.i.d.

with a normal distribution, but they are unreliable to use in all other cases when some or all of these

assumptions are violated because their estimated actual ARL0 values are substantially different

from the nominal ARL0 level of 200 in these cases. (ii) The first modified version of the four

machine learning control charts AC-D-WOC, RTC-D-WOC, DSVM-D-WOC, and KNN-D-WOC

perform well in Cases I and II when the independence assumption is valid, but their performance is

quite poor in Cases III and IV when this assumption is violated. (iii) As a comparison, the second

modified version of the four machine learning control charts AC-D-C, RTC-D-C, DSVM-D-C, and

KNN-D-C have a reasonably good performance in all cases considered, since its estimated actual

ARL0 values are always within 10% of the nominal ARL0 level. Therefore, this example confirms

that the IC performance of the machine learning control charts can be improved in a substantial

way by using the suggested modification discussed in Subsection 3.2.

Table 1: Actual ARL0 values and their standard errors (in parentheses) of four machine learning

control charts and their modified versions when their nominal ARL0 values are fixed at 200, p = 5,

and m0 = 2, 000

Methods Case I Case II Case III Case IV

AC 207(4.22) 53.7(1.40) 44.7(1.44) 42.8(1.37)

AC-D-WOC 195(4.7) 187(3.77) 107(3.38) 110(3.44)

AC-D-C 203(3.96) 193(3.65) 189(3.42) 191(3.74)

RTC 191(3.88) 103(2.33) 89.6(1.74) 90.4(1.83)

RTC-D-WOC 187(3.76) 194(4.27) 142(2.95) 139(2.87)

RTC-D-C 189(3.69) 192(4.08) 206(4.93) 209(5.03)

DSVM 210(4.19) 125(2.67) 113(2.05) 110(2.56)

DSVM-D-WOC 193(4.30) 196(4.22) 147(3.03) 148(2.99)

DSVM-D-C 191(4.04) 202(3.99) 194(4.12) 195(4.15)

KNN 208(4.36) 141(2.45) 143(2.56) 139(2.41)

KNN-D-WOC 205(4.27) 190(3.15) 170(3.27) 167(2.95)

KNN-D-C 189(3.96) 193(4.20) 202(4.32) 204(4.41)

13



4.2 Evaluation of the OC performance:

Next, we evaluate the OC performance of the related charts in case when m0 = 2, 000. In order

to make the comparison more meaningful, we intentionally adjust the control limits of different

control charts so that their actual ARL0 values equal the nominal ARL0 value of 200 in all cases

considered. In the next simulation example, it is assumed that all quality variables have a same

shift at the beginning of online process monitoring with the shift size δ changing from 0 to 1 with a

step of 0.25. Because different control charts have different procedure parameters (e.g., the moving

window sizes of RTC and DSVM) and their performance may not be comparable if their parameters

are set to be the same, here we compare their optimal OC performance to make the comparison

fair. Namely, to detect a given shift by a chart, the related procedure parameter is chosen by

minimizing the OC average run length, denoted as ARL1, of the chart while maintaining its ARL0

value at 200. The resulting ARL1 value is called optimal ARL1 value hereafter. The results of the

optimal ARL1 values of these machine learning control charts and their modified versions in Cases

I-IV are presented in Figure 1.

From the figure, we can have the following conclusions. First, all four machine learning con-

trol charts and their two modified versions perform reasonably well in Case I when the process

observations are i.i.d. with a normal distribution, since their model assumptions are all satis-

fied. Second, The first modified version of the related control charts AC-D-WOC, RTC-D-WOC,

DSVM-D-WOC, and KNN-D-WOC are the most effective one among the three version of all charts

in Case II when the independence assumption is valid, but are less effective in Cases III and IV

when this assumption is invalid. Third, the second modified version of the four machine learning

control charts AC-D-C, RTC-D-C, DSVM-D-C, and KNN-D-C have the best performance among

the three versions of all charts in Cases III and VI when the process under monitoring is dynamic

with serial data correlation.

5 An Application

In this section, we demonstrate the application of the modified machine learning control charts dis-

cussed in Sections 3 and 4 using a real dataset, which contains electricity generation and weather

data in Spain. This dataset can be downloaded from the web page of Kaggle with the link https://
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Figure 1: Optimal ARL1 values of the four control charts and their modified versions when their

nominal ARL0 values are fixed at 200, p = 5, m0 = 2, 000, and all quality characteristics have the

same shift with the shift size δ changing among 0.25, 0.5, 0.75, and 1.

www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather.

Electricity is generated using a variety of resources, including coal, natural gas, nuclear energy, and

solar energy, and its usage usually depends on the meteorological conditions (Staffell and Pfenninger

2018). For examples, the colder months often bring more electricity usage as more electricity is

spent on the heating system. However, when excess electricity is generated, much time and resources

would be wasted because electricity cannot be stored in large quantities efficiently (Poonpun and

15
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Jewell 2008). Therefore, it is important to online monitor the electricity generation and demand

in the electric industry. If something unusual happens (e.g., unseasonable cold weather), the elec-

tric utility companies can take actions quickly to adjust the amount of electricity generated to

meet demand. In this analysis, the amount of electricity generated by three most common energy

sources, including gas, coal and oil, and two important environmental variables, i.e., temperature

and humidity are considered. The dataset used here contains observations of the five variables

during a time period from January 1, 2015 to December 31, 2016. The original data of these five

variables are shown in Figure 2. From the figure, it can be seen that there is a quite obvious yearly

seasonality in the observed data, the temperature is higher during summer times, and the amount

of electricity generated by coal seems higher in the last six months of each year. In our analysis,

the data in the first year are used as the IC data for estimating the regular longitudinal pattern of

the five variables, and the data in the second year are used for online process monitoring.

For the IC data, we first compute the initial LLK estimates µ̂j by (10), and then obtain the

residuals Xj − µ̂j , for all j. Next, we use the Ljung–Box test for checking serial data correlation in

the residuals of each variable. The p-values of this test are all< 2.3×10−9 for the five variable. Thus,

there is a significant autocorrelation in the IC data. The Augmented Dickey-Fuller (ADF) test for

stationarity of the autocorrelation gives p-values of < 0.01 for all five variables, which implies that

the stationarity assumption is valid in this case. To check the normality assumption for the data, the

Shapiro test is performed, and it gives a p-values of 2.9× 10−7, which implies that the distribution

of the standardized IC data is significantly different from a normal distribution. Therefore, the

four modified control charts AC-D-C, RTC-D-C, DSVM-D-C and KNN-D-C should be appropriate

to use in this example, because the IC data have a dynamic pattern, significant stationary serial

data correlation, and a non-normal distribution. The standardized and decorrelated data of the

five variables by the procedure discussed in Subsection 3.2 are shown in Figure 3, from which it

can be seen that the standardized and decorrelated IC data are indeed quite stable, and the the

standardized and decorrelated data in the second year seem to be quite different from the IC data

starting from the very beginning of the second year.

Next, we apply the four charts AC-D-C, RTC-D-C, DSVM-D-C and KNN-D-C to this dataset

for online process monitoring starting from January 1, 2016. In all control charts, the nominal

ARL0 values are fixed at 200, and their control limits are computed in the same way as that in

the simulation study of Section 4. All four control charts are shown in Figure 4. From the plots
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Figure 2: Original observations of five variables considered in the electricity example. The solid

vertical line in each plot separates the initial IC data from the data for online process monitoring.

in the figure, the charts AC-D-C, RTC-D-C, DSVM-D-C and KNN-D-C give their first signals on

the Jan 30th, Jan 28th, Jan 27th, and Feb 13th, respectively. By checking the standardized and

decorrelated process observations shown in Figure 3, it seems that all fours chart can detect a

systematic change in the process well and the chart DSVM-D-C gives the earliest signal among

them.
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Figure 3: Standardized and decorrelated observations of five variables considered in Figure 2.

The solid vertical line in each plot separates the initial IC data from the data for online process

monitoring.

6 Concluding Remarks

Some control charts based on machine learning approaches have been developed recently in the SPC

literature. However, most existing machine learning control charts are based on the assumptions

that the process observations at different time points are independent and identically distributed.

So, they would be unreliable to use in case when the IC process distribution changes over time. In
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Figure 4: Control charts for online monitoring of the data during January 1 and December 31,

2016. In each plot, the horizontal dashed line denotes the control limit of the related control chart.

this paper, we have suggested a modification procedure for some representative existing machine

learning control charts using the nonparametric longitudinal modeling and sequential decorrela-

tion algorithms. Numerical studies show that the performance of these modified control charts

is substantially better than their original versions in cases when the IC process distribution is

time-varying.

There are still some issues about the modified machine learning control charts that need to be

addressed in our future research. For example, these machine learning methods require a relatively

large IC dataset. But, in some applications, a relatively large IC dataset may not be available. In

such cases, self-starting control charts might be helpful (cf., Hawkins 1987). In addition, the current
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proposed methods assume that the serial correlation in process observations is short-ranged and

stationary. Even through these assumptions should be reasonable in many applications, the serial

data correlation could be long-range and non-stationary in some other applications (cf., Altmann

et al. 2012, Beran 1992).
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