
A General Framework for Robust Monitoring of Multivariate Correlated Processes

Xiulin Xie and Peihua Qiu

Department of Biostatistics, University of Florida

2004 Mowry Road, Gainesville, FL 32610

Abstract

Statistical process control (SPC) charts provide an important analytic tool for online moni-

toring of sequential processes. Conventional SPC charts are designed for cases when in-control

(IC) process observations are independent and identically distributed at different observation

times and the IC process distribution belongs to a parametric (e.g., normal) family. In practice,

however, these model assumptions are rarely valid. To address this issue, there have been some

existing discussions in the SPC literature for handling cases when the IC process distribution

cannot be described well by a parametric form, and some nonparametric SPC charts have been

developed based on data ranking and/or data categorization. However, both data ranking and

data categorization would lose information in the original process observations. Consequently,

the effectiveness of the nonparametric SPC charts would be compromised. In this paper, we

make another research effort to handle this problem by developing a general process monitor-

ing framework that is robust to the IC process distribution and short-ranged serial correlation.

The new method tries to preserve as much information in the original process observations as

possible. Instead of using data ranking and/or data categorization, it is based on intensive

data pre-processing, including data decorrelation, data transformation, and data integration.

Because the distribution of the pre-processed data can be approximated well by a parametric

distribution, the design and implementation of the new method is relatively simple. Numeri-

cal studies show that it is indeed robust to the IC process distribution and effective for online

monitoring of multivariate processes with short-ranged serial correlation.

Key Words: Data decorrelation; Recursive computation; Robustness; Self-starting charts; Se-

quential learning; Transformation.

1 Introduction

Statistical process control (SPC) charts provide a powerful tool for online process monitoring in

the manufacturing industry, disease surveillance, and many other applications (Hawkins and Olwell
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1998; Montgomery 2012; Qiu 2014). Conventional SPC charts can be roughly classified into the

following four categories: Shewhart charts (Shewhart 1931), cumulative sum (CUSUM) charts

(Page 1954), exponentially weighted moving average (EWMA) charts (Robert 1959), and change-

point detection (CPD) charts (Hawkins et al. 2003). These conventional charts are designed mainly

for cases when in-control (IC) process observations at different time points are independent and

identically distributed (i.i.d.) with a parametric (e.g., normal) distribution. In practice, however,

these model assumptions are rarely valid. This paper focuses on multivariate process monitoring

when the IC process observations are serially correlated and the IC process distribution cannot be

described well by a parametric form.

In the SPC literature, it has been well demonstrated that traditional control charts are unreli-

able to use when their model assumptions are violated (Apley and Tsung 2002, Hackl and Ledolter

1991, Qiu and Xiang 2014). Recent SPC research has considered cases when one or more of these

model assumptions are invalid. For instance, when the normality assumption is invalid, some non-

parametric SPC charts have been developed (cf., Chakraborti and Graham 2019, Qiu 2018). One

type of nonparametric control charts are constructed based on data ranking. See Capizzi and

Masarotto (2013), Chakraborti et al. (2004), Krupskii et al. (2020), Qiu and Hawkins (2001), Zou

and Tsung (2011), and more. For instance, Qiu and Hawkins (2001) suggested a nonparametric

control chart using the ranking information across different components of a multivariate observa-

tion at a given time point. Zou and Tsung (2010) proposed a nonparametric EWMA chart based

on a nonparametric goodness-of-fit test using the ranking information among process observations

at different time points, and a multivariate extension of that method was discussed in Zhang et al.

(2016). Some researchers also suggested constructing control charts based on spatial sign or spatial

ranks (e.g., Li et al. 2017, Zou and Tsung 2011, Zou et al. 2012). Another type of nonparametric

control charts takes an alternative strategy by first categorizing the original observations and then

using methods of categorical data analysis for constructing control charts (Li 2021, Qiu 2008, Qiu

and Xie 2022). However, information in the original process observations would be lost by using

either data ranking or data categorization. Consequently, the effectiveness of these nonparametric

charts would be compromised. As a side note, most nonparametric control charts mentioned above

are designed for cases when process observations at different time points are assumed independent,

while some others can handle cases when serial correlation is present in the observed data (e.g.,

Qiu and Xie 2022).
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Because some information in the observed data would be lost if a nonparametric control chart

is used as discussed above, some researchers argue that the conventional control charts should be

used in practice even when the normality assumption is violated (cf., Borror et al. 1999, Stoumbos

and Sullivan 2002, Testik et al. 2003). The main argument is that the conventional control charts

are constructed based on the original process observations (thus, no information in the observed

data is lost), and they would be robust to the normality assumption if their procedure parameters

are chosen properly (cf., Borror et al. 1999, Stoumbos and Sullivan 2002, Testik et al. 2003).

For instance, the conventional EWMA chart is a weighted average of process observations and

the weights are controlled by its weighting parameter. If the weighting parameter is chosen small

(e.g., 0.05), then the resulting EWMA charting statistic is a weighted average of a relatively large

number of process observations. In such cases, its distribution would be approximately normal

by the Central Limit Theorem (cf., Qiu 2014, Section 8.1). However, how small the weighting

parameter should be chosen depends on the difference between the actual IC process distribution

and a normal distribution, which is rarely known in practice. In addition, when the weighting

parameter is chosen small, the resulting EWMA chart would be ineffective for detecting relatively

large process distributional shifts. Therefore, much research is needed to develop control charts

that are both reliable and effective in cases when the normality assumption is invalid.

In this paper, we make another research effort for online monitoring of multivariate processes

with arbitrary IC distributions. A general process monitoring framework is developed, which is ro-

bust to the IC process distribution. The new method tries to preserve as much information in the

original process observations as possible. Instead of using data ranking and/or data categorization,

it is based on intensive data pre-processing, including data decorrelation, data transformation, and

data integration. After the data pre-processing, the original multivariate process observations are

transformed to univariate data whose IC distribution can be approximated well by a parametric

distribution. Then, a univariate control chart can be applied to the transformed data for online

process monitoring. Because the approximated IC distribution of the transformed data is paramet-

ric, design of the new process monitoring method is relatively simple, and the control limits of the

related control charts can be determined in advance by Monte Carlo simulations. The proposed

new process monitoring framework is self-starting in the sense that the IC data get expanded ev-

ery time when the process under monitoring is claimed to be IC and the estimates of the related

IC quantities get updated accordingly. Numerical studies show that it is indeed robust to the IC
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process distribution and effective for online monitoring of multivariate processes with short-ranged

serial correlation.

The remainder of the paper is organized as follows. In Section 2, our proposed new method is

described in detail. Its numerical performance is evaluated in Section 3 by some simulation studies.

Then, it is demonstrated using a real dataset about a semiconductor manufacturing process in

Section 4. Several remarks conclude the paper in Section 5. The proof of a theoretical result is

given in the supplementary material.

2 Proposed Method

Let X = (X1, X2, . . . , Xp)
′ be p quality variables to monitor for a sequential process, X (0)

IC =

{X−m0+1,X−m0+2, . . . ,X0} be an initial IC dataset collected before online process monitoring,

and Xn = (Xn1, Xn2, . . . , Xnp)
′ be the observation collected at the current time point n for online

process monitoring. For the observed data {Xn, n ≥ 1}, it is assumed that their IC process

distribution, including the IC serial correlation, does not change over time, and the IC serial

correlation is short-ranged as well. Namely, it is assumed that γ(s) = Cov(Xi,Xi+s) depends on s

only when i changes, for any i and s, and γ(s) ≈ 0 when s > bmax, where bmax denotes the time

range of serial data correlation. In practice, the serial correlation between Xi and Xi+s usually

decays when s increases. Therefore, the above assumptions are routinely made in the SPC literature

on monitoring serially correlated data (e.g., Apley and Tsung 2002, Capizzi and Masarotto 2008).

To make a decision about the status of the process under monitoring, its observed data {Xn, n ≥ 1}

should be pre-processed so that the distribution of the pre-processed data can be approximated

well by a parametric distribution. Then, a conventional control chart can be applied to the pre-

processed data for process monitoring. If the process is claimed to be IC at the current time point

n, then Xn is combined with the existing IC data for process monitoring at the next time point

n+1. Otherwise, a signal is given. The entire proposed method is described below in several parts.

2.1 Initial estimation of the IC distribution

From the initial IC data X (0)
IC , we first calculate initial estimates of the IC mean µ and the IC

covariance matrices {γ(s), 0 ≤ s ≤ bmax}. Because no parametric form is imposed on the IC
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process distribution, the maximum likelihood estimation cannot be used. Instead, the following

moment estimates are considered:

µ̂(0) =
1

m0

0∑
i=−m0+1

Xi, (1)

γ̂(0)(s) =
1

m0 − s

−s∑
i=−m0+1

(
Xi+s − µ̂(0)

)(
Xi − µ̂(0)

)′
, for 0 ≤ s ≤ bmax.

In (1), it has been assumed that m0 > bmax, which is a mild assumption since bmax is usually

chosen in the range [10, 20] (cf., Li and Qiu 2020). In cases when p > m0 or bmax > m0, the

estimated covariance matrices defined in (1) could be singular. In such cases, alternative estimation

approaches for analyzing high dimensional data should be considered (e.g., Bickel and Levina 2008,

Pourahmadi 2013). In addition, there may be outliers in the initial IC data. When the number of

outliers is small, their impact on the IC parameter estimates and the performance of the resulting

control chart would be limited. However, when the number of outliers is relatively large, the outliers

should be removed from the IC data in advance, or some outlier robust estimation methods should

be considered here. In the statistical literature, there have been some discussions on parameter

estimation from data with outliers. See, for instance, Peña and Prieto (2001) and Yu et al. (2012).

Since high-dimensional covariance estimation and outlier robust estimation are not the focus of the

current paper, they will not be discussed here in details.

After µ̂(0) and {γ̂(0)(s), 0 ≤ s ≤ bmax} are computed, the initial IC data X (0)
IC can be standard-

ized and decorrelated by a data decorrelation algorithm based on the Cholesky decomposition of

sample covariance matrices. More specifically, let Wi = (X′i−b,X
′
i−b+1, . . . ,X

′
i)
′ be a long vector

consisting of the observation Xi and all its previous observations that need to be decorrelated with,

where b = min(i+m0− 1, bmax) and −m0 + 1 ≤ i ≤ 0. Then, the estimate of Cov(Wi,Wi) can be

defined to be

Σ̂i,i =


γ̂(0)(0) · · · γ̂(0)(b)

...
. . .

...

[γ̂(0)(b)]′ . . . γ̂(0)(0)

 =

Σ̂i−1,i−1 Σ̂i−1,i

Σ̂′i−1,i γ̂(0)(0)

 .

The decorrelated and standardized IC observation at time i is then defined to be

X∗i =

 [γ̂(0)(0)]−1/2
(
Xi − µ̂(0)

)
, when i = −m0 + 1,

D̂
−1/2
i

[
Xi − µ̂(0) − Σ̂′i−1,iΣ̂

−1
i−1,i−1êi−1

]
, when i > −m0 + 1,

where êi−1 = ((Xi−b−µ̂(0))′, (Xi−b+1−µ̂(0))′, . . . , (Xi−1−µ̂(0))′)′, and D̂i = γ̂(0)(0)−Σ̂′i−1,iΣ̂
−1
i−1,i−1Σ̂i−1,i.
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It should be pointed out that the inverse matrices Σ̂−1i−1,i−1, [γ̂(0)(0)]−1/2 and D̂
−1/2
i discussed

above may not always exist in practice, especially in cases when the IC sample size m0 is relatively

small. In such cases, we suggest using the matrix modification method discussed in Higham (1988)

to modify the related matrices to positive semidefinite matrices, which can be implemented using

the function nearPD() in the R-package Matrix. Theoretically speaking, if µ̂(0) and {γ̂(0)(s), 0 ≤

s ≤ bmax} are the true IC process mean and the IC covariance matrices, then it can be checked

that the decorrelated and standardized IC observations {X∗i , i = −m0 + 1,−m0 + 2, . . . , 0} would

be uncorrelated with each other and each of them would have mean 0 and the identity covariance

matrix. Let Fj(x) be the IC cumulative distribution function (cdf) of the jth component of the

decorrelated data, for j = 1, 2, . . . , p. Then, Fj(x) can be estimated by the following empirical cdf:

F̂
(0)
j (x) =

1

m0

0∑
i=−m0+1

I
(
X∗ij ≤ x

)
, (2)

where X∗ij denotes the jth component of X∗i , and I(u) is the indicator function that equals 1 when

u is “true” and 0 otherwise.

2.2 Data transformation and online process monitoring

To monitor the multivariate process observations {Xn, n ≥ 1}, the observed data need to be pre-

processed so that a conventional control chart is appropriate to use. To this end, at the current

observation time n, the observation Xn should be decorrelated with all its previous observations

using a procedure similar to the one used for decorrelating the initial IC data discussed in the

previous subsection. The resulting decorrelated and standardized observation at time n is denoted

as X∗n = (X∗n1, X
∗
n2, . . . , X

∗
np). Next, we want to find a transformation so that the IC distri-

bution of the transformed data X∗n can be approximated well by a parametric distribution. To

this end, let {F̂ (n−1)
j (x), j = 1, 2, . . . , p} be the estimates of the IC cdf’s of the p components

of X∗n obtained at time n − 1 by the recursive formulas given in Subsection 2.3 below. Then,

F̂
(n−1)
1 (X∗n1), F̂

(n−1)
2 (X∗n2), . . . , F̂

(n−1)
p (X∗np) would be asymptotically independent of each other,

and each of them has the asymptotic distribution of U [0, 1]. So, their joint distribution can be

approximated well by the product of p U [0, 1] distributions. Let G(·) be the cdf of the product of p

independent U [0, 1] random variables. Then, by the Glivenko-Cantelli theorem (cf., Tucker 1959),

each empirical cdf F̂
(n−1)
j (x) would converge uniformly to the true cdf Fj(x), for j = 1, 2, . . . , p,
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and consequently

zn = Φ−1
[
G
(

Πp
j=1F̂

(n−1)
j (X∗nj)

)]
(3)

would have the asymptotic distribution of N(0, 1), where Φ−1(·) is the inverse function of the

standard normal cdf. Regarding the cdf G(·), its analytic formula is given in Proposition 1 below

with the derivation given in Appendix.

Proposition 1. Let U1, U2, . . . , Up be p independent uniform random variables on the interval [0, 1].

Then, the cdf of Πp
j=1Uj is given by the following formula:

G(z) = 1− η (−ln(z); p, 1) ,

where η(x;α, β) = 1 −
∑α−1

l=0 (βx)le−βx/l! is the cdf of the Gamma distribution with parameters α

and β.

The derivation of the result in Proposition 1 is given in Appendix.

After obtaining the transformed data {zn, n ≥ 1} by (3), it is natural to consider the following

univariate EWMA charting statistic (cf., Robert 1959):

En,z = λ1zn + (1− λ1)En−1,z, (4)

where E0,z = 0, and λ1 ∈ (0, 1] is a weighting parameter. Then, the chart gives a signal of process

mean shift at time n if √
2− λ1
λ1
|En,z| > h1, (5)

where h1 > 0 is a control limit chosen to achieve a given value of the IC average run length, denoted

as ARL0. The chart (4)-(5) is called EWMA-P chart hereafter, where the last letter “P” reflects

the fact that the transformed observation zn is based on the product of p transformed components

{F̂ (n−1)
j (X∗nj), j = 1, 2, . . . , p} of the original process observation Xn.

To transform the original p-dimensional process observations {Xn, n ≥ 1} into the univariate

data {zn, n ≥ 1} by (3), there are several benefits. First, the dimension of the process monitoring

problem has been reduced from p to 1, which simplifies the process monitoring problem greatly.

Second, although we do not impose any parametric form on the IC distribution of the original

process observations, the transformed data would have the asymptotic N(0, 1) distribution. Con-

sequently, proper design of the resulting process monitoring procedure (4)-(5) becomes convenient,
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since the control limit h1 can be determined by Monte Carlo simulations. See a more detailed dis-

cussion in Subsection 2.4. However, to reduce the original p-dimensional data to the transformed

univariate data, some shifts in the original process observations {Xn, n ≥ 1} may not be reflective

in the transformed data {zn, n ≥ 1}, which is addressed in Proposition 2 below whose proof is

straightforward and thus omitted.

Proposition 2. Assume that the p-dimensional process observations {Xn, n ≥ 1} have an IC

distribution with mean µ, and are stationarily serially correlated with the invertible covariance

matrices {γ(s), 0 ≤ s ≤ bmax}. After the original process observations have a mean shift from µ to

µ1 with the shift size δ = µ1 − µ 6= 0, the distribution of the transformed data {zn, n ≥ 1} defined

in (3) would not change if and only if

Πp
j=1Fj(0) = Πp

j=1Fj(δ
∗
j ), (6)

where (δ∗1 , δ
∗
2 , . . . , δ

∗
p)
′ = [γ(0) − Σ′n−1,nΣ

−1
n−1,n−1Σn−1,n]−1/2δ, Σn,n = Cov(Wn,Wn), Σn−1,n =

Cov((X′1,X
′
2, . . . ,X

′
n−1)

′,Xn), Wn = (X′1,X
′
2, . . . ,X

′
n)′, and Fj(x) is the IC cdf of the jth compo-

nent of the decorrelated data, for j = 1, 2, . . . , p, as discussed in Equation (2).

From Proposition 2, any shift in the original process observations with the shift size δ satisfying

Equation (6) cannot be reflected in the transformed data {zn, n ≥ 1}. Thus, such a shift cannot

be detected by the EWMA-P chart (4)-(5). While the original shift size δ is p-dimensional, the

ones satisfying (6) are in one-dimensional space. Thus, the EWMA-P chart can actually detect

most shifts in the original process observations when p ≥ 2. To have an intuitive perspective on

the shifts satisfying Equation (6), let us consider the following two examples in which p equals 2

and 3, respectively.

Example 1. Assume that {Xn, n ≥ 1} are i.i.d. two-dimensional random variables, and each

component of Xn has the standardized χ2
3 distribution. Then, a mean shift of size δ = (δ1, δ2)

satisfies Equation (6) if and only if

δ1 =
√

6F−11

[
F1(0)2

F1(δ2/
√

6)

]
,

where F1(·) is the cdf of the standardized χ2
3 distribution. The above equation defines a curve in the

two-dimensional space of (δ1, δ2) shown in the left panel of Figure 1.

Example 2. Assume that {Xn, n ≥ 1} are i.i.d. three-dimensional random variables, and the

three components of Xn have the N(0, 1), the standardized t3 and the standardized χ2
3 distributions,

8



respectively. Then, a mean shift of size δ = (δ1, δ2, δ3) satisfies Equation (6) if and only if

δ1 = F−11

[
F1(0)F2(0)F3(0)

F2(δ2/
√

3)/F3(δ3/
√

6)

]
,

where F1(·), F2(·) and F3(·) are the cdf’s of the N(0,1), the standardized χ2
3, and the standardized

t3 distributions, respectively. The above equation defines a surface in the three-dimensional space

of (δ1, δ2, δ3) that is shown in the right panel of Figure 1.
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Figure 1: The line and surface in the left and right panels denote the shift sizes δ that satisfy

Equation (6) in Examples 1 and 2, respectively.

To overcome the limitation of the EWMA-P chart (4)-(5) that it cannot detect shifts satisfying

Equation (6) as discussed above, one natural idea is to first transform each component of the

decorrelated data X∗n by

Znj = Φ−1
[
F̂

(n−1)
j (X∗nj)

]
, for j = 1, 2, . . . , p,

and then consider using the squared sum T 2
n =

∑p
j=1 Z

2
nj . It is obvious that the IC distribution

of Znj is asymptotically N(0, 1), for each j, and thus the IC distribution of T 2
n would be close to

χ2
p. However, it would not be a good idea to use T 2

n directly for process monitoring because its

variability could be large, especially when the initial IC sample size m0 is small. This is because

the empirical cdf’s {F̂ (n−1)
j (x), j = 1, 2, . . . , p} used in the above data transformation would have

quite large variability, which has been confirmed by our numerical studies. Consequently, online

process monitoring using T 2
n as the charting statistic would not be effective. To address this issue,

we propose an alternative charting statistic based on the EWMA idea. First, for each component
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of the transformed data, let us consider the following EWMA statistic:

Enj = λ2Znj + (1− λ2)En−1,j , for j = 1, 2, . . . , p, n ≥ 1, (7)

where E0j = 0, for each j, and λ2 ∈ (0, 1] is a weighting parameter. Because the sequence

{Znj , n ≥ 1}, for each j, is asymptotically uncorrelated and each variable has the asymptotic

N(0, 1) distribution, Enj would have the asymptotic distribution of N(0, λ2/(2 − λ2)). Since the

above EWMA operation is a weighted averaging procedure, variability in the transformed data

{Znj , j = 1, 2, . . . , p, n ≥ 1} would be reduced by this operation. As a matter of fact, because the

weighting parameter λ2 is often chosen to be a small number (e.g., 0.05 and 0.1), the asymptotic

variance λ2/(2−λ2) of Enj would be much smaller than the asymptotic variance 1 of Znj , for each

j. Then, 2−λ2
λ2

∑p
j=1E

2
nj would be asymptotically χ2

p distributed. Define

Bn = Φ−1

Qp
2− λ2

λ2

p∑
j=1

E2
nj

 , (8)

where Qp(·) is the cdf of the χ2
p distribution. Then, Bn is our proposed charting statistic and has

the asymptotic distribution of N(0, 1). The chart gives a signal of process mean shift at time n if

Bn > h2, (9)

where h2 > 0 is a control limit. The chart (8)-(9) is called EWMA-Q chart hereafter, to reflect the

fact that it is based on the quadratic form of {Enj , j = 1, 2, . . . , p}.

2.3 Recursive update of the IC distribution estimates

The initial estimates of certain IC quantities discussed in Subsection 2.1 may not be able to approx-

imate their true values well, since it is usually hard to collect a large initial IC dataset in many SPC

applications. To overcome that difficulty, Hawkins (1987) suggested the novel self-starting idea for

online monitoring of a sequential process with only a handful of IC process observations collected

in advance. Its basic idea is that if the process is declared to be IC at the current observation time

n, then the observation Xn can be combined with the IC data X (n−1)
IC = {Xj ,−m0 +1 ≤ j ≤ n−1}

at the previous time n − 1. The estimates of the IC quantities can then be updated using the

combined IC dataset X (n)
IC for process monitoring at the next time point n + 1. In the proposed

method, the following recursive formulas can be used for updating the estimates of the related IC
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quantities: for 1 ≤ j ≤ p and 0 ≤ s ≤ bmax,

F̂
(n)
j (x) =

m0 + n− 1

m0 + n
F̂

(n−1)
j (x) +

1

m0 + n
I
(
X∗nj ≤ x

)
, (10)

µ̂(n) =
1

m0 + n
Xn +

m0 + n− 1

m0 + n
µ̂(n−1),

γ̂(n)(s) =
1

m0 + n− s

(
Xn − µ̂(n)

)(
Xn−s − µ̂(n)

)′
+
m0 + n− s− 1

m0 + n− s
γ̂(n−1)(s).

2.4 Design of the proposed control charts

From the description in the previous subsections, it can be seen that both the EWMA-P chart

(4)-(5) and the EWMA-Q chart (8)-(9) are based on robust process monitoring by recursive data

transformation and sequential data decorrelation. Because the data structure of the original process

observations has been simplified by the data-preprocessing procedures mentioned above, design of

both charts becomes relatively simple since their control limits can be determined by Monte Carlo

simulations. From Expressions (3)-(5), it can be seen that design of the EWMA-P chart (4)-(5) can

proceed in the same way as that for the conventional EWMA chart (cf., Qiu 2014, Chapter 5). For

the EWMA-Q chart (8)-(9), its control limit h2 can be determined by a Monte Carlo simulation

with the following several steps.

• First, a sequence of p-dimensional random vectors can be generated from the Np(0, Ip×p)

distribution as the transformed process observations {Zn = (Zn1, Zn2, . . . , Znp)
′, n ≥ 1}.

• Then, the charting statistic values {Bn, n ≥ 1} are computed by (7) and (8).

• For a given value of h2, the run length (RL) value, defined to be the number of observation

times from the beginning of process monitoring to the signal time, is recorded.

• The previous three steps are then repeated for M times, and the average of the M RL values

provides an estimate of the actual ARL0 value of the chart for the given value of h2.

• Finally, the control limit h2 can be determined by a numerical search algorithm (e.g., the

bisection search) from the above simulation so that the pre-specified ARL0 value is reached.

Between the two charts, it has been pointed out in Subsection 2.2 that the EWMA-P chart

is effective for detecting most shifts except those satisfying Expression (6). As a comparison,

it is obvious that the EWMA-Q chart is effective for detecting any shifts in the original process
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observations since any such shifts will be reflected in the distribution of its charting statistic Bn. See

the related numerical results in Section 3. It should be pointed out that although the two proposed

control charts are described for detecting process mean shifts in cases when the serial correlation

in process observations is stationary, their basic idea is actually quite general and can be used for

solving other SPC problems. For instance, in cases when the serial correlation is non-stationary,

the covariance function of the sequential process under monitoring can be estimated using a kernel

smoothing approach (cf., Qiu and Xie 2022). Then, the observed data can be pre-processed using

the estimated time-varying covariance matrices, and the EWMA-P chart (4)-(5) and the EWMA-Q

chart (7)-(9) can be applied to the pre-processed data for process monitoring.

For readers’ convenience, the EWMA-P chart (4)-(5) and the EWMA-Q chart (7)-(9) are

summarized in the pseudo code below.

3 Simulation

In this section, we present some simulation results about the numerical performance of the proposed

EWMA-P chart (4)-(5) and EWMA-Q chart (8)-(9). For comparison purposes, the following six

alternative charts are also considered in the simulation studies.

• The self-starting multivariate EWMA chart suggested by Sullivan and Jones (2002), denoted

as SS-MEWMA. This chart first defines a multivariate EWMA statistic as follows:

En,ss = λss(Xn − µ̂(n−1)) + (1− λss)En−1,ss, for n ≥ 1,

where E0,ss = 0, and λss ∈ (0, 1] is a weighting parameter. Then, its charting statistic is

defined to be √
Q−11

[
Fp,m0+n−p−1

(
m0 + n− 1

p(m0 + n− 2)
E′n,ssΣ̂

−1
En,ss

En,ss

)]
,

where Q1(·) is the cdf of the χ2
1 distribution, Fp,m0+n−p−1 is the cdf of the F (p,m0+n−p−1)

distribution, and Σ̂En,ss = [λss/(2− λss)]γ̂(n−1)(0).

• The self-starting version of the cumulative sum of T chart suggested by Crosier (1988), de-

noted as SS-COT. This method applies the conventional upward CUSUM chart (cf., Qiu 2014,

Chapter 4) to the sequence {Tn, n ≥ 1}, where T 2
n = (Xn − µ̂(n−1))′

[
γ̂(n−1)(0)

]−1
(Xn −

µ̂(n−1)) is the Hotelling’s T-square statistic.
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Pseudo Code : Proposed Robust Process Monitoring Scheme

Initial Estimation:: Obtain the initial estimates µ̂(0), {γ̂(0)(s), 0 ≤ s ≤ bmax} and {F̂ (0)
j (x), 1 ≤

j ≤ p} from the initial IC data X (0)
IC , as discussed in subsection 2.1.

for n = 1, 2, . . . , do

Collect observation at the current time n.

if n = 1 then

Define the standardized observation to be X∗1 = [γ̂(0)(0)]−1/2
(
X1 − µ̂(0)

)
.

else

Define Wn = (X′n−b,X
′
n−b+1, . . . ,X

′
n)′, where b = min(n− 1, bmax).

Then, the decorrelated and standardized observation at time n is defined to be

X∗n = D̂−1/2n

[
−Σ̂′n−1,nΣ̂

−1
n−1,n−1ên−1 + (Xn − µ̂(n−1))

]
,

where ên−1 = [(Xn−b − µ̂(n−1))′, (Xn−b+1 − µ̂(n−1))′, . . . , (Xn−1 − µ̂(n−1))′]′,

D̂n = γ̂(n−1)(0)− Σ̂′n−1,nΣ̂
−1
n−1,n−1Σ̂n−1,n, and Σ̂n−1,n−1 and Σ̂n−1,n are estimates of

Cov(W̃n−1,W̃n−1) and Cov(W̃n−1,Xn), respectively, in which

W̃n−1 = (X′n−b,X
′
n−b+1, . . . ,X

′
n−1)

′ and both estimates can be obtained from

{γ̂(n−1)(s), 0 ≤ s ≤ bmax} defined in (10).

end if

Transform the decorrelated data by either (3) or (7)-(8), and then apply the corresponding

control chart (4)-(5) or (8)-(9).

if A shift is detected then

Give a signal.

else

Combine Xn with the IC data X (n−1)
IC at the previous time point and

update the estimates of the IC quantities by (10).

Let n = n + 1.

end if

end for

• The self-starting version of the multivariate control chart discussed in Mei (2010), denoted

as SS-SCUSUM. Its charting statistic is the sum of p CUSUM statistics for monitoring the p

individual quality variables. More specifically, the charting statistic of SS-SCUSUM is defined

13



to be

Mn =

p∑
j=1

max{C+
nj ,−C

−
nj},

where

C+
nj = max

[
0, C+

n−1,j + (Xn − µ̂(n−1)j )/γ̂
(n−1)
jj (0)− k

]
,

C−nj = min
[
0, C−n−1,j + (Xn − µ̂(n−1)j )/γ̂

(n−1)
jj (0) + k

]
,

C+
0j = C−0j = 0, for j = 1, 2, . . . , p, k > 0 is the allowance constant, µ̂

(n−1)
j is the jth element

of µ̂(n−1), and γ̂
(n−1)
jj (0) is the (j, j)th element of γ̂(n−1)(0).

• The self-starting version of the nonparametric multivariate CUSUM chart suggested in Qiu

(2008), denoted as NP-CUSUM. To use this method, the original process observation Xn

should first be standardized to Yn =
[
γ̂(n−1)(0)

]−1/2
(Xn − µ̂(n−1)). Then, the multivariate

nonparametric chart based on data categorization suggested in Qiu (2008) is applied to the

standardized data for online process monitoring.

• The nonparametric multivariate EWMA chart suggested by Zou et al. (2012), denoted as

SR-EWMA. This chart is based on spatial ranks of the process observations. This method

applies the conventional multivaraite EWMA chart to the sequence {Rn(Xn), n ≥ 1}, where

Rn(x) is the empirical spatial rank function that can first be estimated from the initial IC

data and then get updated over time.

• The multivariate nonparametric self-starting CUSUM chart suggested by Qiu and Xie (2022),

denoted as QX-CUSUM. This chart first decorrelates the observed data as described in Section

2.1, and then applies the multivariate nonparametric chart based on data categorization (cf.,

Qiu 2008) to the decorrelated data for online process monitoring.

Regarding the IC process distribution and serial data correlation, the four different scenarios

listed in Table 1 when p = 3 are considered. Scenario I is the conventional case considered in the

SPC literature with the i.i.d. process observations and the standard normal IC process distribution.

Scenario II considers a case when the IC distributions of some quality variables are non-normal,

but the process observations are still i.i.d. Scenario III is constructed based on Scenario II, except

that the three quality variables have serial correlation and follow AR(1), MA(2) and ARMA(2,1)

time series models, respectively. Scenario IV is constructed based on Scenario III, except that the

three quality variables are mutually correlated besides their own serial correlation.
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Table 1: Four Scenarios considered in the simulation study.

Scenarios Process Observations: Xn = (Xn1, Xn2, Xn3)
′ where n ≥ 1

I Xn
i.i.d.∼ N3(0, I3×3)

II Xn1 = εn1, Xn2 = εn2, Xn3 = εn3, where

{εn1}
i.i.d.∼ N(0, 1)

{εn2}
i.i.d.∼ standardized version of the t3 distribution

{εn3}
i.i.d.∼ standardized version of the χ2

3 distribution

III Xn1 = 0.2Xn−1,1 + εn1, for n ≥ 1, where X01 = 0,

Xn2 = εn2 + 0.8εn−1,2 + 0.6εn−2,2 for n ≥ 3, where X12 = X22 = 0,

Xn3 = 0.3Xn−1,3 + 0.1Xn−2,3 + εn3 − 0.5εn−1,3, for n ≥ 3 where X13 = X23 = 0,

{εn1}, {εn2}, {εn3} are generated in the same way as that in Scenario II.

IV Xn1 = 0.2Xn−1,1 + εn1, for n ≥ 1, where X01 = 0,

Xn2 = 0.1Xn1 + εn2 + 0.8εn−1,2 + 0.6εn−2,2 for n ≥ 3, where X12 = X22 = 0,

Xn3 = 0.1Xn1 + 0.2Xn2 + εn3,

{εn1}, {εn2}, {εn3} are generated in the same way as that in Scenario II.

3.1 IC performance

We first evaluate the IC performance of the related control charts. In the simulation study, the nom-

inal ARL0 value is fixed at 200 for all charts. The allowance constants of SS-COT, SS-SCUSUM,

NP-CUSUM and QX-CUSUM are chosen to be
√
p, 0.1, 0.1 and 0.1, respectively, and the weighting

parameters of the charts SS-MEWMA, SR-EWMA, EWMA-P and EWMA-Q are all chosen to be

0.05. The bmax of the charts EWMA-P and EWMA-Q is chosen to be 10. The control limits of the

charts SS-MEWMA, SS-COT, SS-SCUSUM are determined by simulation based on the normality

assumption, and the control limits of NP-CUSUM, SR-EWMA, and QX-CUSUM are computed as

discussed in Qiu (2008), Zou et al. (2012), and Qiu and Xie (2022), respectively.

To compute the actual ARL0 value of a given chart, an IC dataset of size m0 is first generated.

Then, a control chart is applied to a sequence of 2,000 IC process observations for online process

monitoring, and its RL value is recorded. The online process monitoring is then repeated for 1,000

times, and the average of the 1,000 RL values is used as an estimate of the actual conditional

ARL0 value of the chart, conditional on the IC data. Finally, to obtain an estimate of the actual

unconditional ARL0 value, all steps described above, starting from the generation of the IC data
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to the computation of the actual conditional ARL0 value, are repeated for 100 times. The actual

(unconditional) ARL0 value of the chart is then estimated by the average of the 100 estimates of

the actual conditional ARL0 value. The IC sample size m0 is first fixed at 500. The results of the

estimated actual ARL0 values of different charts are shown in Table 2. From the table, it can be

seen that i) the three competing charts SS-MEWMA, SS-COT and SS-SCUSUM all perform well

in Scenario I when process observations are i.i.d. and normally distributed, but their performance

is quite poor in other scenarios when their assumptions are violated, ii) the nonparametric charts

NP-CUSUM and SR-EWMA have a reasonably good performance in Scenarios I and II when the

process observations are independent at different observation times, but are unreliable in Scenarios

III and IV when the process observations are serially correlated, and iii) the chart QX-CUSUM

and the two proposed charts EWMA-P and EWMA-Q have a reasonably good performance in all

scenarios considered.

Table 2: Estimated actual ARL0 values and their standard errors (in parentheses) of the eight

control charts when p = 3, m0 = 500, and the nominal ARL0 values of all charts are fixed at 200.

Scenarios SS-MEWMA SS-COT SS-CUSUM NP-CUSUM SR-EWMA QX-CUSUM EWMA-P EWMA-Q

I 200(2.73) 188(5.60) 200(3.66) 208(1.75) 194(2.12) 218(2.70) 197(5.76) 190(5.39)

II 184(4.46) 122(5.24) 206(8.79) 199(1.84) 191(1.83) 206(3.21) 191(5.96) 193(5.73)

III 60.1(0.79) 88.6(2.97) 152(4.54) 71.7(0.77) 55.3(0.48) 203(2.84) 197(6.31) 191(6.03)

IV 55.3(0.74) 90.5(3.04) 120(3.51) 54.3(0.65) 50.4(0.38) 196(2.76) 184(5.62) 188(5.89)

The IC performance of the eight charts discussed above could be affected by the initial IC

data size m0. To study the impact of m0 on their performance, we consider the following example,

in which m0 changes among 200, 300, 400, 500, 800, and 1,000, and all other setups remain the

same as those in the example of Table 2. The estimated actual ARL0 values of the eight charts

in such cases are presented in Figure 2. From the figure, we can have the following conclusions.

First, the IC performance of all charts improves in Scenario I when m0 increases. Second, the

IC performance of SS-COT is unsatisfactory in Scenario II even when m0 is large, while the IC

performance of all other charts is reasonably good in that scenario. Third, the IC performance of

the charts SS-MEWMA, NP-CUSUM, SS-CUSUM, SS-DOT and SR-EWMA is unsatisfactory in

Scenarios III and IV even when m0 is large, while the IC performance of QX-CUSUM, EWMA-Q

and EWMA-P improves in these two scenarios when m0 increases. From this example, it can be

seen that the IC performance of the proposed charts EWMA-Q and EWMA-P is quite reliable when

m0 ≥ 400 in all cases considered since their actual ARL0 values are within 10% of the nominal
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ARL0 value of 200 in such cases.

●

●

●

● ● ●

0
50

10
0

15
0

20
0

Scenario I

 

A
R

L
0

● ● ●
● ●

●

●

●

SS−MEWMA
NP−CUSUM
SS−SCUSUM
SS−COT      

SR−EWMA
QX−CUSUM
EWMA−P
EWMA−Q

●
● ●

● ●
●

Scenario II

 
 

● ●
● ● ●

●

●

●

●

● ● ●

200 400 600 800 1000

0
50

10
0

15
0

20
0

Scenario III

m0

A
R

L
0

● ● ● ● ● ●

●
●

● ●
● ●

200 400 600 800 1000

Scenario IV

m0

 

● ● ● ● ● ●

Figure 2: Estimated ARL0 values of eight different control charts when their nominal ARL0 values

are fixed at 200, and the IC sample size m0 changes among {200, 300, 400, 500, 800, 1000}.

To study the impact of the dimensionality p on the IC performance of the proposed charts

EWMA-P and EWMA-Q, we consider an extension of Scenario I to a p-dimensional case, where

p can change among {3, 5, 7} and all other setups are kept the same as those in Figure 2. The

estimated ARL0 values of EWMA-P and EWMA-Q are presented in Figure 3. From the figure, it

can be seen that the necessary IC sample size m0 should be larger to have a reliable IC performance

of the two charts when p is larger.
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Figure 3: Estimated ARL0 values of the charts EWMA-P and EWMA-Q when their

nominal ARL0 values are fixed at 200, and the IC sample size m0 changes among

{200, 300, 400, 500, 800, 1000, 2000}, and p changes among {3, 5, 7}.

3.2 OC performance

Next, we study the OC performance of the related control charts in cases when p = 3, m0 = 500

and the nominal ARL0 values of all charts are fixed at 200. To this end, it is assumed that a

mean shift occurs at the beginning of process monitoring, and two cases of shifts are considered in

this example. The shifted mean is µ+ δ(1, 1, 1)′ in Case I, and µ+ (0.5, δ, δ)′ in Case II, where δ

denotes the shift size and changes among 0,±0.25,±0.5,±0.75, and ±1. In the above two cases,

all three quality variables shift in the same size in Case I, and in different sizes in Case II. To

make the comparison among different charts as fair as possible, their control limits have been

adjusted properly so that their actual ARL0 values all equal to the nominal ARL0 value of 200.

Also, for detecting a given shift, the weighting parameters of the four EWMA charts SS-MEWMA,

SR-EWMA, EWMA-P, EWMA-Q and the allowance constants of the four CUSUM charts SS-

COT, SS-SCUSM, NP-CUSUM, QX-CUSUM have all been searched such that the OC average run

length ARL1 of each chart reaches the minimum. Such a minimal ARL1 value is called the optimal

ARL1 value, and the associated value of the procedure parameter is called the optimal procedure

parameter value hereafter. So, the optimal OC performance of the related charts is compared here.

It should be pointed out that the optimal ARL1 values are considered here to make the comparison

as fair as possible. Otherwise, the OC performance of a CUSUM chart with its allowance constant
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chosen to be 0.1 may not be comparable to the OC performance of an EWMA chart with its

weighting parameter chosen to be 0.1, for instance. The computed optimal ARL1 values of the

eight charts for detecting shifts in Cases I and II are presented in Figures 4 and 5, respectively.

From Figures 4 and 5, we can have the following conclusions. i) The charts SS-MEWMA,

SS-SCUSUM and SS-COT perform well in Scenario I when process observations are i.i.d. and

normally distributed. But, they are less effective in Scenarios II-IV when the normality and/or

the data independence assumptions are violated. ii) The nonparametric charts NP-CUSUM and

SR-EWMA have a good performance in Scenarios I and II when the process observations are

independent at different observation times. But, they perform poorly in Scenarios III and IV when

there is serial correlation in the observed data. iii) The EWMA-P chart has a reasonably good

performance in Figure 4 where all quality variables have the same shift. But, its performance is

not satisfactory in some cases shown in Figure 5 when the second and third quality variables have

negative shifts or no shifts while the first quality variable has a positive shift of 0.5. iv) The charts

QX-CUSUM and EWMA-Q both have a reasonably good performance in all cases considered, and

EWMA-Q outperforms QX-CUSUM in most cases considered. Therefore, this example confirms

that the EWMA-P chart could be ineffective for detecting certain shifts, as discussed in Proposition

2 and Examples 1 and 2, and the EWMA-Q chart should be considered if no prior information is

available about a future shift direction. In addition, EWMA-Q usually performs better than QX-

CUSUM since the latter is constructed based on data categorization that would result in information

loss as discussed in Section 1.

The optimal values of the weighting parameters λ1 and λ2 at which the optimal ARL1 values of

the charts EWMA-P and EWMA-Q shown in Figures 4 and 5 are reached are presented in Figure

6. From the figure, it can be seen that the optimal values of λ1 and λ2 are larger for detecting larger

shifts, which is consistent with the general guidelines on the selection of a weighting parameter in

the literature that a larger value of the weighting parameter should be used for detecting a larger

shift (cf., Qiu 2014, Chapter 5).

Next, we study the possible impact of the parameter bmax on the performance of the proposed

charts EWMA-P and EWMA-Q. In the same setup as that in the example of Figure 4, let bmax

change among {1, 5, 10, 20}. The calculated optimal ARL1 values of EWMA-P and EWMA-Q are

shown in Figure 7. From the plots in the figure, it can be seen that (i) the performance of both

EWMA-P and EWMA-Q do not change much in Scenarios I and II when bmax changes, and (ii)
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Figure 4: Optimal ARL1 values of the eight control charts for detecting shifts in Case I, when the

nominal ARL0 values of all charts are fixed at 200, p = 3, m0 = 500, and all quality variables have

the same shift of size δ that changes among 0, ±0.25, ±0.5, ±0.75, and ±1.

the performance of both EWMA-P and EWMA-Q is unsatisfactory in Scenarios III and IV when

bmax = 1, and their performance does not change much when bmax ≥ 5. This example shows that

the proposed charts EWMA-P and EWMA-Q would perform stably when the assumed time range

of autocorrelation bmax is chosen to be 5 or larger in all scenarios considered.

In all previous examples, the mean shifts are focused. Next, let us consider an example in

which both the mean and the variance of each quality variable have shifts. More specifically, it is

assumed that each quality variable has a mean shift with a fixed size of 0.1, and a variance shift

with size η that changes from 0 to 0.6 with a step 0.1. All other setups are kept to be the same as

those in the example of Figures 4 and 5. The computed optimal ARL1 values of the eight charts

are presented in Figure 8. From the figure, we can have the following conclusions. (i) The two
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Figure 5: Optimal ARL1 values of the eight control charts for detecting shifts in Case II, when the

nominal ARL0 values of all charts are fixed at 200, p = 3, m0 = 500, the first quality variable has

the shift of size 0.5, and the second and third quality variables have the same shift of size δ that

changes among 0, ±0.25, ±0.5, ±0.75, and ±1.

nonparametric control charts NP-CUSUM and QX-CUSUM are not sensitive to the increase of

the variance shift, and the nonparametric chart SR-EWMA is not very sensitive either. (ii) The

charts SS-COT, SS-SCUSUM and SS-MEWMA perform well in Scenario I when their normality

and “data independence” assumptions are valid, and are less effective to the increase of the variance

shift in Scenarios II–IV when one or both of these assumptions are invalid. (iii) EWMA-Q performs

better than EWMA-P in all cases considered, and EWMA-Q has the best performance among all

eight charts in Scenarios III and IV when the IC process observations are serially correlated. This

example shows that the proposed charts EWMA-P and EWMA-Q have a decent performance in

comparison with its peers when both the process mean and the process variance have shifts.
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Figure 6: Optimal values of the weighting parameters λ1 and λ2 of the proposed charts EWMA-P

and EWMA-Q in cases considered in Figures 4 and 5.

4 A Real-Data Application

In this section, we demonstrate the application of the proposed control charts by using a real dataset

from a semiconductor manufacturing process. The dataset is available at the UC Irvine Machine

Learning Repository with the link http://archive.ics.uci.edu/ml/datasets/SECOM. The dataset

was collected from July 2008 to October 2008 by a computerized system that automatically manages

a semiconductor manufacturing process consisting of a series of steps. At each step, observations

of some quality variables, including film thickness, film uniformity, and electronic resistance, are

collected by sensors at many key measurement points. So, many quality variables are measured at

different steps of the manufacturing of a product. In this application, it is important to monitor

the observed multivariate data streams collected from the production process for quality control

22



●

●

●

●

●

●

●

●

●

EWMA−P

 

A
R

L
1

5
15

50
20

0
●

bmax=1
bmax=5
bmax=10
bmax=20

●

●

●

●

●

●

●

●

●

EWMA−Q

 

 

S
ce

na
rio

 I

●

●

●

●

●

●

●

●

●

A
R

L
1

2
5

15
50

20
0

●

●

●

●

●

●

●

●

●

 

S
ce

na
rio

 II

●

●

●

●

●

●

●

●

●

 

A
R

L
1

5
15

50
20

0

●

●

●

●

●

●

●

●

●

 

 

S
ce

na
rio

 II
I

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0
δ

A
R

L
1

5
15

50
20

0

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0
δ

 

S
ce

na
rio

 IV

Figure 7: Optimal ARL1 values of the proposed charts EWMA-P and EWMA-Q when the nominal

ARL0 values are fixed at 200, p = 3, m0 = 500, all quality variables have the same shift size δ that

changes among 0, ±0.25, ±0.5, ±0.75, and ±1, and the assumed time range of autocorrelation bmax

changes among {1, 5, 10, 20}.

purposes. This dataset has a total of 590 quality variables and 1,567 observations of these variables.

A total of 600 observations of three specific quality variables are selected here to demonstrate the

application of the proposed control charts, which are shown in Figure 9. From the plots of the
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Figure 8: Optimal ARL1 values of the eight control charts when the nominal ARL0 values are fixed

at 200, p = 3, m0 = 500, and all quality variables have the same mean shift of size 0.1 and the

same variance shift of size η that changes among {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}.

figure, it seems that the first 500 observations of each variable are quite stable. Thus, they are used

as the initial IC data. The remaining 100 observations are used for online process monitoring. In

Figure 9, the two types of observations are separated by a vertical line in each plot.

For the IC data, the p-values of the Durbin–Watson test for testing serial correlation for the

three quality variables are 1.79 × 10−3, 4.76 × 10−4, and 9.74 × 10−2, respectively. Thus, there

is a significant autocorrelation in the observed IC data of the first and second quality variables.

The Augmented Dickey-Fuller (ADF) test for testing stationarity of the autocorrelation gives the

p-values that are < 0.01 for all quality variables, implying that it is reasonable to assume the serial

correlation in the observed IC data of the three quality variables to be stationary. Therefore, we

can conclude from these tests that the IC data have a significant stationary serial correlation in this

example. To check the normality assumption for the IC data, the Shapiro test is performed. Its
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Figure 9: Original observations of three quality variables of a semiconductor manufacturing process.

The solid vertical line in each plot separates the initial IC data and the data for online process

monitoring, the dashed vertical line denotes the first signal time by the proposed chart EWMA-

Q, and the dotted vertical line denotes the detected shift location by a change-point detection

approach.

p-values for the three quality variables are 1.82×10−12, 3.37×10−13 and 5.46×10−11, respectively,

implying that the IC process distribution is significantly different from a normal distribution.

Next, we discuss online process monitoring starting from the 501st observation time. In all

control charts, their nominal ARL0 values are fixed at 200, and their control limits are computed

in the same way as that in the simulation study discussed in Section 3. The charting statistics of the

25



eight charts are presented in Figure 10, where the dashed horizontal lines denote the related control

limits. From the figure, it can be seen that the seven charts SS-MEWMA, SS-COT, SS-SCUSUM,

SR-EWMA, QX-CUSUM, EWMA-P and EWMA-Q give their first signals at the 523rd, 524th, 536th,

523th, 523th, 539th and 522th observation times, respectively, while the chart NP-CUSUM gives

signals many times at the beginning of online process monitoring. Because the “data independence”

assumption required by the chart NP-CUSUM is violated in this example as discussed above,

its result may not be reliable. To check whether the signals given by the related control charts

are reliable, the change-point detection approach based on the generalized maximum likelihood

estimation (cf., Qiu 2014, Section 7.5) is applied to the transformed data under online monitoring

(i.e., {Zn = (Zn1, Zn2, . . . , Znp)
′, n = 501, 502, . . . , 600}). The detected change-point is at n = 517.

Then, the Hotelling’s T 2 test is used to check whether the means of the two groups of transformed

data with the observation times in [501,516] and [517,600], respectively, are significantly different,

and the resulting p-value is 1.568×10−3. So, we conclude that the two group means are significantly

different, and a process mean shift at the time n = 517 is then confirmed which is denoted by the

dotted vertical lines in Figure 9. Therefore, among the eight control charts, the signal by NP-

CUSUM may not be reliable as explained above and the first signal by EWMA-Q, which is denoted

by the dashed vertical lines in Figure 9, is the earliest among the remaining seven charts in this

example. As a side note, from Figure 9, it seems that the shifts of the three quality variables have

different signs (i.e., the first quality variable has a positive shift while the second and third ones

have negative shifts), which explains why the chart EWMA-P is ineffective in this example, as

demonstrated by the simulation results shown in Figure 5.

5 Concluding Remarks

Sequential monitoring of multivariate processes when their IC distributions cannot be described

well by parametric forms is an important and challenging research problem. There have been some

existing discussions on this topic. One existing approach is to use the ordering information among

process observations or data categorization for constructing nonparametric control charts. Because

much information in the original process observations would be lost by considering data ordering

or data categorization, the effectiveness of these nonparametric charts would be compromised.

Another approach is to use the conventional control charts with their procedure parameters chosen
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Figure 10: Control charts for monitoring the last 100 process observations shown in Figure 9. In

each plot, the horizontal dotted line denotes the control limit of the related control chart.

properly. However, because it is often unknown in advance how different between the actual IC

process distribution and a parametric (e.g., normal) distribution, implementation of this approach

is difficult and the resulting control chart may not be effective for detecting relatively large shifts. In

this paper, we made another research effort to solve this challenging process monitoring problem. In

the previous sections, we have described a general framework for robust monitoring of multivariate

processes with serially correlated data, based on data decorrelation, data transformation, and data

integration. Two new control charts (i.e., EWMA-P and EWMA-Q) are suggested by using two

different approaches of data integration. Because the new robust process monitoring framework

is flexible, it should be able to provide a powerful tool for many process monitoring applications.

Based on intensive numerical studies, we conclude that both charts are reliable to use, the chart

EWMA-P may not be effective for detecting shifts close to the ones satisfying Equation (6), and

the chart EWMA-Q should be effective for detecting any shifts. Thus, the chart EWMA-Q is

recommended to use in practice if there is no prior information on the future shift direction.

For the proposed robust process monitoring framework, there are still some issues to address

in the future. For instance, when the number of quality variables is large, the current process

monitoring charts EWMA-P and EWMA-Q may not be effective when shifts occur only in a small

number of quality variables. In such cases, some variable selection procedures might be helpful in
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constructing the related control chart (cf., Zou and Qiu 2009). In the current version of the proposed

robust process monitoring framework, it is assumed that possible serial correlation in the observed

data is short-ranged and stationary. These assumptions should be reasonable in some applications.

But, in some other applications, serial correlation may not be stationary and/or short-ranged. As

a matter of fact, it has been confirmed that some processes in practice contain long-range serial

correlation (cf., Beran 1992, Giraitis et al., 2012). In such cases, estimation of serial correlation

becomes challenging. One possible approach is to use the covariance matrix function and estimate

it by a kernel smoothing approach (cf., Xie and Qiu 2023). All these issues will be studied carefully

in our future research.

Supplementary Materials

ComputerCodesAndData.zip: This zip file contains some computer codes to implement the

proposed method and the real data used in the paper.

supplement.pdf: This supplementary file contains the proof of the result in Proposition 1.
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