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Abstract

In applications, most processes for quality control and management are multivariate. Thus,

multivariate statistical process control (MSPC) is an important research problem and has been

discussed extensively in the literature. Early MSPC research is based on the assumptions that

process observations at different time points are independent and they have a parametric dis-

tribution (e.g., Gaussian) when the process is in-control (IC). Recent MSPC research has lifted

the “parametric distribution” assumption, and some nonparametric MSPC charts have been

developed. These nonparametric MSPC charts, however, often requires the “independent pro-

cess observations” assumption, which is rarely valid in practice because serial data correlation

is common in a time series data. In the literature, it has been well demonstrated that a control

chart who ignores serial data correlation would be unreliable to use when such data correlation

exists. So far, we have not found any existing nonparametric MSPC charts that can accommo-

date serial data correlation properly. In this paper, we suggest a flexible nonparametric MSPC

chart which can accommodate stationary serial data correlation properly. Numerical studies

show that it performs well in different cases.

Key Words: Data correlation; Decorrelation; Moment estimation; Nonparametric charts; Sta-

tionary data correlation; Statistical process control.

1 Introduction

Statistical process control provides a powerful tool for quality control and monitoring of longi-

tudinal processes (Hawkins and Olwell 1998, Montgomery 2012, Qiu 2014). In practice, to measure

the quality of a process, multiple quality variables are usually needed. So, multivariate statistical

process control (MSPC) is an important research problem. This paper aims to develop a gen-

eral multivariate control chart that would be reliable to use when process observations are serially

correlated and process distribution is nonparametric.
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Because of its importance, MSPC has been discussed extensively in the literature. Early

MSPC methods require the assumptions that multivariate process observations are independent at

different time points and the in-control (IC) process distribution is multivariate normal or another

parametric distribution (e.g., Crosier 1988, Hawkins 1991, Healy 1987, Lowry et al. 1992, Tracy et

al. 1992). In practice, the assumed parametric distribution would be rarely valid and consequently

the above-mentioned MSPC charts would be unreliable to use. To overcome that limitation, more

recent MSPC research has focused on developing nonparametric MSPC charts that does not require

the parametric distribution assumption. See, for instance, Boone and Chakraborti (2012), Chen

et al. (2016), Holland and Hawkins (2014), Liu (1995), Qiu (2008, 2018, 2020), Qiu and Hawkins

(2001, 2003), Zou and Tsung (2011), Zou et al. (2012), and the references cited therein. These

methods, however, all assume that process observations are independent at different time points.

In applications, serial data correlation is common in time series data. Thus, that assumption

would be rarely valid. In the literature, it has been well demonstrated that control charts could

be unreliable to use if they ignore serial data correlation in the observed data (e.g., Apley and

Lee 2008, Li and Qiu 2020, Qiu et al. 2020, Runger 2002). Therefore, it is critically important

to develop nonparametric MSPC charts that can accommodate serial data correlation. So far,

we could not find such nonparametric MSPC charts in the literature yet. This paper aims to fill

the gap by proposing a general multivariate CUSUM chart for online process monitoring, which

can accommodate stationary serial data correlation without imposing any parametric form on the

IC process distribution. This chart only requires a small-to-moderate IC dataset. Thus, it is

convenient to use in applications. Numerical studies show that it works well in various different

cases considered.

The remaining parts of the article is organized as follows. Our proposed nonparametric MSPC

chart is described in detail in Section 2. Its numerical performance is evaluated in Section 3 by sev-

eral simulation examples. Then, the chart is applied to a real-data example about a semiconductor

manufacturing process in Section 4. Several remarks conclude the paper in Section 5.

2 Nonparametric MSPC Chart For Monitoring Serially Corre-

lated Data

Our proposed chart focuses mainly on online monitoring of p-dimensional processes, where

p > 0 is an interger. Let the sequence of process observations under sequential monitoring be

{Xn = (Xn1, Xn2, . . . , Xnp)
′, n ≥ 1}. One assumption needed by our proposed chart is that the

serial data correlation in the observed data is stationary when the process is IC, which implies that
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the covariance matrix γ(s) = Cov(Xi,Xi+s), for any i, depends only on s in such cases. This

assumption should be reasonable because it is believed that the IC process distribution, including

the IC serial data correlation, does not change over time in many applications, including the pro-

duction lines in the manufacturing industry. Regarding the serial data correlation of an IC process,

it is also assumed that there is an integer w ≥ 1 such that γ(s) = 0 when s > w. This assumption

implies that the correlation between two observations would disappear if the related observation

times are far away, which should be (approximately) true in many applications. For online process

monitoring, the IC process distribution is assumed to be unknown and nonparametric. Instead, we

assume there is a small-to-moderate set of IC observations XIC = {X−m0+1,X−m+2, . . . ,X0} with

the sample size of m, collected before online process monitoring. Such IC data are often available

in manufacturing applications, after Phase-I process monitoring. See a related discussion in Section

1.3 of Qiu (2014).

Our proposed chart is a self-starting nonparametric CUSUM chart. As a self-starting chart,

certain IC parameters used in the chart need to be estimated initially from the IC data and then the

initial estimates can be constantly updated during online process monitoring (cf., Hawkins 1987).

To this end, the IC mean µ and the IC variance/covariance matrices {γ(s), 0 ≤ s ≤ w} are first

estimated from the IC data XIC as follows: for any 0 ≤ s ≤ w, let

µ̂(0) =
1

m0

0∑
i=−m0+1

Xi,

γ̂(0)(s) =
1

m0 − s

−s∑
i=−m0+1

(
Xi+s − µ̂(0)

)(
Xi − µ̂(0)

)′
.

Then, the IC data can be de-correlated recursively by the following algorithm that is based on the

Cholesky decomposition of the covariance matrices:

Recursive Algorithm for Decorrelating the Multivariate IC Data

• When i = −m0 + 1, the de-correlated and standardized observation is defined to be X∗i =

[γ̂(0)(0)]−1/2(Xi − µ̂(0)), and an auxiliary parameter b is set to be 1.

• For i > −m0+1, the estimated covariance matrix of (X ′i−b+1,X
′
i−b+2, . . . ,X

′
i)
′ can be defined

to be

Σ̂i,i =


γ̂(0)(0) · · · γ̂(0)(b)

...
. . .

...

[γ̂(0)(b)]′ · · · γ̂(0)(0)

 =

Σ̂i−1,i−1 σ̂i−1

[σ̂i−1]
′ γ̂(0)(0)

 ,
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where σ̂i−1 = ([γ̂(0)(b)]′, . . . , [γ̂(0)(1)]′)′. Then, the ith de-correlated and standardized obser-

vation is defined to be

X∗i = D̂
−1/2
i

{
Xi − µ̂(0) − σ̂′i−1Σ̂−1i−1,i−1êi−1

}
,

where D̂i = γ̂(0)(0)− σ̂′i−1Σ̂
−1
i−1,i−1σ̂i−1, and êi−1 = ((Xi−b− µ̂(0))′, . . . , (Xi−1− µ̂(0))′)′. Let

b = min(b+ 1, w) and i = i+ 1. Repeat this step until i > 0.

In the above decorrelation algorithm, the following Cholesky decomposition has been used. Let

Σi,i be the covariance matrix of ei = ((Xi−b+1 −µ(0))′, (Xi−b+2 −µ(0))′, . . . , (Xi −µ(0))′)′. Then,

Σi,i has the Cholesky decomposition: LiΣi,iL
′
i = Ui, where Li =

 Li−1 0

−σ′i−1Σ
−1
i−1,i−1 Ip×p

,

Ui = diag(Di−b+1, . . . ,Di), and Di = γ(0)(0)−σ′i−1Σ
−1
i−1,i−1σi−1. Therefore, the covariance matrix

of U
−1/2
i Liei is the identity matrix, and X∗i defined above is the vector of its last p elements, after

µ(0) and γ(0)(0) are replaced by their estimates and {Di} are replaced by {D̂i}. Thus, if µ̂(0) and

{γ̂(0)(s), 0 ≤ s ≤ w} were the true IC process mean and variance/covariance matrices, then the

de-correlated and standardized observations {X∗i , i = −m0 + 1, . . . , 0} would be uncorrelated and

each would have 0 mean and identity variance matrix. Because the sample size m0 of the IC data

could be small, µ̂(0) and {γ̂(0)(s), 0 ≤ s ≤ w} may not be accurate estimates of the IC process

mean and variance/covariance matrices. To overcome this limitation, a self-starting control chart is

suggested below, in which the estimates of the IC process mean and variance/covariance matrices

are constantly updated.

To online monitor the multivariate process observations {Xn, n ≥ 1}, at the current time point

n, the estimates of the IC mean µ and the IC variance/covariance matrices {γ(s), 0 ≤ s ≤ w} can

be updated recursively as follows: for n ≥ 1 and 0 ≤ s ≤ w,

µ̂(n) =
1

m0 + n
Xn +

m0 + n− 1

m0 + n
µ̂(n−1), (1)

γ̂(n)(s) =
1

m0 + n− s
(Xn − µ̂(n))(Xn−s − µ̂(n)) +

m0 + n− s− 1

m0 + n− s
γ̂(n−1)(s). (2)

Next, we need to decorrelate and standardize the process observations {Xn, n ≥ 1} properly so

that a conventional control chart can be applied to them since the conventional control chart would

not be appropriate to use if process observations are correlated. However, in cases when n is large,

the computation involved in decorrelating Xn and its previous process observations could be quite

intensive. To reduce computation, we suggesting making use of the restarting mechanism of a

CUSUM chart that all previous observations up to the current time point n can be ignored in

subsequent process monitoring if the observed data up to n suggest that a process distributional

shift is unlikely. Based on the restarting mechanism of the CUSUM chart, Chatterjee and Qiu
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(2009) defined the so-called spring length Tn which was the number of observation times between

the current time point n and the last time point when the CUSUM charting statistic is zero. By

this idea, at the current time point n, we only need to decorrelate Xn with the previous Tn−1

observations for subsequent process monitoring. From our numerical experience, Tn−1 is often a

single digit integer number. Thus, it indeed can reduce computation in a substantial way. At

the time n, data decorrelation between Xn and {Xn−Tn−1 , . . . ,Xn−1} can be achieved using a

procedure similar to the one described above for decorrelating the IC data.

If the original observationsX1,X2, . . . are normally distributed, then the decorrelated and stan-

dardized observations, denoted as X1
∗,X2

∗, . . ., would be roughly i.i.d. and normally distributed

as well. In such cases, the conventional multivariate charts, such as the conventional multivariate

CUSUM and EWMA charts (e.g., Crosier 1988, Lowry et al. 1992) should be appropriate to use

for monitoring the decorrelated and standardized observations. However, the IC process distribu-

tion could be substantially different from a normal distribution. In such cases, the distribution

of the decorrelated and standardized observations could be substantially different from a normal

distribution too. Consequently, the conventional charts would be unreliable and their results could

be misleading in such cases (cf., the related discussion in Section 1). For this reason, we suggest

using the multivariate nonparametric CUSUM chart that was originally discussed in Qiu (2008)

for monitoring the decorrelated and standardized observations X1
∗,X2

∗, . . .. Construction of this

chart is described below.

Qiu (2008) sugegsted a general framework to construct a nonparametric control chart. By this

framework, original quality variables can be categorized first. Then, the IC relationship among

multiple categorized quality variables can be described by using a log-linear model. Based on

the IC distribution described by this model, a nonparametric control chart can be constructed by

comparing the observed count of the categorized quality variables in a given category with the

corresponding expected count, which is similar to the idea of the Pearson’s ch-square test (cf.,

Agresti 2013). By this framework to construct a nonparametric control chart, the decorrelated and

standardized process observations X∗n = (X∗n1, X
∗
n2, . . . , X

∗
np)
′ should be categorized as follows:

Y ∗nj = I(X∗nj > m∗j ), for j = 1, 2, . . . , p, (3)

where m∗j is the IC median of X∗nj , for j = 1, 2, . . . , p, and I(u) is the indicator function that equals

0 and 1 when u is “false” and “true”, respectively. Let Y ∗n = (Y ∗n1, Y
∗
n2, . . . , Y

∗
np)
′. Then, Y ∗n is the

categorized version of X∗n. When the process is IC, let

f
(0)
j1,...,jp

= P (Y ∗n1 = j1, . . . , Y
∗
np = jp), for j1, . . . , jp = 0, 1,

and f (0) be a long vector with elements {f (0)j1,...,jp
, j1, . . . , jp = 0, 1}. Then, the IC distribution

5



f (0) can be estimated from the IC dataset, using the log-linear modeling approach that can be

accomplished by using the R-function log-lin(). Let

gj1,...,jp(n) = I(Y ∗n1 = j1, . . . , Y
∗
np = jp), for j1, . . . , jp = 0, 1,

g(n) be the long vector with elements {gj1,...,jp(n), j1, . . . , jp = 0, 1} arranged in the same order as

that in f (0). Then, gj1,...,jp(n) is the observed count of the (j1, . . . , jp) and f
(0)
j1,...,jp

is the expected

count. By combining the construction of a multivariate CUSUM chart (cf., Crosier 1988) and the

Pearson’s ch-square test, we consider the following CUSUM charting statistic:

Cn = (Sobs
n − Sexp

n )′ [diag(Sexp
n )]−1 (Sobs

n − Sexp
n ), (4)

where 
Sobs
n = Sexp

n = 0, if Dn ≤ k,

Sobs
n = (Sobs

n−1 + g(n))(Dn − k)/Dn, if Dn > k,

Sexp
n = (Sexp

n−1 + f (0))(Dn − k)/Dn, if Dn > k,

Dn =
[
(Sobs

n−1 − S
exp
n−1) + (g(n)− f (0))

]′ [
diag(Sobs

n−1 + f (0))
]−1 [

(Sobs
n−1 − S

exp
n−1) + (g(n)− f (0))

]
,

diag(a) denotes a diagonal matrix with the diagonal elements being those in a, and k is an allowance

parameter. Then, the chart gives a shift if

Cn > h, (5)

where h > 0 is a control limit. In (4), Sobs
n is the vector of cumulative observed counts by the

current time point n, and Sexp
n is the vector of cumulative expected counts. Thus, Cn measures

the difference between the cumulative observed counts and the cumulative expected counts, while

the re-starting mechanism of the CUSUM chart is maintained by using the allowance parameter k

when defining Sobs
n and Sexp

n .

In the data categorization process (cf., (3)), the IC medians {m∗j , j = 1, 2, . . . , p} need to be

obtained in advance. These parameters can be first estimated from the IC data by the sample

medians, and then the estimates can be updated recursively at the current time point n if the

CUSUM chart (4)-(5) confirms that the process is IC at n. More specifically, if the chart (4)-(5) does

not give a signal at time n, then X∗n can be combined with the previous IC dataset, and the sample

medians could be updated recursively to improve their accuracy in estimating the corresponding

IC medians {m∗j , j = 1, 2, . . . , p}. Let the sample medians from the decorrelated and standardized

original IC data X∗IC = {X∗−m0+1,X−m0+2∗ , . . . ,X
∗
0} be (m̂∗)(0) = ((m̂∗1)

(0), (m̂∗2)
(0), . . . , (m̂∗p)

(0))′,

the sample medians from the combined IC data up to the previous time point n− 1 be (m̂∗j )
(n−1),

for j = 1, 2, . . . , p, and the decorrelated and standardized process observations by time n− 1 that
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are immediately before and after (m̂∗j )
(n−1) be X∗j,b and X∗j,a, respectively. Then, the sample median

of the jth component by time n, denoted as (m̂∗j )
(n), is one of {X∗j,b, (m̂∗j )(n−1), X∗j,a}, depending

on whether (m0 + n− 1)/2 and (m0 + n)/2 specify different observations at times n− 1 and n and

which partitioning interval the new decorrelated and standardized observation X∗nj belongs to.

The proposed CUSUM chart for monitoring serially correlated multivariate data with unknown

and nonparametric IC process distribution can then be summarized below.

Proposed CUSUM Chart for Monitoring Serially Correlated Multivariate Data

• When n = 1, define the standardized observation to be X∗n = [γ̂(0)(0)]−1/2(Xn − µ̂(0)).

Calculate the charting statistic Cn using (4), in which the vector of sample medians of the

decorrelated and standardized IC dataset, (m̂∗)(0), is used. The chart gives a signal if (5) is

true.

• When n > 1, if Tn−1 = 0, then define X∗n = [γ̂(n−1)(0)]−1/2(Xn − µ̂(n−1)). Otherwise, the

estimated covariance matrix of (X ′n−Tn−1
,X ′n−Tn−1+1, . . . ,X

′
n)′ can be defined to be

Σ̂n,n =


γ̂(n−1)(0) · · · γ̂(n−1)(Tn−1)

...
. . .

...

γ̂(n−1)(Tn−1)
T · · · γ̂(n−1)(0)

 =

Σ̂n−1,n−1 σ̂n−1

σ̂′n−1 γ̂(n−1)(0),

 ,

where σ̂n−1 = (γ̂(n−1)(Tn−1)
′, . . . , γ̂(n−1)(1)′)′, and µ̂(n−1) and γ̂(n−1)(s), for s = 0, 1, . . . , Tn−1,

are defined in (1) and (2). Then, the decorrelated and standardized observation at time n is

defined to be

X∗n = D̂−1/2n

{
Xn − µ̂(n−1) − σ̂′n−1Σ̂−1n−1,n−1ên−1

}
,

where D̂n = γ̂(n−1)(0)− σ̂′n−1Σ̂
−1
n−1,n−1σ̂n−1, and ên−1 = ((Xn−Tn−1 − µ̂(n−1))′, . . . , (Xn−1 −

µ̂(n−1))′)′. Then, we calculate Cn by (4), in which the updated vector of median estimates,

(m̂∗)(n) = ((m̂∗1)
(n), (m̂∗2)

(n), . . . , (m̂∗p)
(n))′, needs to be used. If Cn = 0, then define Tn = 0.

Otherwise, define Tn = min(Tn−1 + 1, w). The chart gives a signal when (5) is true.

This chart is called G-MCUSUM chart hereafter, where “G” represents “general”. To simplify the

computation of the above procedure, the following recursive formula should be useful: for n ≥ 2,

Σ−1n,n =

 Σ−1n−1,n−1 + Σ−1n−1,n−1σn−1D
−1
n σ′n−1Σ

−1
n−1,n−1, −Σ−1n−1,n−1σn−1D

−1
n

−D−1n σ′n−1Σ
−1
n−1,n−1, D−1n

 .

To compute Σ̂−1n,n by the above recursive formula, we can replace the related quantities on the

right-hand-side by their estimates.
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In the CUSUM chart (4)-(5), the allowance constant k is usually pre-specified together with

the IC average run length ARL0. Given the values of k and ARL0, h can be computed from

the IC dataset by a bootstrap resampling approach (cf., Chatterjee and Qiu 2009). Because the

process observations at diferent time points could be serially correlated, we suggest using a block

bootstrap procedure (cf., Lahiri 2003) that is described below. The categorized IC data after data

decorrelation and standardization are denoted as {Yt, t = −m0+1, ..., 0}. Then, the block bootstrap

procedure with the block size of l consists of the following several steps:

Step 1: There are a total of m0− l+1 possible blocks of length l. The kth block is {Y−m0+k+i, 0 ≤ i ≤
l − 1}, for k = 1, 2, . . . ,m0 − l + 1. Randomly select a sequence of integers with replacement

from the set {1, 2, . . . ,m0 − l + 1}. Then, the corresponding blocks of IC data are put one

after another according to the selection order, to form a bootatrap sample of IC data.

Step 2: For a given control limit h, apply the CUSUM chart (4)-(5) to the bootstrap sample obtained

in Step 1. The run length is defined as RL0(h) = min{i : Ci > h}.

Step 3: Repeat Steps 1 and 2 for B times, and define ARL0(h) to be the sample average of the B

values of RL0(h) obtained from the B replicated simulations.

Step 4: Use the bisection search algorithm to search for the value of h such that ARL0(h) reaches

the pre-specified value of ARL0 (cf., Qiu 2008).

In all simulation examples in Section 3, we use B = 1, 000 in the block bootstrap procedure.

Also, based on an extensive numerical study, the block size l can be chosen between 40 and 50. The

performance of the proposed chart G-MCUSUM is reasonably good when l is chosen in that range

under various serial data correlation structure. So, we choose l = 50 in Section 3. When describing

serial data correlation, it has been assumed that the correlation between two process observations

can be ignored if their observation times are at least w + 1 points apart. In applications, w is

often unknown and it needs to be pre-specified beforehand in order to use the proposed method.

Of course, selection of w is usually application-specific. Theoretically, w should be chosen large to

avoid mis-specification of the serial data correlation. But, the estimates of {γ(s), 0 ≤ s ≤ w} may

not be reliable when w is chosen too large, especially in the initial period of process monitoring,

because of their large variability. Based on our numerical experience, our proposed method should

perform reasonably well under a wide range of serial data correlation structures if we choose w in

the range [15, 25]. In all simulation examples in Section 3, we choose w = 20.
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3 Numerical Studies

We present some simulation results in this section about the performance of the proposed

control chart G-MCUSUM. For comparison purposes, the following five alternative methods are

also considered. They should represent the state-of-the-art nonparametric MSPC charts in the

literature well.

• Nonparameteric multivariate CUSUM control chart suggested in Qiu (2008), denoted as NP-

MCUSUM. This chart is based on data categorization and it is a distribution-free chart. But,

it cannot accommodate serial data correlation. Its IC parameters are estimated from the IC

data, but the estimates are not updated recursively during online process monitoring. Thus,

it is not a self-starting chart.

• Cumulative sum of T chart that was suggested by Crosier (1988), denoted as COT. This

method applies the conventional upward CUSUM chart to the sequence {Tn, n ≥ 1}, where

T 2
n = (Xn − µ̂(0))′[γ̂(0)(0)]−1(Xn − µ̂(0)) is the Hotelling’s chi-square statistic.

• A modified version of COT, denoted as SC-COT, which is the same as COT, except that

data decorelation is applied to each quality variable separately and different quality variables

are assumed independent.

• The multivariate control chart discussed in Kalgonda and Kulkarni (2004), denoted as Z. This

chart was designed for detecting mean shifts of serially correlated multivariate processes. At

the current time point n, the charting statistic of Z is defined as Zn = max1≤j≤p |Znj |, where

Znj = (Xnj − µ̂(0)j )/
√
γ̂
(0)
jj (0), for j = 1, 2, . . . , p and n ≥ 1, where µ̂

(0)
j is the jth element of

µ̂(0) and γ̂
(0)
jj (0) is the (j, j)th element of γ̂(0)(0).

• A simplified version of the chart G-MCUSUM, denoted as G1-MCUSUM, which is the same

as G-MCUSUM, expect that estimates of all IC parameters from the IC data are not updated

recursively during online process monitoring.

In the simulation studies, the following four IC models are considered. Without loss of gener-

ality, in all cases considered, we set the number of quality variables to be p = 3.

Case I Process observations {X1,X2, . . .} are i.i.d. with the IC distribution N3(0, I3×3), where

I3×3 is the 3× 3 identity matrix.

Case II Process observations {Xn = (Xn1, Xn2, Xn3)
′, n ≥ 1} are generated as follows. Xn1

follows the AR(1) model Xn1 = 0.1Xn−1,1 + εn, for n ≥ 1, where X01 = 0 and {εn} are
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i.i.d. random errors with the N(0, 0.12) distribution. Xn2 and Xn1 are associated, and Xn2 =

Xn1 + 0.1ξ, where ξ is a standardized version of a random variable from the distribution χ2
3

and ξ is independent of {Xn1}. Xn3 and Xn1 are independent, and Xn3 follows the AR(1)

model Xn3 = 0.2Xn−1,3 + εn, for n ≥ 1, where X03 = 0 and {εn} are i.i.d. random errors with

the N(0, 0.12) distribution.

Case III Process observations {Xn = (Xn1, Xn2, Xn3)
′, n ≥ 1} are generated as follows. Xn1

follows the AR(1) model Xn1 = 0.5Xn−1,1 + εn, for n ≥ 1, where X01 = 0 and {εn} are

i.i.d. random errors with the N(0, 0.12) distribution. Xn2 and Xn1 are associated, and Xn2 =

Xn1 + 0.1ξ, where ξ is a standardized version of a random variable from the distribution χ2
3

and ξ is independent of {Xn1}. Xn3 and Xn1 are independent, and Xn3 follows the AR(1)

model Xn3 = −0.5Xn−1,3 + εn, for n ≥ 1, where X03 = 0 and {εn} are i.i.d. random errors

with the N(0, 0.12) distribution.

Case IV Process observations follow the model Xn = (1, 2, 1)′ + AXn−1 + εn, for n ≥ 2, where

{εn} are i.i.d. with the N3(0, B) distribution, where

A =


0.5 0 0

0 0.7 0

0 0 0.2

 , B =


1 0.2 0.2

0.2 1 0.2

0.2 0.2 1

 .
Case I described above is the conventional situation considered in the MSPC literature that mul-

tivariate process observations are i.i.d. with a normal IC distribution. Cases II and III consider

the scenarios when process observations are serially correlated and two quality variables (i.e., Xn1

and Xn2) are associated as well. The main difference between Cases II and III is that the serial

data correlation is stronger in Case III than that in Case II. Case IV considers a scenario when all

quality variables are serially correlated and associated with each other as well.

3.1 IC performance

We first evaluate the IC performance of the related control charts. In the simulation study,

the IC sample size m0 is first fixed at 500, and the nominal ARL0 value is fixed at 200 in each

control chart. In the three CUSUM charts G-MCUSUM, G1-MCUSUM, NP-CUSUM, the allowance

constants are all chosen to be 0.01. In the COT and SC-COT charts, the allowance constants are

both chosen to be 1.5, as suggested by Crosier (1988) for the COT chart. The control limits of

the charts G-MCUSUM and G1-MCUSUM are both computed by the block bootstrap procedure

described at the end of Section 2 with the block size of 50. The control limits of the other four
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charts NP-CUSUM, COT, SC-COT and Z are computed as discussed in the papers Qiu (2008),

Crosier (1988) and Kalgonda and Kulkarni (2004). The actual ARL0 value of a control chart is

computed as follows. First, an IC data of size m0 is generated. Then, the control chart is applied

to a sequence of 2,000 process observations for online process monitoring, and the run length (RL)

value is recorded. This step is repeated for 1,000 times and the average of the 1,000 RL values is

calculated as an estimate of the ARL0 value. Then, the entire simulation, from generation of the IC

data to calculation of the ARL0 estimate, is repeated for 100 times. The average of the 100 ARL0

estimates is used as the calculated actual ARL0 value. The standard error of the calculated actual

ARL0 value can also be calculated. The calculated actual ARL0 values of the six control charts are

presented in Table 1, along with their standard errors (in parentheses). From the table, it can be

seen that (i) G1-MCUSUM, NP-CUSUM, COT, SC-COT and Z do not perform well in most cases

considered, and (ii) G-MCUSUM is reliable to use in all cases considered. The explanations for

the result (i) are that 1) all the five alternative charts G1-MCUSUM, NP-CUSUM, COT, SC-COT

and Z are not self-starting and their performance would be affected by relatively poor accuracy

of the IC parameter estimates obtained from the IC data, and 2) they cannot accommodate data

correlation well. As a comparison, the proposed chart G-MCUSUM overcomes both of these two

limitations.

Table 1: Actual ARL0 values and their standard errors (in parentheses) of six control charts when

their nominal ARL0 values are fixed at 200 and the IC sample size m0 is fixed 500.

G-MCUSUM G1-MCUSUM NP-CUSUM COT SC-COT Z

Case I 204 (4.06) 130 (2.98) 124 (2.89) 216 (4.46) 185 (4.06) 255 (5.01)

Case II 196 (3.49) 105 (2.09) 68 (1.99) 218 (3.40) 189 (4.21) 274 (5.41)

Case III 195 (4.16) 104 (2.15) 42 (1.46) 166 (3.08) 267 (5.62) 296 (5.01)

Case IV 195 (3.52) 114 (2.67) 37 (1.61) 173 (3.20) 289 (5.85) 247 (4.80)

The performance of the proposed chart G-MCUSUM could depend on the IC sample size m0.

To see how m0 affects the performance of G-MCUSUM, we let m0 change among 200, 300, 400, 500

and 1000, and the remaining setup is kept unchanged from those in the example of Table 1. The

calculated actual ARL0 values of G-MCUSUM are presented in Table 2. From the table, it can be

seen that the IC performance of G-MCUSUM when m0 = 200 or 300 is not quite reliable because

the differences between the actual and nominal ARL0 values are more than 10% of the nominal

ARL0 value in Cases I-IV. When m0 gets larger, the IC performance of G-MCUSUM gets more

reliable. Its IC performance is reliable in this example when m0 ≥ 500. Of course, the necessary

IC sample size would depend on the dimensionality of the process under monitoring. When the

dimension p gets larger, the necessary value of m0 should be larger as well. To see this, we perform
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a small simulation study after modifying Case IV into Case IV∗ below.

Case IV∗ Assume that observations of a 10-dimensional process follow the model

Xn = (1, 2, 1, 1, 2, 1, 1, 2, 1, 1)′ +A∗Xn−1 + εn, for n ≥ 2,

where {εn} are i.i.d. with the N10(0, B
∗) distribution, A∗ is a diagonal matrix with the

diagonal elements being 0.5, 0.7, 0.2, 0.5, 0.7, 0.2, 0.5, 0.7, 0.2, 0.5, and B∗ is a 10 × 10

covariance matrix with all diagonal elements being 1 and all off-diagonal elements being 0.2.

In Case IV∗, when m0 changes among 500, 1000, 2000 and 3000 and other setups are the same as

those in the example of Table 2, the actual ARL0 values and their standard errors are presented in

Table 3. From the table, it can be seen that the necessary IC sample size should be 2000 or larger

in this example when p = 10.

Table 2: Actual ARL0 values and their standard errors (in parentheses) of G-MCUSUM when its

nominal ARL0 value is fixed at 200, p = 3, and the IC sample size m0 changes among 200, 300,

400, 500 and 1000.

m0 = 200 300 400 500 1000

Case I 283 (7.46) 269 (6.89) 238 (6.14) 204 (4.06) 202 (3.90)

Case II 250 (6.31) 236 (5.93) 220 (5.34) 196 (3.49) 198 (3.58)

Case III 271 (6.75) 230 (5.87) 214 (4.91) 195 (4.16) 199 (3.98)

Case IV 236 (6.04) 224 (5.67) 212 (4.67) 195 (3.52) 198 (3.62)

Table 3: Actual ARL0 values and their standard errors (in parentheses) of G-MCUSUM when its

nominal ARL0 values are fixed at 200, p = 10, and the IC sample size m0 changes among 500,

1000, 2000 and 3000.

m0 = 500 1000 2000 3000

Case IV∗ 327 (7.65) 242 (5.87) 218 (4.96) 202 (3.76)

3.2 OC performance

Next, we study the OC performance of the related control charts in cases when p = 3, m0 = 500

and ARL0 = 200. To make the comparison meaningful, we intentionally adjust the control limits of

the charts G1-MCUSUM, NP-MCUSUM, COT, SC-COT and Z so that their actual ARL0 values

equal 200 in all cases considered. In the simulation study, we assume that a shift in each component
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of Xn occurs at the beginning of Phase II monitoring. In cases I, II and III, the shift size is δσX ,

where σX is the IC standard deviation of the specific component and δ changes from -1.0 to 1.0

with a step of 0.25. In case IV, the shift size is δ that changes from -1.0 to 1.0 with a step of 0.25.

Because different control charts have different procedure parameters (i.e., the allowance constant

of the five multivariate CUSUM-type charts) and their performance may not be comparable if

their parameters are set to be the same, we choose the allowance constant of each of G-MCUSUM,

G1-MCUSUM, NP-MCUSUM, COT and SC-COT so that its calculated ARL1 value reaches the

minimum for detecting a specific shift. Namely, we compare their optimal OC performance in this

part. Because the chart Z is a Shewhart chart, it does not have such a procedure parameter to

choose. The actual ARL1 values are computed in the same way as that for computing ARL0,

except that the Phase II process observations have a mean shift at the beginning of online process

monitoring. The calculated ARL1 values of the six charts in various cases are shown in Figure 1.

From the plots in the figure, it can be seen that i) the proposed method G-MCUSUM performs the

best in almost all cases considered, ii) G1-MCUSUM performs slightly better than G-MCUSUM

in cases when the shift is small, but its performance becomes worse when the shift gets larger,

and iii) the other four charts NP-MCUSUM, COT, SC-COT and Z do not perform well in all

cases considered. The conclusions i) and iii) are intuitively reasonable because a) the alternative

charts NP-MCUSUM, COT, SC-COT and Z cannot accommodate data correlation properly and

their performance would be affected by the IC data size since some of their IC parameters need

to be estimated from the IC data, and b) the proposed chart G-MCUSUM can accommodate data

correlation and its dependence on the IC data size is smaller since it is a self-starting chart. The

conclusion ii) can be explained by the fact that the self-starting chart G-MCUSUM could miss some

shifts, especially when the shifts are small. See a related discussion in Section 4.5 of Qiu (2014). In

addition, it has been well demonstrated in the literature that data decorrelation could attenuate

the shift effect and make the related control chart less sensitive to a shift (Apley and Tsung 2002).

This is the so-called “masking” effect. You and Qiu (2019) showed that such a “masking” effect

can be reduced by using the spring length Tn in data decorrelation (cf., the related discussion

after Expression (2) in Section 2), since Tn is often a small integer number and thus only a small

number of previous process observations are involved in the data decorrelation at the current time

point n. Results in Figure 1 have partly confirmed this conclusion, since G-MCUSUM outperforms

NP-MCUSUM in all cases considered and the latter did not consider data decorrelation.
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Figure 1: Calculated optimal ARL1 values of the six control charts when p = 3, ARL0 = 200,

m0 = 500, and the procedure parameters are chosen in the way such that the calculated ARL1

values reach the minimum for detecting a given shift.

The OC performance of the chart G-MCUSUM could be affected by the IC data size m0. In

the next example, we let m0 change among 200, 500, 1,000 and 2,000, and other chart setups

remain the same as those in the example of Figure 1. The calculated optimal ARL1 values of the

chart are shown in Figure 2. From the plots, it can be seen that i) the larger the value of m0, the

better the performamce of G-MCUSUM, ii) the chart’s performance is quite stable in most cases

when m0 ≥ 500, and iii) the chart’s performance is reasonably stable in all cases considered when

m0 ≥ 1, 000.
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Figure 2: Calculated optimal ARL1 values of the chart G-MCUSUM when ARL0 = 200, m0 =

200, 500, 1000 or 2000, and the allowance constant is chosen such that the calculated ARL1 value

reaches the minimum for detecting a given shift.

In the next example, we study the impact of k on the performance of G-MCUSUM by changing

the k value among {0.001, 0.005, 0.01, 0.05, 0.1} and keeping the other chart setups the same as those

in the example of Figure 1. The calculated ARL1 values of the chart G-MCUSUM are shown in

Figure 3. From the plots, we can see that the OC performance of G-MCUSUM is quite stable in

all cases considered when k ≤ 0.01, and a small k value (e.g., 0.001) is good for detecting small

shifts (e.g., the shifts ±0.25 in Case II).
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Figure 3: Calculated ARL1 values of the chart G-MCUSUM when ARL0 = 200, m0 = 500, and k

changes among {0.001, 0.005, 0.01, 0.05, 0.1}.

4 A Real Data Example

In this section, we illustrate the proposed control chart using a real-data example about the

semiconductor manufacturing process data that are maintained by the University of California,

Irvine Machine Learning Repository. The dataset was collected from July 2008 to October 2008

by a computerized system that automatically manages the semiconductor manufacturing process.

The process consists of a series of sequential process steps in which layers of materials are deposited

on substrates, doped with impurities, and patterned using photolithography to produce sophisti-
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cated integrated circuits and devices. The key quality variables for each step are under constant

surveillance by the monitoring of data streams collected from sensors at many key measurement

points (May and Spanos 2006). The variables may characterize physical parameters, such as film

thickness and uniformity, or electrical parameters, such as resistance and capacitance. The data

used in this section consist of 500 observations of three quality variables, denoted as V1, V2 and

V3. The data are shown in Figure 4. From the plots in the figure, it can be seen that the first 400

observations are quite stable over time. Thus, they are used as the IC data. For the IC data, the

Shapiro test for checking the normality assumption gives a p-value of 2.2×10−16, which implies that

the distribution of the IC data is significantly different from a normal distribution. Then, we use

the Durbin-Watson test for checking data autocorrelation in each quality variable. The test gives

p-values of 0.112, 1.297× 10−5, 3.178× 10−3, respectively, for the three variables. Thus, there is a

significant autocorrelation in the IC data for the second and third quality variables. The sample

correlation matrix of the IC data is computed to be
1 −0.041 −0.065

−0.041 1 0.144

−0.065 0.144 1

 .

The t-tests for checking whether the Pearson’s correlation correlations between quality variables

in the three pairs (V1,V2), (V1,V3) and (V2,V3) are 0 give p-values of 0.4154, 0.1930 and 0.0038,

respectively. Thus, there is a significant correlation between V2 and V3 in the IC data.
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Figure 4: Original observations of the semiconductor manufacturing process data. The vertical

dashed line in each plot separates the IC data from the Phase II process observations.

For this data, the charts NP-CUSUM, COT, SC-COT and Z may not be appropriate to use,

since they cannot accommodate data autocorrelation and the charts COT and Z require the nor-

mality assumption as well. As a comparison, the charts G-MCUSUM and G1-MCUSUM should

be appropriate to use, and the chart G-MCUSUM might have some advantages to detect relatively

large shifts, in comparison with G1-MCUSUM, since the former is a self-starting chart. Now, we

try to apply the six charts G-MCUSUM, G1-MCUSUM, NP-CUSUM, COT, SC-COT and Z to

this dataset for monitoring its last 100 observations. In all charts, we set ARL0 = 200. Their con-

trol limits are computed in the same way as that in the simulation studies presented in Section 3.

The allowance constant k in the three CUSUM charts G-MCUSUM, G1-MCUSUM, NP-CUSUM

is chosen to be 0.01, and the allowance constant k in the charts COT and SC-COT is chosen to

be 1.5, as suggested by Crosier (1988) for the COT chart. The six charts for monitoring the last

100 observations of the dataset are shown in Figure 5, where the dashed horizontal lines denote
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their control limits. From the plots, we can see that the charts G-MCUSUM, G1-MCUSUM, NP-

CUSUM, COT, SC-COT and Z give their first signals at the 23th, 26th, 26th, 31st, 65th and 62th

Phase II observation times, respectively. Therefore, the first signal by G-MCUSUM is the earliest

in this example, and the first signals by the other five charts are 3, 3, 8, 42 and 39 days later.

This example confirms that the proposed chart G-MCUSUM is effective in detecting distributional

shifts in this semiconductor manufacturing process data.

5 Concluding Remarks

MSPC is an important research problem since most processes for quality monitoring in practice

would concern multiple quality variables. In the literature, almost all existing MSPC methods

assume that process observations at different time points are independent, which is rarely valid

in practice. In the previous sections of this paper, we have described a new MSPC method that

can accommodate serial data correlation properly. It is a self-starting nonparametric chart, in the

sense that it is robust to the IC process distribution and does not require a large IC dataset to

set up its design. These features make it an ideal tool for MSPC applications. Numerical studies

presented in Sections 3 and 4 show that it performs well in different cases considered. This chart

is based on two mild assumptions. One is that the IC serial data correlation is startionary, and

the other one is that the correlation between two process observations becomes weaker and weaker

when the two observation times get farther apart. These two assumptions should be valid (at least

asymptotically) in most applications. But, there could be some processes in practice with long-

range data dependence (cf., Beran 1992). Some new MSPC methods are needed for handling such

applications. The proposed method is based on recursive data decorrelation and standardization

and on recursive update of the IC parameter estimates as well. The recursive nature makes the

computation relatively easy. But, in cases when the number of quality variables is very large, the

computing burden might become substantial. In such cases, some variable selection approaches

might be helpful (cf., Wang and Jiang 2009, Zou and Qiu 2009), which will be further explored in

our future research.
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