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Abstract

To monitor the incidence rates of cancers, AIDS, cardiovascular diseases, and other chronic

or infectious diseases, some global, national and regional reporting systems have been built to

collect/provide population-based data about the disease incidence. Such databases usually

report daily, monthly, or yearly disease incidence numbers at the city, county, state or country

level, and the disease incidence numbers collected at different places and different times are

often correlated: with the ones closer in place or time being more correlated. The correlation

reflects the impact of various confounding risk factors, such as weather, demographic factors,

life styles, and other cultural and environmental factors. Because such impact is complicated

and challenging to describe, the spatio-temporal (ST) correlation in the observed disease

incidence data has complicated ST structure as well. Furthermore, the ST correlation is

hidden in the observed data, and cannot be observed directly. In the literature, there has been

some discussion about ST data modeling. But, the existing methods either impose various

restrictive assumptions on the ST correlation that are hard to justify, or ignore partially or

entirely the ST correlation. This paper aims to develop a flexible and effective method for

ST disease incidence data modeling, using nonparametric local smoothing methods. This

method can properly accommodate the ST data correlation. Theoretical justifications and

numerical studies show that it works well in practice.
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1 Introduction

Chronic diseases, including cardiovascular diseases, account for 70% of all deaths in the

U.S., which is 1.7 million each year. In 2008 alone, cancer accounted for nearly $1 trillion

in economic losses from premature death and disability (Bloom et al. 2011). To monitor

the incidence of these deadly diseases, some global, national and regional reporting systems

have been established to collect/provide population-based data about the disease incidence.

Such reporting systems usually report daily, monthly or yearly disease incidence numbers at

the city, county, state or country level. This paper suggests an effective and flexible method

for analyzing such spatio-temporal (ST) data.

Figure 1 shows the lung cancer incidence rates in 58 counties of California during Au-

gust 2005, reported by the Surveillance, Epidemiology, and End Results (SEER) program,

with redder color denoting higher incidence rate. Such data usually have the following two

features: 1) the exact address of a disease occurrence is unavailable, and 2) disease incidence

rate numbers collected at different places and different times are correlated: with the ones

closer in place or time being more correlated. This kind of ST correlation, however, is hidden

in the observed data, and cannot be observed directly. Further, the ST correlation is related

to the impact of various confounding risk factors, such as weather, demographic factors, life

styles, and other cultural and environmental factors. Many confounding risk factors may

not be included in the database because they are not our interest, or they are difficult to

measure, or we are even unaware of their existence. Such complicated and latent impact on
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the observed data makes the ST correlation especially challenging to describe and estimate.

(put Figure 1 about here)

ST data analysis is an active interdisciplinary research area because of its broad ap-

plications in different fields, including geography, meteorology, oceanography, environment,

epidemiology, global health, and medicine. There have been much existing research on this

topic. Methods based on regression modeling include the one using temporal basis functions

and “land use” linear regression that can be implemented using the R package SpatioTem-

poral (cf., Lindström et al. 2015), the kernel smoothing methods assuming independence

among spatial observations (e.g., Kafadar 1996, Kelsall and Diggle 1998), the function esti-

mation methods based on B-splines (e.g., Choi et al. 2013), and the one assuming ANOVA-

type space-time error structure (Heuvelink and Griffith 2010). There are some alternative

methods in the literature. One such approach describes the ST data by a log-Gaussian Cox

process (LGCP), where the space-time disease incidence rate (see the definition in Section 2)

in log scale is assumed to be a Gaussian process with a separable or non-separable covariance

structure (e.g., Cressie and Huang 1999, Diggle et al. 2013). Another approach treats the

ST data as a time series of spatial process realizations and works in the setting of a dynamic

ST model (e.g., Finley et al. 2015). By such methods, the ST data are described using

a measurement equation that builds a linear regression between the response variable and

some covariates with a space-time varying intercept and serially and spatially uncorrelated

zero-centered Gaussian disturbances. The regression coefficients at a given time are assumed

to be those at the previous time plus normally distributed random errors, as specified by

the transition equations. Because it is challenging to properly describe and accommodate

the true ST correlation structure, as described above, almost all these existing methods put

various assumptions on their models and/or the ST correlation structure. These assumed
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ST data structures are often difficult to verify in practice. When they are valid, the related

papers have shown the effectiveness of the related methods. When they are invalid, however,

the effectiveness of the methods would be questionable.

In this paper, we propose an alternative ST modeling approach, which does not impose

restrictive assumptions on the observation distribution, ST pattern of the disease incidence

rate, and ST correlation in the observed data. This method is based on ST local smoothing

for correlated data. Its estimated model is proved to be statistically consistent under some

regularity conditions. Both simulation studies and real-data examples show that it works

well in practice. The proposed method will be described in detail in Section 2. Some of its

theoretical properties are discussed in Section 3. Some simulation results are presented in

Section 4. Application of the proposed method to the lung cancer data shown in Figure 1

is presented in Section 5. Some concluding remarks are given in Section 6. Proofs of three

theorems are given in the supplementary file.

2 Nonparametric Spatio-Temporal Modeling

Let Ω and [0, T ] be the region and time interval in which disease incidence trajectory

is of our interest. For any s ∈ Ω and t ∈ [0, T ], let N(t, s; dt, ds) be the number of disease

cases in a small region O(s) around s with area ds and in the time interval [t, t + dt], and

M(t, O(s)) be the population size of the region O(s) at time t. Then, N(t, s; dt, ds) is a

measurement of the disease incidence in the region O(s) and in the time interval [t, t + dt],

andN(t, s; dt, ds)/M(t, O(s)) is the corresponding disease incidence rate. Because the disease

incidence depends heavily on the population size in the related region, the disease incidence

rate is more appropriate to use when comparing disease occurrence in different regions.
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However, the disease incidence rate defined above depends on the sizes of the region O(s)

and the time interval [t, t + dt]. After standardization on these sizes, the (population) ST

disease incidence rate at time t and location s is defined as

λ(t, s) = lim
dt→0,ds→0

E(N(t, s; dt, ds))

M(t, O(s))dtds
, for s ∈ Ω, t ∈ [0, T ]. (1)

Obviously, λ(t, s) in (1) denotes the expected number of disease cases per population unit, per

time unit at t, and per area unit at s. This definition is commonly used in the epidemiology

literature, although most people simply use its sample version, by replacing E(N(t, s; dt, ds))

with N(t, s; dt, ds) in (1) (cf., Last 2001).

2.1 The model

Assume that y(ti, sij) is the observed incidence rate at time ti and location sij, and it

follows the model

y(ti, sij) = λ(ti, sij) + ε(ti, sij), for j = 1, 2, . . . ,mi, i = 1, 2, . . . , n, (2)

where ti ∈ [0, T ], sij ∈ Ω, ε(ti, sij) is the zero-mean random error, mi is the number of

observation locations at time ti, and n is the number of time points. Let N =
∑n

i=1mi

denote the total number of the points considered here. The ST correlation in the observed

data can be described by the covariance function

V (u;v) = E [ε(u)ε(v)] = σ(u)σ(v)Corr(ε(u), ε(v)), for u,v ∈ [0, T ]× Ω, (3)

where σ2(·) is the variance function and Corr(·, ·) is the correlation function. Models (2)-

(3) are general. They allow the number of observations mi and observation locations {sij}

change over time. They do not impose any parametric forms on λ(ti, sij), V (u,v), and the

error distribution. They even allow V (u,v) to be a nonparametric function of u and v.
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2.2 Model estimation

At a given (t, s) ∈ [0, T ]× Ω, we consider the following local linear ST kernel (LLSTK)

smoothing procedure for estimating λ(t, s):

mina,b,c,d∈R
∑n

i=1

∑mi
j=1 {y(ti, sij)− [a+ b(ti − t) + c(sx,ij − sx) + d(sy,ij − sy)]}2 × (4)

K1

(
ti − t
ht

)
K2

(
dE(sij, s)

hs

)
,

where s = (sx, sy), sij = (sx,ij, sy,ij), K1 and K2 are two univariate kernel functions, ht > 0

and hs > 0 are two bandwidths, and dE(·, ·) denotes the Euclidean distance. Let X be the

design matrix with rows {(1, ti− t, sx,ij − sx, sy,ij − sy), j = 1, 2, . . . ,mi, i = 1, 2, . . . , n}, and

Y be the corresponding observation vector. Then, expression (4) can be re-written as

min
β∈R4

(Y −Xβ)′W (Y −Xβ), (5)

where β = (a, b, c, d)′, W = diag{K(H−1(t1 − t, sx,11 − sx, sy,11 − sy)
′), . . . , K(H−1(tn −

t, sx,nmn − sx, sy,nmn − sy)′)}, K((t, sx, sy)
′) = K1(t)K2(dE(s,0)), H = diag{ht, hs, hs}, and

diag{u} denotes a diagonal matrix with its diagonal elements given in the vector u. Then,

the estimated incidence rate is defined to be the solution to a of the minimization problem

(5) (or (4)), as

λ̂(t, s) = e′1 (X ′WX)
−1
X ′WY , (6)

where e1 = (1, 0, 0, 0)′. In Section 3, it will be shown that λ̂(t, s) is statistically consistent

under some regularity conditions.

2.3 Kernel and bandwidth selection

To use the above estimation procedure (4)-(6), the kernel functions K1 and K2 and the

bandwidths ht and hs should be chosen properly in advance. Selection of these quantities is
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discussed in this subsection. To choose the kernel functions, let us use the following Mean

Average Squared Error (MASE) as a metric for evaluating the performance of λ̂(t, s):

MASE(ht, hs) = E

{
1

N

n∑
i=1

mi∑
j=1

[
λ̂(ti, sij)− λ(ti, sij)

]2}
.

Based on this criterion, Theorem 2 in Section 3 says that the Epanechnikov kernel function

is the optimal choice for both K1 and K2 under some regularity conditions, where the

Epanechnikov kernel function is defined as

Ke(u) =


3
4
(1− u2), if |u| ≤ 1,

0, if |u| > 1.

(7)

To choose the bandwidths ht and hs, one commonly used method is the leave-one-out

cross-validation (CV) procedure. However, when the observed data are correlated, it has been

well demonstrated in the literature that the conventional kernel estimators using the regular

bandwidth selection procedures, such as the CV procedure, would not generally perform well,

because they cannot separate the data correlation structure from the data mean function

effectively in such cases (e.g., Altman 1990, Opsomer et al. 2001). To overcome this difficulty,

when choosing a bandwidth by CV in the univariate kernel regression setup, Brabanter et

al. (2011) suggested using the so-called ε-optimal bimodal kernel function defined as

K̃ε(u) =
4

4− 3ε− ε2


3
4
(1− u2)I(|u| ≤ 1), if |u| ≥ ε;

3(1−ε2)
4ε
|u|, if |u| < ε,

(8)

where ε ∈ (0, 1) is a constant.

In the current problem for estimating λ(ti, sij), let λ̂−(ij)(t, s) be the estimate of λ(t, s)

obtained from all observations except the one at (ti, sij). Then, the CV score is defined as

CV(ht, hs) =
1

n

n∑
i=1

{
1

mi

mi∑
j=1

[
λ̂−(ij)(ti, sij)− y(ti, sij)

]2}
. (9)
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The bandwidths selected by the CV procedure are the ones that minimize the CV score

CV(ht, hs) defined in (9). By Theorem 3 in Section 3, if K1 and K2 are chosen such that

K1(0)K2(0) = 0 when computing the CV score, then

E(CV(ht, hs)) = MASE(ht, hs) +
1

N

N∑
i=1

σ2(wi) + o

(
1

N |H|

)
under some regularity conditions, where {wi, i = 1, 2, · · · , N} denote the N observation

points. Also, from the expression (A.12) in Appendix B, MASE(ht, hs) ∼ 1
N |H| . By com-

bining these two results, the CV procedure should work well in choosing the bandwidths

(i.e., the minimizers of CV(ht, hs) should be close to the minimizers of MASE(ht, hs)) when

K1(0)K2(0) = 0 and other regularity conditions are valid. To satisfy the condition that

K1(0)K2(0) = 0, we can choose either K1 to be the ε-optimal bimodal kernel function de-

fined in (8), or K2 to be the ε-optimal kernel function, or both K1 and K2 to be the ε-optimal

kernel functions. In the numerical studies presented in Section 4, these three options will be

compared in various different scenarios.

2.4 Some other technical issues

As discussed in Section 1, most population-based databases report disease incidence rates

at the city, county, state, or country level, and the specific locations of individual disease

occurrences are not available. In such cases, it is difficult to use the kernel estimation

procedure (4) because {sij} are not well defined. In the literature, one commonly used way

to handle this issue is to use major cities or geometric “centroids” to represent the geographic

locations of regions, and approximate the distance between two geographical regions by the

Euclidean distance between their geographical centroids (e.g., Berke 2004, Christakos and

Lai 1997, Cressie 1993, Oliver et al. 1998). However, some authors have pointed out that

this distance measurement can introduce substantial errors and produce inaccurate inferences
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(e.g., Koshizuka and Kurita 1991, Rodriguez-Bachiller 1983). To overcome this difficulty,

we propose the following strategy. Without loss of generality, we assume that a database

provides monthly disease incidence numbers at the county level. Then for each county, the

response in model (2) can be calculated by dividing the case number in the county by the

county population and county area. In order to use the estimation procedure (4), we need

to define distance between any pair of two counties. To this end, we consider using a grid

covering all counties in question. Then, for a pair of two counties A and B, we can calculate

the Euclidean distances for all pairs of grid points in A and grid points in B. The average

of the pairwise grid point distance is defined as the distance between A and B, denoted as

d̃(A,B). When the grid is finer and finer, it is easy to check that d̃(A,B) converges to

d(A,B) =
1

SASB

∫
s(1)∈A

∫
s(2)∈B

dE(s(1), s(2)) ds(1)ds(2),

where SA and SB are the areas of A and B. So, d̃(A,B) will not change much once the grid

intensity reaches a certain level. In the above distance definition, if we know the population

in each small square of the grid, then we can also use population-weighted distance (e.g.,

Goovaerts 2006). But, such population information may not be available in practice, and

this weighting scheme should not have a substantial impact on the estimator λ̂(t, s) either.

The response y(ti, sij) in (2) is the non-negative empirical incidence rate. Its distribution

is usually skewed to the right. For rare diseases with small incidence rates, the skewness

could be large. In such cases, it is natural to use y(ti, sij) in log scale. The resulting estimated

model could be more efficient, but its explanation would be more challenging. The model

estimation procedure proposed in the current paper is nonparametric. So, it can handle both

versions of the model.

In the model estimation procedure (4), the bandwidth hs is chosen to be the same in the

entire spatial space Ω. From Figure 1, it can be seen that some counties in California have
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much larger areas than others. If a constant bandwith hs is used in (4), then the neighbor-

hoods of certain counties will contain too few observations if hs is chosen relatively small,

and too many observations if hs is chosen relatively large. Of course, variable bandwidth

selection procedures can be considered here (Loader 1999). But, they are quite complicated

to compute. In this paper, we consider the following strategy, representing a compromise

between the constant and variable bandwidth selections. At a given (t, s), if the number of

observations in the neighborhood O(s) with the bandwidth hs is 2 or less for at least one

observation time point in [t − ht, t + ht], then increase hs at (t, s) to ρhs, where ρ ≥ 1 is a

parameter. The reason why we use 2 as the threshold for the number of observations in O(s)

is because a local spatial plane is estimated in (4) and it needs at least 3 different locations

to estimate such a spatial plane properly. It should be pointed out that this bandwidth mod-

ification procedure should be used before the CV procedure (9) is applied. The parameter ρ

can be chosen by the CV procedure, together with ht and hs. But, it will take much extra

computing time. Based on extensive simulation and real-data studies, we found that ρ = 1.5

often gave satisfactory results. So, we recommend using this value in practice.

3 Statistical Properties

In this section, we discuss some statistical properties of the estimation procedure de-

scribed in the previous section. Without loss of generality, assume that the ST data are

obtained in the time interval [0, T ] = [0, 1] and spatial region Ω = [0, 1]2, and the observa-

tion times and locations are regularly spaced as follows:{(
k

n
,
j1
m1

,
j2
m2

)
: k = 1, 2, ..., n; j1 = 1, 2, ...,m1; j2 = 1, 2, ...,m2

}
.
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In cases when the observation times and locations are unequally spaced, results presented in

this section are still valid, as long as the distributions of the observation times and the obser-

vation locations have supports [0, 1] and [0, 1]2, respectively. First, we give some assumptions

and notations that will be used in presenting major theoretical results.

For the incidence rate λ(w) and the variance function σ2(w), we make the assumption:

(AS.1) The incidence rate λ(w) is twice continuously differentiable and the variance function

σ2(w) is continuous in the set Γ = [0, T ] × Ω. Since Γ is a compact set in R3, σ2(w) is

uniformly continuous in Γ.

The following three assumptions are imposed on the kernel functions:

(AS.2.a) For u = (u1, u2, u3) ∈ R3, K(u) = K1(u1)K2(
√
u22 + u23) is bounded and symmetric

about 0,
∫
R3 K(u)du = 1, and there exist d1 > 0 and d2 > 0 such that (i) K1(u1) > 0

if |u1| < d1 and K1(u1) = 0 otherwise, and (ii) K2(
√
u22 + u23) > 0 if

√
u22 + u23 < d2 and

K2(
√
u22 + u23) = 0 otherwise. Define DK = {u ∈ R3 : |u1| ≤ d1 and

√
u22 + u23 ≤ d2},

D′K = {u ∈ R3 : |u1| ≤ 2d1 and
√
u22 + u23 ≤ 2d2}, and D′′K = {u ∈ R3 : |u1| ≤ 3d1 and√

u22 + u23 ≤ 3d2}.

(AS.2.b) For i = 1, 2, 3, µ2,i(K) =
∫
u2iK(u)du > 0. Let µ2(K) = diag{µ2,1(K), µ2,2(K), µ2,3(K)}.

Then, we have µ2,2(K) = µ2,3(K). In addition, let µ(K2) =
∫
K2(u)du.

(AS.2.c) The function K(u) satisfies the Lipschitz-1 continuity condition. Namely, there

exists L ≥ 0 such that |K(u) −K(v)| ≤ L‖u − v‖1, for any u,v ∈ R3, where ‖ · ‖1 is the

L1-norm in R3.

For a given point w = (t, s) ∈ Γ = [0, 1] × [0, 1]2, let ξw,H = {u ∈ R3 : H−1(u −w) ∈

DK}, ξ′w,H = {u ∈ R3 : H−1(u −w) ∈ D′K}, and ξ′′w,H = {u ∈ R3 : H−1(u −w) ∈ D′′K}.

Then, ξw,H , ξ
′
w,H , and ξ′′w,H are neighborhoods of w with different bandwidths. The point w
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is an interior point if ξ′′w,H ⊆ Γ. With these notations, we impose the following assumptions

on the random errors:

(AS.3.a) In the neighborhood ξ′′w,H of a given point w, the ST data correlation is homo-

geneous. Namely, for any u,v ∈ ξ′′w,H , the correlation function has the property that

Corr(ε(u), ε(v)) = ρw(u− v), where ρw : R3 → [−1, 1] is a correlation function.

(AS.3.b) At any w ∈ Γ, C ′′N,w =
∑

( k
∗

nht
,
j∗1

m1hs
,
j∗2

m2hs
)∈D′′K

|ρw(k
∗

n
,
j∗1
m1
,
j∗2
m2

)| = o(N |H|).

(AS.3.b)’ At anyw ∈ Γ, C ′′N,w = O(1), D′′N,w =
∑

( k
∗

nht
,
j∗1

m1hs
,
j∗2

m2hs
)∈D′′K

( |k
∗|

nht
+
|j∗1 |
m1hs

+
|j∗2 |
m2hs

)|ρw(k
∗

n
,
j∗1
m1
,

j∗2
m2

)| = o(1) and C ′′N,w − CN,w = o(1), where CN,w =
∑

( k
∗

nht
,
j∗1

m1hs
,
j∗2

m2hs
)∈DK

|ρw(k
∗

n
,
j∗1
m1
,
j∗2
m2

)|.

Let QN,w =
∑

( k
∗

nht
,
j∗1

m1hs
,
j∗2

m2hs
)∈DK

ρw(k
∗

n
,
j∗1
m1
,
j∗2
m2

). Then, we have QN,w = O(1) since |QN,w| ≤

C ′′N,w. We further assume that lim
N→∞

QN,w = Q(w) exists.

For the bandwidths, we need the following assumptions:

(AS.4) ht = o(1), hs = o(1), 1
nht

= o(1), 1
m1hs

= o(1), and 1
m2hs

= o(1).

The assumption (AS.1) requires that both λ(w) and σ2(w) are smooth, which should

be reasonable in most applications. The assumptions (AS.2.a)-(AS.2.c) on the two kernel

functions are conventional. Basically, (AS.2.a) requires that bothK1 andK2 are non-negative

and have compact supports, (AS.2.b) requires that they are non-zero, and (AS.2.c) requires

that they are Lipschitz-1 continuous. In (AS.3.a), we assume that the ST data correlation is

homogeneous locally, which is much more flexible than the conventional assumption in the

literature that the ST data correlation is homogeneous globally (e.g., Choi et al. 2013). In

(AS.3.b), we assume that C ′′N,w = o(N |H|), and in (AS.3.b)’ we assume that C ′′N,w = O(1).

From the definition of C ′′N,w, we can see that it is a summation of all absolute values of

the correlations {ρw(k
∗

n
,
j∗1
m1
,
j∗2
m2

)} when ( k∗

nht
,

j∗1
m1hs

,
j∗2

m2hs
) ∈ D′′K . In the literature, the spatial

or temporal correlations are often assumed to be exponentially decaying when two time
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points or two locations move away (e.g., in cases with AR(1) time series model). In such

cases, both assumptions mentioned above would be valid. The assumptions in (AS.4) on

the two bandwidths are commonly used in kernel regression. Basically, they require that

the neighborhood ξw,H at a given point w has smaller and smaller size, but the number

of observations in it gets larger and larger, when the sample size N increases. Under the

assumptions stated above, we have several theorems given below about our proposed method

for analyzing ST data.

Theorem 1 Under the assumptions (AS.1), (AS.2.a)-(AS.2.c), (AS.3.a), (AS.3.b) and (AS.4),

we have

lim
n,m1,m2→∞

a2NE
(
λ̂(t, s)− λ(t, s)

)2
= 0, for any (t, s) ∈ (0, 1)× (0, 1)2, (10)

where aN = min{ 1

h2−δt

, 1

h2−δs
, (N |H|
C′′N,w

)0.5−δ} and 0 < δ < 0.5.

Theorem 1 establishes the L2 strong consistency for the estimator λ̂(t, s). The two kernel

functions used in (4) should both be chosen the Epanechnikov kernel defined in (7), which

is confirmed in Theorem 2 below.

Theorem 2 Under the assumptions (AS.1), (AS.2.a)-(AS.2.c), (AS.3.a), (AS.3.b)’ and

(AS.4), the MASE criterion MASE(ht, hs) defined in Section 2.3 reaches the minimum

when both K1 and K2 are chosen to be the Epanechnikov kernel defined in (7).

Finally, regarding the CV score defined in (9), we have the following result.

Theorem 3 Under the assumptions (AS.1), (AS.2.a)-(AS.2.c), (AS.3.a), (AS.3.b)’ and

(AS.4), if the two kernel functions K1 and K2 are chosen such that K1(0)K2(0) = 0, then
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we have

E[CV (ht, hs)] = MASE(ht, hs) +
1

N

N∑
i=1

σ2(wi) + o

(
1

N |H|

)
, (11)

where {wi, i = 1, 2, · · · , N} denote the N points in Γ at which observations of λ(t, s) are

obtained.

4 Simulation Study

In this section, we present some simulation results about the numerical performance

of our proposed method described in the previous sections. For simplicity, the number of

spatial locations at each time point is chosen to be the same. The following four types of

kernel functions are considered in the LLSTK local smoothing procedure (4) as discussed in

Subsection 2.3:

K(1)(u) = K̃0.1(u1)K̃0.1(
√
u22 + u23), K(2)(u) = K̃0.1(u1)Ke(

√
u22 + u23),

K(3)(u) = Ke(u1)K̃0.1(
√
u22 + u23), K(4)(u) = Ke(u1)Ke(

√
u22 + u23)

The simulation is organized in four parts. In the first part, the proposed method and selection

of its kernel functions are studied in different cases when the correlation level of the noise,

the number of spatial locations at a given time point, and the number of observation times

all change. In the second part, the number of observation times and the number of spatial

locations at a given time point are both fixed, but the noise is generated in a different way

than the one in the first part. By this example, we would like to check whether the overall

conclusions about kernel selection depend on how the random noise is generated. In the

third part, the number of observation times, the correlation level of noise and the number

of spatial locations are all fixed. But, the spatial locations are generated in a different way
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than the one in the first part. This part aims to check whether the overall conclusions about

kernel selection depend on how the spatial locations are distributed. Finally, in the fourth

part, we compare the proposed method with several representative existing methods.

4.1 Performance of the proposed method

In the first part of the simulation study, we consider the following setup. In model (2),

assume that {ti, i = 1, 2, . . . , n} are equally spaced in [0, 1]. At each observation time ti,

the observation locations {sij, j = 1, 2, . . . ,m} are assumed to be equally spaced in Ω =

[0, 1]× [0, 1]. The true incidence rate function is chosen to be

λ(t, s) = 0.5 + 0.3 sin
(π

2
+ πsx

)
sin
(π

2
+ πsy

)
+ 0.15 cos

(
3π

2
+ 2πt

)
,

where s = (sx, sy)
′. For the ST noise ε(ti, sij), we first use the R package neuRosim and

deSolve to generate the spatially correlated noise {ε̃(sj), i = 1, 2, ...,m}, and then use the

AR(1) model to generated the temporally correlated noise {ε̃(ti), j = 1, 2, ..., n}. Then, the

ST noise is defined as {ε(ti, sj) = ε̃(ti)ε̃(sj), i = 1, 2, ..., n, j = 1, 2, ...,m}. The following

36 cases are considered in the simulation: n = 50 or 100, m = 100 or 225, the parameter

for controling the temporal correlation level ρt = 0.5, 0.3, or 0.05, and the parameter for

controling the spatial correlation level ρs = 0.5, 0.3, or 0.05. In each case, the simulation is

repeated 100 times, and the MASE value of the estimator λ̂(t, s) can be approximated by

the sample mean of the 100 Average Squared Error (ASE) values.

The two bandwidths ht and hs can be chosen by minimizing the MASE. The result-

ing bandwidths are denoted as ht,opt and hs,opt, respectively. In practice, because λ(t, s) is

unknown, MASE cannot be calculated. So, the optimal values of the bandwidths cannot

be calculated either. Instead, we can choose the bandwidths using the CV procedure (9).
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In Table 1, the number in the first line of each entry is the minimum MASE value when

(n,m) = (50, 100) and when the optimal bandwidths ht,opt and hs,opt and the kernel func-

tions specified by K(1), K(2), K(3), or K(4) are used in model estimation. The second line

gives the optimal bandwidths (ht,opt, hs,opt). The third line gives the MASE value when the

bandwidths are chosen by CV, and the corresponding bandwidths are given in the fourth

line. The fifth line gives the MASE value when the bandwidths are chosen by CV (i.e., those

in the fourth line) but the kernel functions used in estimating λ(t, s) are those specified

by K(4) (i.e., the regular Epanechnikov kernel functions). The corresponding results when

(n,m) = (50, 225), (100, 100), and (100, 225) are presented in Tables S.1-S.3 of the supple-

mentary file, respectively. From these tables, we can make the following conclusions. i) If

both the spatial and temporal correlations are relatively strong (e.g., (ρt, ρs) = (0.5, 0.5)),

then the kernel functions specified by K(1) should be used in the CV procedure, because the

selected bandwidths are closer to the optimal bandwidths in most such cases, compared to

the results with other kernel functions, and the related MASE value is often better as well.

ii) In cases when the temporal correlation is relatively weak (e.g., (ρt, ρs) = (0.05, 0.5)), the

kernel functions in K(1) and K(2) would be good choices. iii) In cases when the spatial cor-

relation is relatively weak (e.g., (ρt, ρs) = (0.5, 0.05)), the kernel functions in K(1) and K(3)

would be good choices. iv) If both the spatial and the temporal correlations are relatively

weak, then the ones in K(4) could be a good choice. v) After the bandwiths are chosen

properly by CV, it seems that it is always a good idea to use the conventional Epanechnikov

kernel functions in estimating λ(t, s). vi) When m or n increases, the MASE results will

generally be better. Based on these results, we suggest choosing the bandwidths by CV using

the kernel functions specified in K(1) when we think that the ST correlation is an issue. Oth-

erwise, the conventional Epanechnikov kernel functions can be used in bandwidth selection

by CV. After the bandwidths are chosen, the Epanechnikov kernel functions can be used for
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estimating λ(t, s).

To further demonstrate the simulation results, the estimation errors, defined as differ-

ences between the fitted values and the true incidence rates, when the optimal bandwidths

and the bandwidths chosen by CV with kernels in K(1), K(2), K(3) and K(4) are shown in

the five columns of Figure 2, respectively, in cases when t = 0.25 (1st row), 0.5 (2nd row)

and 0.75 (3rd row). In this figure, we choose (n,m) = (100, 100), (ρt, ρs) = (0.3, 0.3), and

the simulation with the median ASE value among 100 replicated simulations when the band-

widths chosen by CV with the kernels in K(1) are used. From the figure, it can be seen that

i) the estimation errors are small when the optimal bandwidths are used, as expected, ii) the

results with the bandwidths chosen by CV using the kernels in K(1) are close to those with

the optimal bandwidths, and iii) the estimation errors are relatively large when the other

three sets of bandwidths are used.

(put Table 1 about here)

(put Figure 2 about here)

4.2 Different ways of ST random error generalization

In the previous part, for simplicity, the ST random error is generated by a product of

a sequence of temporally correlated random noise and a set of spatially correlated random

noise. In that sense, the ST data correlation structure is simplified in that example. As

a matter of fact, generalization of general ST correlated random numbers is a challenging

research topic itself (Welvaert et al. 2011). In this part, we generate the 3-D random

errors {ε(ti, sij)} directly by the neuRosim and deSolve packages in cases when n = 100

and m = 100. By this approach to generate ST correlated random errors, the ST data
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correlation is controlled by a single parameter ρt,s, which is fixed at 0.05, 0.3 and 0.5 to

simulate cases with different correlation. The results in the same setup as that of Table 1

are presented in Table S.4 in the supplementary file. From the table, it can be seen that

the overall conclusions made earlier from Tables 1 and S.1-S.3 are still valid in the current

example.

4.3 Cases with random design points

In the previous examples, the design points {(ti, sij), i = 1, 2, . . . , n, j = 1, 2, . . . ,m}

are deterministic and regularly spaced in Γ = [0, 1] × [0, 1]2. In this part, we consider

cases when the spatial locations are randomly distributed in [0, 1]2, to investigate whether

different types of design points would change the performance of λ̂(t, s) and the strategies

of kernel and bandwidth selection. To this end, let us consider cases when n = 100, m =

100, ρt = 0.3 and ρs = 0.3. Unlike the setup in Subsection 4.1, the observation locations

{sj, j = 1, 2, . . . , 100} are generated in two steps as follows. First, 10 x-axis values {sx,j1 , j1 =

1, 2, ..., 10} are generated from the distribution Unif[0, 1], and 10 y-axis values {sy,j2 , j2 =

1, 2, ..., 10} are generated from the same distribution. Then, the spatial locations are defined

as {(sx,j1 , sy,j2), j1 = 1, 2, ..., 10, j2 = 1, 2, ..., 10}. The results in the same setup as that

of Table 1 are presented in the first part of Table S.5 in the supplementary file with the

label “Random Design”. For convenience of comparison, the results in Table S.2 when

(ρt, ρs) = (0.3, 0.3) are included in the second part of Table S.5 with the label “Fixed

Design”. It can be seen that the two sets of results have similar patterns, and we should

choose the bandwiths using K(1) in both scenarios. We tried other cases with random design,

and the findings are similar.
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4.4 Comparison with some existing methods

In this part, we compare our proposed method, denoted as LLSTK, with three repre-

sentative ST methods: DSTM and LGCP that are discussed in Section 1, and the weighted

average smoothing (WAS) method by Kafadar (1996). For the proposed LLSTK method,

we use K(1) in CV bandwidth selection, and K(4) in estimating λ(t, s) after the bandwidths

are selected. For the three existing methods, because the corresponding CV procedures are

still unavailable, their parameters are chosen to minimize the MASE criterion. Therefore,

this comparison is in the advantage of the three existing methods. We consider cases when

n = 100, m = 100, and ρt and ρs change among 0.5, 0.3, and 0.05. The calculated MASE

values based on 100 replicated simulations are presented in Table 2. From the table, we

can see that: i) LLSTK outperforms all three existing methods in all cases with quite large

margins, and ii) all methods perform the best when the ST data correlation is the weakest

(i.e., the case when (ρt, ρs) = (0.05, 0.05)). Figure S.1 in the supplementary file presents the

estimation errors using of the four methods at t =0.25 (1st row), 0.5 (2nd row) and 0.75

(3rd row), when we choose (n,m) = (100, 100), (ρt, ρs) = (0.3, 0.3), and the simulation that

LLSTK has the median ASE value among 100 replicated simulations when the bandwidths

chosen by CV with the kernels in K(1) are used. From the plots, we can see that LLSTK

indeed has much smaller estimation errors, compared to the other three methods.

(put Table 2 about here)

5 Application to the Lung Cancer Dataset

In this section, we demonstrate the proposed nonparametric ST modeling approach LL-

STK using the lung cancer dataset that is briefly described in Section 1 (cf., Figure 1) and
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can be downloaded from the Surveillance, Epidemiology, and End Results (SEER) system

(http://seer.cancer.gov/). The dataset contains monthly incidence rates of the lung cancer

in 58 counties of California during 2000–2011. Besides the proposed method LLSTK, we

also consider the three existing methods LGCP, DSTM and WAS that are discussed in Sub-

section 4.4. Because the true ST function λ(t, s) is unknown in real-data applications, the

performance metric MASE is not well defined. Instead, we consider using the root predictive

error mean square (RPEMS), defined as

RPEMS =

{
1

n

n∑
i=1

[
1

mi

mi∑
j=1

(
λ̂−(ij)(ti, sij)− y(ti, sij)

)2]}1/2

,

and the mean absolute predictive error (MAPE), defined as

MAPE =
1

n

n∑
i=1

[
1

mi

mi∑
j=1

∣∣∣λ̂−(ij)(ti, sij)− y(ti, sij)
∣∣∣] ,

where λ̂−(ij)(ti, sij) is the leave-one-out estimator of λ(ti, sij) that is considered in the CV

score in (9). Because the computation of the method LGCP is heavy, λ̂−(ij)(ti, sij) is replaced

by λ̂(ti, sij) in both RPEMS and MAPE for this method, which is in its advantage because

the quantities {|λ̂−(ij)(ti, sij)− y(ti, sij)|} are usually larger than {|λ̂(ti, sij)− y(ti, sij)|}. For

the proposed method LLSTK, its bandwidths are selected by the CV procedure (9) with the

kernels specified in K(1), and the kernels specified in K(4) are used when estimating λ(t, s).

For the other three methods, their parameters are chosen to minimize the RPEMS. The

calculated values of RPEMS for the methods LGCP, DSTM, WAS and LLSTK are 7.30,

5.56, 4.92 and 4.75, respectively, and their MAPE values are 3.68, 3.70, 2.80, and 2.67. It

can be seen that the proposed method LLSTK has the smallest values of RPEMS and MAPE

among all four methods.

To further investigate the performance of the four methods, their residual maps for the

data in March 2007, October 2010 and December 2011 are shown in columns 2-5 of Figure
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3, and the observed data in these three months are shown in the first column. For each

county, the residual at a given month is defined to be the difference between the observed

and estimated disease incidence rates. The residual maps at other months look similar. From

the residual maps, it can be seen that the first two competing methods generate relatively

large residuals at some counties, and the residuals of the proposed method and WAS are

relatively small. Meanwhile, we choose four counties to show the observed temporal data in

Figure S.2 in the supplementary file, along with the estimated functions of λ(t, s) by the four

competing methods. From the plots in that figure, it can be seen that the proposed method

provides a good estimate of λ(t, s) in terms of both bias and variance of the estimate. As a

comparison, estimates by the three competing methods have either quite large bias or quite

large variance.

(put Figure 3 about here)

6 Concluding Remarks

We have presented a nonparametric modeling approach for analyzing ST disease in-

cidence data. This approach does not require restrictive assumptions on the observation

distribution, ST pattern of the disease incidence rate, and ST correlation in the observed

data. It has been shown by both theoretical arguments and numerical studies that it is

effective in practice. However, there are still several issues that need to be addressed in the

future research. For instance, there could be covariates that have a substantial impact on

the disease incidence rate, which have not been accommodated by the current method yet.

Also, the estimated model needs to be evaluated more rigorously about its goodness-of-fit.

More graphical tools are needed in this regard. We will continue to work on these and some
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other related problems and make the proposed LLSTK method more effective and powerful

for analyzing ST data.
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Table 1: In each entry, line 1 gives the MASE value and its standard error (in parenthesis)

when (ht,opt, hs,opt) are used. Line 2 gives (ht,opt, hs,opt). Line 3 gives the MASE value and

its standard error (in parenthesis) when the bandwidths are chosen by CV. Line 4 gives the

bandwidths by CV. Line 5 gives the MASE value and its standard error (in parenthesis)

when the bandwidths are chosen by CV and the conventional Epanechnikov kernel functions

are used in estimating λ(t, s). Cases when (n,m) = (50, 100).

(ρt, ρs) K(1) K(2) K(3) K(4)

(0.5,0.5)

1.10× 10−3(6.14e− 5) 1.04× 10−3(6.21e− 5) 1.03× 10−3(5.70e− 5) 9.76× 10−4(5.75e− 5)

(0.16,0.32) (0.16,0.32) (0.16,0.32) (0.16,0.32)

2.05× 10−3(1.12e− 4) 3.15× 10−3(1.61e− 4) 2.58× 10−3(1.31e− 4) 3.55× 10−3(1.72e− 4)

(0.05,0.21) (0.05,0.11) (0.03,0.15) (0.03,0.11)

1.85× 10−3(1.05e− 4) 2.81× 10−3(1.44e− 4) 2.71× 10−3(1.43e− 4) 3.55× 10−3(1.72e− 4)

(0.5,0.3)

8.38× 10−4(3.99e− 5) 7.71× 10−4(4.04e− 5) 7.87× 10−4(3.76e− 5) 6.88× 10−4(3.31e− 5)

(0.15,0.24) (0.15,0.24) (0.15,0.24) (0.14,0.32)

1.15× 10−3(5.40e− 5) 2.68× 10−3(1.26e− 4) 2.13× 10−3(9.71e− 5) 3.03× 10−3(1.35e− 4)

(0.07,0.23) (0.05,0.11) (0.03,0.15) (0.03,0.11)

9.90× 10−4(5.39e− 5) 2.40× 10−3(1.14e− 4) 2.03× 10−3(1.01e− 4) 3.03× 10−3(1.35e− 4)

(0.3,0.5)

8.74× 10−4(4.60e− 5) 8.32× 10−4(4.62e− 5) 7.89× 10−4(4.23e− 5) 7.49× 10−4(4.22e− 5)

(0.15,0.26) (0.15,0.28) (0.15,0.25) (0.15,0.27)

9.60× 10−4(5.28e− 5) 1.88× 10−3(9.78e− 5) 2.15× 10−3(1.07e− 4) 2.44× 10−3(1.23e− 4)

(0.12,0.23) (0.07,0.12) (0.03,0.15) (0.03,0.14)

8.17× 10−4(4.94e− 5) 1.55× 10−3(8.58e− 5) 2.26× 10−3(1.16e− 4) 2.44× 10−3(1.23e− 4)

(0.5,0.05)

6.09× 10−4(1.96e− 5) 5.03× 10−4(1.98e− 5) 5.83× 10−4(1.99e− 5) 4.76× 10−4(2.12e− 5)

(0.13,0.33) (0.12,0.32) (0.13,0.32) (0.13,0.26)

6.13× 10−4(2.09e− 5) 2.20× 10−3(9.70e− 5) 5.91× 10−4(2.15e− 5) 2.49× 10−3(1.04e− 4)

(0.13,0.31) (0.05,0.11) (0.13,0.30) (0.03,0.11)

4.77× 10−4(1.91e− 5) 1.97× 10−3(8.80e− 5) 4.77× 10−4(1.97e− 5) 2.49× 10−3(1.04e− 4)

(0.05,0.5)

6.80× 10−4(3.15e− 5) 6.44× 10−4(3.14e− 5) 5.82× 10−4(2.89e− 5) 5.46× 10−4(2.92e− 5)

(0.15,0.24) (0.15,0.26) (0.14,0.24) (0.14,0.25)

6.80× 10−4(3.15e− 5) 6.47× 10−4(3.27e− 5) 1.66× 10−3(8.05e− 5) 1.45× 10−3(7.57e− 5)

(0.15,0.24) (0.15,0.24) (0.03,0.15) (0.03,0.22)

5.48× 10−4(2.91e− 5) 5.48× 10−4(2.91e− 5) 1.73× 10−3(8.77e− 5) 1.45× 10−3(7.57e− 5)

(0.3,0.3)

6.62× 10−4(2.74e− 5) 5.98× 10−4(2.73e− 5) 6.00× 10−4(2.58e− 5) 5.38× 10−4(2.60e− 5)

(0.14,0.26) (0.14,0.27) (0.14,0.25) (0.14,0.25)

6.92× 10−4(3.04e− 5) 2.02× 10−3(1.03e− 4) 1.78× 10−3(7.87e− 5) 2.13× 10−3(9.75e− 5)

(0.12,0.24) (0.05,0.12) (0.03,0.15) (0.03,0.12)

5.57× 10−4(2.86e− 5) 1.56× 10−3(7.66e− 5) 1.70× 10−3(8.20e− 5) 2.13× 10−3(9.75e− 5)

(0.3,0.05)

5.13× 10−4(1.53e− 5) 4.12× 10−4(1.60e− 5) 4.77× 10−4(1.47e− 5) 3.73× 10−4(1.51e− 5)

(0.13,0.30) (0.13,0.25) (0.13,0.30) (0.13,0.25)

5.13× 10−4(1.53e− 5) 1.96× 10−3(9.30e− 5) 4.78× 10−4(1.70e− 5) 1.51× 10−3(6.70e− 5)

(0.13,0.30) (0.05,0.11) (0.13,0.25) (0.05,0.11)

3.85× 10−4(1.36e− 5) 1.51× 10−3(6.70e− 5) 3.73× 10−4(1.51e− 5) 1.51× 10−3(6.70e− 5)

(0.05,0.3)

5.28× 10−4(1.96e− 5) 4.73× 10−4(2.00e− 5) 4.52× 10−4(1.79e− 5) 3.98× 10−4(1.83e− 5)

(0.14,0.24) (0.13,0.25) (0.13,0.24) (0.13,0.24)

5.28× 10−4(1.96e− 5) 4.75× 10−4(2.02e− 5) 1.37× 10−3(5.86e− 5) 1.30× 10−3(6.14e− 5)

(0.14,0.24) (0.14,0.24) (0.03,0.15) (0.03,0.15)

4.01× 10−4(1.79e− 5) 4.01× 10−4(1.79e− 5) 1.30× 10−3(6.14e− 5) 1.30× 10−3(6.14e− 5)

(0.05,0.05)

4.23× 10−4(1.19e− 5) 3.35× 10−4(1.16e− 5) 3.71× 10−4(1.17e− 5) 2.83× 10−4(1.10e− 5)

(0.13,0.25) (0.13,0.24) (0.13,0.24) (0.12,0.24)

4.23× 10−4(1.19e− 5) 3.37× 10−4(1.24e− 5) 3.71× 10−4(1.23e− 5) 3.01× 10−4(1.37e− 5)

(0.13,0.25) (0.13,0.23) (0.12,0.24) (0.09,0.23)

2.91× 10−4(9.99e− 6) 2.86× 10−4(1.12e− 5) 2.83× 10−4(1.10e− 5) 3.01× 10−4(1.37e− 5)
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Table 2: MASE values of the four ST modeling approaches in cases when n = 100, m = 100,

and ρt and ρs change among 0.5, 0.3, and 0.05.

(ρt, ρs) DSTM LGCP WAS LLSTK

(0.5,0.5) 5.95× 10−3(1.19e− 4) 7.07× 10−3(2.13e− 4) 4.85× 10−3(1.86e− 4) 1.73× 10−3(8.48e− 5)

(0.5,0.3) 5.26× 10−3(1.55e− 4) 6.90× 10−3(1.77e− 4) 3.84× 10−3(1.25e− 4) 9.24× 10−4(4.39e− 5)

(0.5,0.05) 4.71× 10−3(1.31e− 4) 6.69× 10−3(1.57e− 4) 1.12× 10−3(3.80e− 5) 3.33× 10−4(1.43e− 5)

(0.3,0.5) 5.34× 10−3(1.75e− 4) 7.11× 10−3(2.07e− 4) 4.87× 10−3(1.81e− 4) 6.85× 10−4(3.81e− 5)

(0.3,0.3) 4.54× 10−3(1.22e− 4) 6.91× 10−3(1.65e− 4) 3.85× 10−3(1.18e− 4) 3.74× 10−4(1.88e− 5)

(0.3,0.05) 3.91× 10−3(9.33e− 5) 6.72× 10−3(1.45e− 4) 1.12× 10−3(3.68e− 5) 2.55× 10−4(9.93e− 6)

(0.05,0.5) 4.75× 10−3(1.58e− 4) 7.15× 10−3(2.07e− 4) 4.89× 10−3(1.82e− 4) 3.41× 10−4(2.06e− 5)

(0.05,0.3) 3.86× 10−3(9.82e− 5) 6.95× 10−3(1.62e− 4) 3.86× 10−3(1.16e− 4) 2.55× 10−4(1.26e− 5)

(0.05,0.05) 3.18× 10−3(6.69e− 5) 6.75× 10−3(1.41e− 4) 1.13× 10−3(3.64e− 5) 1.90× 10−4(6.78e− 6)
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Figure 1: Lung cancer incidence rates in 58 counties of California in Feburary, 2006. The

redder the color, the higher the incidence rate.
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Figure 2: Estimation errors of λ̂(t, s) when using the optimal bandwidth (1st column), the

bandwidths found by CV with kernels in K(1) (2nd column), K(2) (3rd column), K(3) (4th

column) and K(4) (5th column), at t =0.25 (1st row), 0.5 (2nd row) and 0.75 (3rd row). In

the plots, (n,m) = (100, 100), (ρt, ρs) = (0.3, 0.3), and we choose the simulation with the

median ASE value among 100 replicated simulations when the bandwidths chosen by CV

using the kernels in K(1) are used.
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Figure 3: Observed lung cancer data (1st column) in 58 counties of California in March 2007

(1st row), October 2010 (2nd row) and December 2011 (3rd column), and the residual plots

of the method LGCP (2nd column), DSTM (3rd column), WAS (4th column) and LLSTK

(5th column).
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