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Abstract

Spatio-temporal data are common in practice. Existing methods for analyzing such data

often employ parametric modelling with different sets of model assumptions. However, spatio-

temporal data in practice often have complicated structures, including complex spatial and

temporal data variation, latent spatio-temporal data correlation, and unknown data distribution.

Because such data structures reflect the complicated impact of confounding variables, such as

weather, demographic variables, life styles, and other cultural and environmental factors, they

are usually too complicated to describe by parametric models. In this paper, we suggest a general

modelling framework for estimating the mean and covariance functions of spatio-temporal data

using a three-step local smoothing procedure. The suggested method can well accommodate

the complicated structure of real spatio-temporal data. Under some regularity conditions, the

consistency of the proposed estimators is established. Both simulation studies and a real-data

application show that our proposed method could work well in practice.

Key Words: Bandwidth selection; Consistency; Covariance estimation; Functional data analy-

sis; Local smoothing; Spatio-temporal data.

1 Introduction

A large amount of spatio-temporal data has become available to researchers in statistics, epi-

demiology, geography, oceanography, environmental science, and more. The increasing computing

power has made it possible for us to analyze these data with more and more realistic models.

1The online version of this article contains supplementary material.
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This paper aims to propose a general modelling framework for estimating the mean and vari-

ance/covariance functions of spatio-temporal data using a local smoothing procedure.

In the statistical literature, there have been many existing spatio-temporal modelling ap-

proaches. One such approach suggested by Stroud et al. (2001) is for linear dynamic spatio-

temporal modelling (DSTM), in which the mean response at each time point is assumed to be a

locally weighted mixture of some pre-specified basis functions, the spatial surfaces at different time

points are assumed to follow a linear evolution equation, and the spatial random noise is assumed

to be a Gaussian noise process. Some generalized versions of DSTM have been developed to de-

scribe nonlinear evolution process (Wikle and Hooten 2010) or model high-dimensional multivariate

spatio-temporal data (Bradley et al. 2015). More details about dynamical spatio-temporal models

can be found in the books Cressie and Wikle (2011) and Wikle et al. (2019). Another approach for

modelling a spatio-temporal point process is based on the log-Gaussian Cox process (LGCP) frame-

work (Møller et al. 1998), where the logarithm of the related spatio-temporal intensity function is

assumed to follow a spatio-temporal Gaussian process with a separable or non-separable covariance

structure, and conditional on the intensity function the original point process is assumed to be

Poisson-distributed (e.g., Cressie and Huang 1999, Diggle et al. 2013). By using the idea of scale

mixing, Fonseca and Steel (2011) suggested a method for modelling non-Gaussian spatio-temporal

data, based on the assumptions that the observed data follow a Gaussian process given some scale

mixing variables and that the covariance structure has a specific parametric form. To analyze a

sequence of large air quality datasets, Datta et al. (2016) developed a dynamic nearest-neighbor

Gaussian process model to provide statistical inference by using data information from nearest

neighbors. There are some other methods for estimating the spatio-temporal mean and/or co-

variance structure, including the linear regression modelling using temporal basis functions (cf.,

Lindström et al. 2015), the kernel smoothing methods with or without considering spatial data

correlation (e.g., Kafadar 1996, Yang and Qiu 2018 and 2019), the function estimation methods

based on B-splines (e.g., Choi et al. 2013) or LASSO penalized least squares (e.g., Shand and Li

2017), the space-time ANOVA-type methods (Heuvelink and Griffith 2010), and more.

The parametric model assumptions in some existing methods described above could be invalid

or difficult to justify in certain applications. Consequently, their performance may not be reliable

in such cases. The data covariance structure is not used or well accommodated when estimating

the mean function in these or some other existing methods; thus, there is much room for us to
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improve their effectiveness. In this paper, we propose a general modelling framework for jointly

estimating the mean and variance/covariance functions of spatio-temporal data using a three-step

local smoothing procedure. The proposed method does not impose restrictive assumptions on the

spatio-temporal mean structure, the spatio-temporal covariance structure, and the data distribu-

tion. Because it is based on local smoothing, its computation is relatively fast. In the proposed

method, the spatio-temporal covariance structure is estimated and accommodated properly when

estimating the mean structure. To properly distinguish the mean and covariance structure in model

estimation, a new spatio-temporal bandwidth selection procedure is also developed. All these fea-

tures make the proposed method effective in analyzing spatio-temporal data, which is confirmed

by theoretical arguments and numerical studies.

The rest of the article is organized as follows. The proposed nonparametric spatio-temporal

regression method is first described in detail in Section 2. Some of its theoretical properties are

derived in Section 3. Its numerical performance is evaluated by some simulation studies in Section

4. A real-data application is discussed in Section 5, and we conclude with a discussion in Section

6. Some technical details, including the proofs of certain theoretical results, can be found in the

supporting materials.

2 Local Smoothing Approach for Estimationg Spatio-Temporal

Mean and Variance/Covariance Functions

Our proposed method is described in three parts. A nonparametric spatio-temporal regression

model is discussed in Subsection 2.1, its three-step model estimation is discussed in Subsection 2.2,

and a novel spatio-temporal bandwidth selection procedure is discussed in Subsection 2.3.

2.1 A nonparametric spatio-temporal regression model

Assume that a response variable y is observed at n equally-spaced time points {ti = i/n, i =

1, . . . , n} in the time interval [0, 1], and at the ith time point it is observed at mi spatial locations

{sij , j = 1, . . . ,mi} in a spatial region Ω ⊆ R2, for i = 1, . . . , n. The observed data are assumed to
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follow the following nonparametric spatio-temporal regression model:

y(ti, sij) = λ(ti, sij) + ε(ti, sij), for j = 1, . . . ,mi, i = 1, . . . , n, (1)

where λ(ti, sij) is the mean of y(ti, sij), and ε(ti, sij) is the zero-mean random error. Under model

(1), the variance/covariance structure of the spatio-temporal data can be described by

Cov
[
y(t, s), y(t′, s′)

]
= E

[
ε(t, s)ε(t′, s′)

]
=

 σ2(t, s), if t = t′ and s = s′,

V (t, t′; s, s′), otherwise,
(2)

where t, t′ ∈ [0, 1], and s, s′ ∈ Ω. In expressions (1) and (2), the mean λ(t, s) and the vari-

ance/covariance σ2(t, s) and V (t, t′; s, s′) are all formulated in terms of the rescaled times ti =

i/n ∈ [0, 1], rather than i. This formulation is commonly used in the literature. See, e.g., Robin-

son (1989), Dahlhaus (1997), and Vogt and Linton (2014). The rescaled time is necessary for

studying asymptotic properties of the estimated mean and variance/covariance functions in the

time domain. Otherwise, the distance between two consecutive observation times would not go to

0 when n increases, and thus the asymptotic properties in the time domain cannot be discussed

properly. It should be pointed out that models (1) and (2) are flexible. They do not impose any

parametric assumptions on the mean λ(t, s), the variance/covariance σ2(t, s) and V (t, t′; s, s′), or

the distribution of the response variable y(t, s). They even allow the observation locations to be

different at different time points. This last feature would make our proposed method applicable

in more applications, compared to some existing methods that require the observation locations

to be unchanged over time. For example, in infectious disease research, hospitals reporting daily

disease incidence data may be different at different time points, which makes the spatial locations

of observed daily disease incidence to be different.

2.2 Three-step model estimation

Estimation of models (1) and (2) consists of the following three steps: (i) an initial estimate

of the mean function λ(t, s) is first obtained, (ii) the variance/covariance functions σ2(t, s) and

V (t, t′; s, s′) are then estimated accordingly, and (iii) the final estimate of λ(t, s) is obtained after

the estimated variance/covariance functions are accommodated in the mean estimation. Each of

these three steps is described below in detail.

Let Y = (y(t1, s11), . . . , y(t1, s1m1), . . . , y(tn, snmn))T be the long vector of all observations.

Then, for given (t, s) ∈ [0, 1] × Ω, λ(t, s) can be estimated by the following weighted local linear
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kernel (WLLK) smoothing procedure (cf., Qiu 2005, Chapter 2):

min
β∈R4

(Y −Xβ)T Σ̂−1
K (Y −Xβ) , (3)

where X = (X11, . . . , X1m1 , . . . , Xnmn)T is the design matrix with Xij = (1, ti− t, (sij − s)T )T , for

j = 1, . . . ,mi and i = 1, . . . , n, β = (β0, β1, β2, β3)T is the coefficient vector, Σ̂K = D
−1/2
K Σ̂YD

−1/2
K ,

DK = diag{w0(1, 1), . . . , w0(1,m1), . . . , w0(n,mn)},w0(i, j) = K1((ti − t)/ht,0)K2(dE(sij , s)/hs,0),

ht,0, hs,0 > 0 are two bandwidths, K1(·) and K2(·) are two univariate kernel functions, dE(·, ·) is

the Euclidean distance in R2, and Σ̂Y is the estimated covariance matrix of Y . If the estimated

covariance function is denoted as V̂ (t, t′; s, s′), then V̂ (ti, tk; sij , skl) can be used as the (
∑i−1

q=1mq+

j,
∑k−1

q=1 mq + l)-th element of Σ̂Y, for any 1 ≤ i, k ≤ n, 1 ≤ j ≤ mi and 1 ≤ l ≤ mk. Throughout

this paper, the inverse of a matrix refers to the Moore-Penrose generalized inverse. To obtain

an initial estimate of λ(t, s), because V̂ (t, t′; s, s′) has not been obtained yet, we can simply set

Σ̂Y to be the identity matrix, in which case the spatio-temporal observations are assumed to be

independent of each other. Then, the initial estimate of λ(t, s) is the solution of the minimization

problem (3) to β0, and it has the following expression:

λ̃(t, s) = eT1
(
XTDKX

)−1
XTDKY , (4)

where e1 = (1, 0, 0, 0)T . In (3), the two kernel functions are usually chosen to have finite supports.

Thus, λ̃(t, s) in (4) is a weighted average of observations in a neighborhood of (t, s), the neighbor-

hood size is controlled by the bandwidths ht,0 and hs,0, and the weights are controlled by the kernel

functions K1(·) and K2(·). In this paper, all kernel functions are chosen to be the Epanechnikov

kernel function because of its good theoretical properties (cf., Epanechnikov 1969). Namely, we

choose K1(x) = K2(x) = 0.75(1 − x2)I(|x| ≤ 1). Because K2(x) is used on a two-dimensional

spatial region, its normalizing constant should be chosen differently from 0.75 to become a density

kernel; but, the normalizing constant does not need to be specified correctly because it will be

cancelled out in the estimate λ̃(t, s).

The initial estimate λ̃(t, s) in (4) ignores the spatio-temporal data correlation by replacing the

covariance matrix Σ̂Y with the identity matrix. Similar to the theory of generalized estimation

equation (Liang and Zeger 1986), it will be shown in Section 3 that this estimate is statistically

consistent under some regularity conditions. To improve its efficiency, we need to estimate the

variance/covariance functions σ2(t, s) and V (t, t′; s, s′). To this end, we define residuals ε̃(ti, sij) =
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y(ti, sij)− λ̃(ti, sij). Then, the variance function σ2(t, s) can be estimated by

σ̂2(t, s) =

∑n
i=1

∑mi
j=1 ε̃

2(ti, sij)w1(i, j)∑n
i=1

∑mi
j=1w1(i, j)

, (5)

where w1(i, j) = K1 ((ti − t)/ht,1)K2 (dE(sij , s)/hs,1). The covariance function V (t, t′; s, s′) can be

estimated by

V̂ (t, t′; s, s′) =

∑
i,j

∑
(k,l)6=(i,j) ε̃(ti, sij)ε̃(tk, skl)w2(i, j, k, l)∑

i,j

∑
(k,l)6=(i,j)w2(i, j, k, l)

, (6)

where w2(i, j, k, l) = K1 ((ti − t)/ht,1)K1 ((tk − t′)/ht,1)K2 (dE(sij , s)/hs,1)K2 (dE(skl, s
′)/hs,1).

In (6), V̂ (t, t′; s, s′) is actually defined as a weighted sample covariance computed from pairs of

the residuals in the neighborhoods of (t, s) and (t′, s′), respectively, and the weights are determined

by the kernel functions. In (5) and (6), the two bandwidths (ht,1, hs,1) could be chosen differently

from the bandwidths (ht,0, hs,0) used in computing the initial mean estimate in (4). For the co-

variance structure, it is often reasonable to assume that V (t, t′; s, s′) is close to 0 when the time

lag between t and t′ is large. Therefore, to reduce computational burden in covariance estimation,

we can simply set the estimated covariance to be 0 when |t− t′|n is larger than a properly chosen

threshold value cn.

After the variance and covariance functions are estimated by (5) and (6), the covariance matrix

ΣY of the observed data Y can be computed from σ̂2(t, s) and V̂ (t, t′; s, s′). However, the estimated

covariance matrix Σ̂Y may not be a positive definite matrix. To make it to be a symmetric positive

definite matrix, we suggest using the modification approach proposed by Higham (1998) described

briefly below. Let ‖ · ‖F be the Frobenius matrix norm, defined to be the square root of the sum

of squares of a matrix’s elements, P be the set of all symmetric positive definite matrices with the

same dimensions as those of Σ̂Y. Then, the projection of Σ̂Y on P in the Frobenius matrix norm

is

Σ̃Y = arg min
P∈P
‖P − Σ̂Y‖F .

It has been shown that Σ̃Y = (Σ̂Y + Σ̂Y,p)/2 (cf., Higham 1998), where Σ̂Y,p is the symmetric

polar factor of Σ̂Y. The projection Σ̃Y can be obtained by using the nearPD() command in R

package Matrix. Then, we suggest using Σ̃Y to replace Σ̂Y in (3). It can be checked that if Σ̂Y is

symmetric positive definite, then Σ̃Y and Σ̂Y are the same.

Finally, the estimate of λ(t, s) can be obtained from (3) with Σ̂K being replaced by Σ̃K =

D
−1/2
K Σ̃YD

−1/2
K , where DK is defined immediately after (3). So, the final estimate of λ(t, s) is
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defined to be

λ̂(t, s) = eT1

(
XT Σ̃−1

K X
)−1

XT Σ̃−1
K Y . (7)

In (7), the bandwidths could be chosen to be different from (ht,0, hs,0) used in obtaining the initial

estimate λ̃(t, s) in (4). The new bandwidths used in (7) are denoted as (ht,2, hs,2). From (4)-(7), it

is natural to consider the following iterative procedure: the estimates of the variance and covariance

functions defined in (5)-(6) can be further updated by replacing the initial mean estimate λ̃(t, s) with

the mean estimate λ̂(t, s) in (7) when defining the residuals {ε̃(ti, sij)}, then the mean estimate in

(7) can be further updated by using the updated estimates of the variance and covariance functions,

and so forth. However, by theoretical justification and numerical results in Sections 3 and 4, it is

found that no substantial performance gain can be obtained by using such an iterative procedure,

but the computational burden of the iterative procedure would be heavy. For these reasons, we

suggest using λ̂(t, s) in (7) as the final estimate of λ(t, s).

2.3 Selection of the bandwidths

The bandwidths ht,0 and hs,0 are used in obtaining the initial mean estimate λ̃(t, s). In the

literature of univariate nonparametric estimation of regression functions from correlated data, it

has been well discussed that the bandwidths selected by the conventional cross-validation (CV)

procedure (e.g., the leave-one-out CV) would not perform well, because it cannot properly distin-

guish the data correlation structure from the data mean function (cf., Altman 1990, Brabanter et

al. 2011, Opsomer et al. 2001). To overcome this difficulty, Hall et al. (1995) suggested a block

bootstrap procedure for choosing the bandwidth in the univariate nonparametric regression setup

when observed data are correlated. This block-bootstrap procedure can be extended to multivariate

cases for choosing the bandwidths (ht,0, hs,0) used in (4), which is described below. Let (ht,01, hs,01)

and (ht,02, hs,02) be two sets of pre-specified values of (ht,0, hs,0), with (ht,01, hs,01) chosen relatively

small and (ht,02, hs,02) chosen relatively large. The corresponding initial estimates of λ(t, s) are

denoted as λ̃1(t, s) and λ̃2(t, s), respectively. Let ε̃ij,1 = y(ti, sij) − λ̃1(ti, sij) be the residuals,

¯̃ε1· = (
∑n

i=1

∑mi
j=1 ε̃ij,1)/(

∑n
i=1mi) be the mean residual, and ε̃ij,0 = ε̃ij,1 − ¯̃ε1· be the centralized

residuals. Assume that b is a pre-specified block size, k1 is the largest integer that is less than or

equal to n/b, and k2 = n−b×k1. Then, our suggested block-bootstrap mean average squared error

(BB-MASE) criterion for choosing the bandwidths (ht,0, hs,0) is described below.
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1) Randomly choose a sequence of k1 + 1 integers from {1, 2, ..., n− b+ 1} with replacement. The

selected integers are denoted as {i1, i2, . . . , ik1+1}. Then, we define a sequence of n indices as

{i1, i1 + 1, . . . , i1 + b − 1, i2, i2 + 1, . . . , i2 + b − 1, . . . , ik1 , ik1 + 1, . . . , ik1 + b − 1, ik1+1, ik1+1 +

1, . . . , ik1+1 +k2−1} if k2 > 0; and {i1, i1 + 1, . . . , i1 + b−1, i2, i2 + 1, . . . , i2 + b−1, . . . , ik1 , ik1 +

1, . . . , ik1 + b − 1} if k2 = 0. Let {li, i = 1, 2, . . . , n} denote this sequence of n indices. De-

fine the block-bootstrap sample to be y∗(ti, slij) = λ̃2(ti, slij) + ε̃lij,0, for i = 1, . . . , n and

j = 1, . . . ,mli . For given bandwidths (ht,0, hs,0), the initial estimate of λ(t, s) computed

from the block-bootstrap sample is denoted as λ̃∗(ti, slij). Then, we define ASE(ht,0, hs,0) =

1
n

∑n
i=1

1
mli

∑mli
j=1(λ̃2(ti, slij)− λ̃∗(ti, slij))2.

2) Step 1) is then repeated for B times, and the average of the B values of ASE(ht,0, hs,0) is denoted

as BB-MASE(ht,0, hs,0).

3) The bandwidths (ht,0, hs,0) are determined by minimizing BB-MASE(ht,0, hs,0).

Hall et al. (1995) showed theoretically that the block-bootstrap procedure, such as the one described

above, should be robust to the two sets of pre-specified values of the bandwidths to choose, which

has been illustrated by us through numerical simulations.

For choosing the bandwidths (ht,1, hs,1) that are used for estimating the variance and covariance

functions in (5) and (6), we suggest a new method based on spatio-temporal prediction, described

below. First, define the cross-validation mean squared prediction error (CV-MSPE) by

CV-MSPE(ht,1, hs,1) =
1

n

n∑
i=1

 1

mi

mi∑
j=1

{
y(ti, sij)− ŷ−(ij)(ti, sij)

}2

 , (8)

where {ŷ−(ij)(i, sij), j = 1, . . . ,mi, i = 1, . . . , n} are the predicted values obtained by the kriging

method (Cressie and Wikle 2011), described below. For each 1 ≤ j ≤ mi and 1 ≤ i ≤ n, let

V̂−(ij)(t, t
′; s, s′) be the estimated covariance function by (6) when the (i, j)-th residual ε̃(ti, sij) is

omitted, ε−(ij) be the vector with elements {ε(tk, skl), l = 1, . . . ,mk, k = 1, . . . , n, (k, l) 6= (i, j)},

Σij,−(ij) be the covariance matrix between ε(ti, sij) and ε−(ij), and Σ−(ij),−(ij) be the covariance

matrix of ε−(ij). Then, the predicted values {ŷ−(ij)(ti, sij), j = 1, . . . ,mi, i = 1, . . . , n} are defined

by

ŷ−(ij)(ti, sij) = λ̃(ti, sij) + Σ̂T
ij,−(ij)Σ̂

−1
−(ij),−(ij)ε̂−(ij), (9)

where Σ̂ij,−(ij) and Σ̂−(ij),−(ij) are estimates of Σij,−(ij) and Σ−(ij),−(ij), respectively, computed

from V̂−(ij)(t, t
′; s, s′), and ε̂−(ij) is a vector of the residuals {ε̃(tk, skl), l = 1, . . . ,mk, k = 1, . . . , n, (k, l) 6=
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(i, j)} arranged in the same order as those in ε−(ij). The bandwidths (ht,1, hs,1) can then be selected

by minimizing CV-MSPE(ht,1, hs,1).

Note that Σ̂−(ij),−(ij) is a (
∑n

i=1mi − 1) × (
∑n

i=1mi − 1) matrix. When the total sample

size
∑n

i=1mi is large, the computation and storage for the inverse matrix Σ̂−1
−(ij),−(ij) could be

demanding. To overcome this difficulty, we suggest using the observations in a local neighborhood

of (ti, sij) only when computing the predicted value ŷ−(ij)(ti, sij) used in the kriging procedure

(8)-(9). More specifically, let ∆ij(θt, θs) = {(k, l) : |tk − ti| ≤ θt, dE(skl, sij) ≤ θs, (k, l) 6= (i, j)}

be a set of indices around (i, j). Then, when computing Σ̂ij,−(ij) and Σ̂−(ij),−(ij) used in (9),

only those points (tk, skl) whose indices are included in ∆ij(θt, θs) are used. Also, ε̂−(ij) in (9)

needs to be replaced by the one that includes the residuals with indices in ∆ij(θt, θs) only. After

this modification, the computation involved in calculating the predicted value ŷ−(ij)(ti, sij) can be

greatly reduced, and the amount of computational reduction is controlled by the parameters θt

and θs. Generally speaking, if their values are chosen smaller, then the computational reduction

would be more substantial; but, the resulting predicted value ŷ−(ij)(ti, sij) could be less accurate.

Based on our extensive numerical studies, we suggest choosing θt and θs such that θt ≥ 5/n and

θs ≥ 3θ(i, j), where θ(i, j) = min{dE(sij , sil), l = 1, . . . ,mi, l 6= j}.

To determine the bandwidths (ht,2, hs,2) used in obtaining the final estimate λ̂(t, s) in (7), we

first notice that the mean of the residual mean squares (RMS) of λ̂(t, s) is

E(RMS) =E

 1

n

n∑
i=1

 1

mi

mi∑
j=1

(
y(ti, sij)− λ̂(ti, sij)

)2


=
1

n

n∑
i=1

1

mi

mi∑
j=1

σ2(ti, sij) +
1

n

n∑
i=1

1

mi

mi∑
j=1

E
(
λ(ti, sij)− λ̂(ti, sij)

)2−
2

n

n∑
i=1

1

mi

mi∑
j=1

eT1

(
XT Σ̃−1

K X
)−1

XT Σ̃−1
K ΣY(ζij),

(10)

where ΣY(ζij) is the ζijth column of the covariance matrix ΣY, and ζij =
∑i−1

k=1mk+j. In (10), the

first term on the right-hand-side is not related to (ht,2, hs,2), the second term is the mean square

error (MSE) of λ̂(t, s) that measures its performance, and the third term is due to data correlation.

In our proposed bandwidth selection procedure, we suggest estimating the third term and then

choosing the bandwidths by minimizing the sum of the RMS and the estimated third term (Note:

the sum should be a good estimate of the sum of the first two terms on the right-hand-side of (10)).

More specifically, we first define a bias-corrected estimate of the MSE (BCE-MSE) of λ̂(t, s) (note:
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the first term on the right-hand-side of (10) has been ignored) to be

BCE-MSE(ht,2, hs,2) =
1

n

n∑
i=1

 1

mi

mi∑
j=1

(
y(ti, sij)− λ̂(ti, sij)

)2+

2

n

n∑
i=1

1

mi

mi∑
j=1

eT1

(
XT Σ̃−1

K X
)−1

XT Σ̃−1
K Σ̃Y(ζij),

(11)

where Σ̃Y(ζij) is the ζijth column of Σ̃Y. Then, (ht,2, hs,2) are chosen to minimize BCE-MSE(ht,2, hs,2).

3 Statistical Properties

In this section, we present some statistical properties of the estimates λ̃(t, s), σ̂2(t, s), V̂ (t, t′; s, s′)

and λ̂(t, s) defined in (4)-(7). In the discussion, it is assumed that {mi, i = 1, . . . , n} are in the

same order of m. It is further assumed that {sij , i = 1, . . . , n, j = 1, . . . ,mi} follow a distribution

with the density f(s), for s ∈ Ω, and at each time point ti, the corresponding spatial locations

{sij , j = 1, . . . ,mi} are independent. Furthermore, {sij , i = 1, . . . , n, j = 1, . . . ,mi} are assumed to

be independent of the random errors {ε(ti, sij), j = 1, . . . ,mi, i = 1, . . . , n} in model (1). All these

assumptions on the spatial locations are denoted as (Assumption-SL).

For the random errors {ε(ti, sij), i = 1, . . . , n, j = 1, . . . ,mi}, it is assumed that ε(ti, sij)

consists of two independent components, namely, ε(ti, sij) = ε0(ti, sij)+ε1(ti, sij), where ε0(ti, sij)

is from a spatially and temporally correlated random process and ε1(ti, sij) is the pure measurement

error (i.e., {ε1(ti, sij)} are independent at different times and/or locations). Let the strong mixing

coefficient of {ε0(ti, sij)} in the time domain be defined as

α(k) = sup
n≥1,1≤i≤n−k

sup
A,B
{|P (AB)− P (A)P (B)| : A ∈ F i1, B ∈ Fni+k},

where Fk1k0 is the σ-algebra generated by {ε0(tk, skl), k0 ≤ k ≤ k1, l = 1, . . . ,mk}. In addition, for

any (t, s) = [0, 1] × Ω, define gn(θ; t, s) = V (t, t; s, s) + 2
∑τn

k=1 V (t, t + k/n; s, s) cos(2θkπ) to be

the spectral density function of the time series {ε0(ti, s), i = 1, . . . , n}, where θ ∈ [−1/2, 1/2], τn =

bn(1−t)c is the greatest integer less than or equal to n(1−t), and V (t, t; s, s) is the variance function

of ε0(t, s). Let g(θ; t, s) = limn→∞ gn(θ; t, s). Next, we will show that g(θ; t, s) is well-defined, and

λ̂(t, s) defined in (7) is a consistent estimator of λ(t, s) under some regularity conditions.

Lemma 1 Assume that there exist two constants C0, C1 > 0 such that the strong mixing coefficient

α(k) satisfies the condition that α(k) ≤ C0 exp(−C1k) for every k, and there are some constants
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δ > 2 and 0 ≤ Cε <∞ such that E|ε(t, s)|δ ≤ Cε, for all t and s. Then, for any (t, s) ∈ [0, 1]×Ω,

g(θ; t, s) is well-defined and non-negative.

Lemma 2 In model (1), it is assumed that the design space Ω is a compact set in R2, the obser-

vation locations {sij , i = 1, . . . , n, j = 1, . . . ,mi} satisfy the assumptions in (Assumption-SL), f(s)

is twice continuously differentiable in Ω and it has a non-zero lower bound in Ω, the mean function

λ(t, s) is twice continuously differentiable in [0, 1] × Ω, the strong mixing coefficient α(k) satisfies

the condition that α(k) ≤ C0 exp(−C1k), where C0, C1 > 0 are two constants, δ defined in Lemma

1 is larger than 5, the kernel functions K1(·) and K2(·) are bounded, symmetric, and Lipschitz-1

continuous density functions with finite supports, log(n)2/(nh2
t,0) = o(1), log(n)/(mh2

s,0) = O(1),

hs,0 = o(1) and ht,0/hs,0 = O(1). Then, we have

sup
(t,s)∈[0,1]×Ω

∣∣∣λ̃(t, s)− λ(t, s)
∣∣∣ = Op

(
h2
t,0 + h2

s,0 + {log(n)2/(nh2
t,0)}1/2

)
. (12)

Lemma 3 Besides the conditions in Lemma 2, if we further assume that there are some positive

constants C2, C3 and δ∗ such that Pr(|ε(t, s)| ≥ k) ≤ C2k
δ∗ exp(−C3k), for all t, s and any posi-

tive number k, the variance function σ2(t, s) is twice continuously differentiable in [0, 1] × Ω, the

covariance function V (t, t′; s, s′) is also twice continuously differentiable, log(n)2/(nh2
t,1) = o(1),

log(n)/(mh2
s,1) = O(1), hs,1 = o(1), and ht,1/hs,1 = O(1), then we have

sup
(t,s)∈[0,1]×Ω

∣∣σ̂2(t, s)− σ2(t, s)
∣∣ = Op

(
h2
t,0 + h2

s,0 + {log(n)2/(nh2
t,0)}1/2

+h2
t,1 + h2

s,1 + {log(n)2/(nh2
t,1)}1/2

)
,

(13)

and

sup
t,t′∈[0,1]

sup
s,s′∈Ω

∣∣∣V̂ (t, t′; s, s′)− V (t, t′; s, s′)
∣∣∣ = Op

(
h2
t,0 + h2

s,0 + {log(n)2/(nh2
t,0)}1/2

+h2
t,1 + h2

s,1 + {log(n)2/(nh2
t,1)}1/2

)
.

(14)

Theorem 1 Besides the assumptions in Lemma 3, if we further assume that g(θ; t, s) > 0, for all

θ ∈ [−1/2, 1/2] and (t, s) ∈ [0, 1] × Ω, 1/(nht,2) = o(1), log(n)/(mh2
s,2) = O(1), ht,2 = o(1), and

hs,2 = o(1), then we have

∣∣∣λ̂(t, s)− λ(t, s)
∣∣∣ = Op

(
h2
t,2 + h2

s,2 + {1/(nht,2)}1/2
)
. (15)

11



The proofs of Lemmas 1-3 and Theorem 1 are given in the supplementary materials. In Lemma

3, we assume that Pr(|ε(t, s)| ≥ k) ≤ C2k
δ∗ exp(−C3k). This assumption is valid for many com-

monly used continuous distributions, including Normal, Exponential and Laplace distributions. In

Theorem 1, it is assumed that g(θ; t, s) > 0 for all θ, t, and s. It can be checked that this assumption

is valid if the temporally correlated random fields {ε0(ti, s), i = 1, . . . , n} are generated from some

stationary time series models (e.g., the AR models), or some commonly used covariance models,

such as the Spherical, Matérn or Gaussian process models. See Choi et al. (2013) for some detailed

discussions about these models. Furthermore, it can be checked that this assumption is also valid

when {ε0(ti, s), i = 1, . . . , n} follow the models mentioned above locally.

4 Numerical Study

In this section, we present some simulation results about the numerical performance of the

proposed method described in the previous sections. For simplicity, assume that the observation

times are {ti = i/n, i = 1, . . . , n}, the observation locations at each time point are equally spaced

in Ω = [0, 1]× [0, 1] and they do not change over time, and the number of observation locations is

m at each time point. In such cases, the observation locations are denoted as {sj , j = 1, . . . ,m}.

In all simulation examples, (m,n) are chosen to be (36, 50) or (100, 100), and the mean function is

chosen to be

λ(t, s) = 2 + sin(πsx) sin(πsy) + sin(2πt),

where s = (sx, sy)
T . Let ε(ti) = (ε(ti, s1), . . . , ε(ti, sm))T , then ε(i) is generated from the following

AR(1) process:

ε(ti) = φtε(ti−1) + (1− φ2
t )

1/2η(ti),

where
{
η(ti) = (η(ti, s1), . . . , η(ti, sm))T , i = 1, . . . , n

}
are temporally independent spatial processes

and −1 < φt < 1 is a constant controlling the temporal data correlation. For each (ti, sj), η(ti, sj) is

generated from the normal distribution N(0, σ2). At each observation time ti, the spatial covariance

among the elements of η(ti) is described by Cov (η(ti, sj), η(ti, sl)) = σ2ρ(dE(sj , sl)), for any j and

l, where ρ(d) = exp{−φsd} and φs > 0 is a constant to determine the magnitude of spatial

correlation. In such cases, it can be checked that the covariance between ε(ti, sj) and ε(tk, sl) is

V (ti, tk; sj , sl) = σ2φ
n|ti−tk|
t ρ(dE(sj , sl)), for ti, tk ∈ [0, 1]. In the simulation examples, we choose

σ = 0.5, φt = 0.3, 0.6 or 0.9, and φs = 1, 3 or 5. To determine the bandwidths (ht,0, hs,0) used for

12



computing λ̃(t, s), the block-bootstrap procedure described in Section 2.3 is used, where we choose

B = 100, (ht,01, hs,01) = (0.05, 0.05), and (ht,02, hs,02) = (0.3, 0.3). The block size b is always chosen

to be 5, except in cases when we study the effect of block size on the performance of λ̂(t, s) below.

The threshold value cn is chosen to be 20 when compute the covariance function estimate.

First, we compare the proposed method with some representative existing methods: the DSTM

and LGCP methods discussed in Section 1, the spatially weighted average (SWA) method suggested

by Kafadar (1996), and the local linear kernel smoothing (LLKS) method by Yang and Qiu (2018).

The DSTM method has been discussed in detail in Stroud et al. (2001), and can be accomplished

using the R-package spBayes. In the LGCP method, it is assumed that y(ti, sij)N (ti, sij) follows

the distribution Poisson(R(ti, sij)), for each i and j, where N (ti, sij) denotes the population size

at time ti in the design grid cell that contains sij , R(ti, sij) = CgN (ti, sij) exp[ξ(ti, sij)], Cg = 1/m

is the area of each grid cell, and ξ(ti, sij) is from a spatio-temporal Gaussian process with a variance

parameter σ2
ξ and a scale parameter φξ. In the simulation studies, {N (ti, sij)} are fixed to be a

constant 10,000. The parameters σ2
ξ and φξ can be estimated by the Bayesian inference, as discussed

in Taylor et al. (2015). This method can be accomplished using the R-package lgcp. The proposed

initial mean estimate λ̃(t, s) in (4) is denoted as Step1, and the proposed updated mean estimate

λ̂(t, s) in (7) is denoted as Step2. Intuitively, because the DSTM and LGCP methods require some

parametric assumptions on their models and on the data distribution, it is expected that they

cannot perform well when these assumptions are violated. The SWA method was developed for

smoothing spatial geographical data, and thus it cannot use data information at neighboring time

points when estimating the mean function at a given time point. For the LLKS method, although

it provides a reliable estimate for the spatio-temporal mean function, the covariance structure is

not taken into consideration in its estimate and thus its efficiency has room for improvement.

Based on these intuitions, we believe that our proposed method Step2 would perform favorably in

comparison with its peers when estimating λ(t, s) in cases when the mean and variance structures

of the observed spatio-temporal data are complex. For Step1 and Step2, all their bandwidths are

chosen by the procedures discussed in Subsection 2.3. The bandwidths used in the method LLKS

are chosen according to the modified CV procedure described by Yang and Qiu (2018). For the

other three competing methods DSTM, LGCP and SWA, their tuning parameters are chosen to

minimize the mean average squared errors (MASE) defined below. To evaluate the performance of

13



each method, the MASE criterion is defined as:

MASE = E

 1

n

n∑
i=1

1

m

m∑
j=1

(λ(ti, sj)− λ̂(ti, sj))
2

 ,

which is approximated by the average of 100 ASE values computed from 100 repeated simulations.

The results of MASE values of different methods in the above setup are presented in Table 1. From

the table, it can be seen that i) the three methods LLKS, Step1 and Step2 have a better overall

performance than the methods DSTM, LGCP and SWA, ii) Step1 outperforms LLKS uniformly, iii)

Step2 outperforms Step1 uniformly, and iv) the performance of Step1 and Step2 is improved when

the sample size (m,n) is increased from (36, 50) to (100, 100). The last conclusion is consistent with

the consistency results in Lemma 1 and Theorem 1 in Section 3. The conclusion iii) says that the

update from Step1 to Step2 by accommodating the estimated variance and covariance functions

(cf., (4)-(7)) is helpful for estimating the mean function λ(t, s). The conclusion ii) confirms that the

block-bootstrap bandwidth selection procedure described in Section 2.3 is effective, since the major

difference between Step1 and LLKS is that the bandwidths in Step1 are selected by the block-

bootstrap procedure while the bandwidths in LLKS are selected by an alternative procedure. The

conclusion i) confirms the benefits to use the nonparametric spatio-temporal modelling methods

LLKS, Step1 and Step2, in which the spatio-temporal data correlation is accommodated while the

related models are kept flexible. As a comparison, the methods DSTM and LGCP both require some

restrictive model assumptions, and the method SWA ignores the spatio-temporal data correlation

completely.

To better perceive the performance improvement of the proposed method Step2 in comparison

with alternative methods, we also present the percentage of improvement in MASE (PIMASE)

values in Table 2, where PIMASE of an alternative method is defined as

PIMASE =
MASE of an alternative method−MASE of Step2

MASE of Step2
.

If the value of PIMASE is positive, then Step2 performs better than the alternative method in

question in terms of MASE. From Table 2, it can be seen that i) Step2 is better than all five

alternative methods uniformly, ii) PIMASE is uniformly larger when the sample size (m,n) is

larger, and iii) the improvements of Step2 over the five alternative methods are quite substantial

in most cases considered.

In the previous simulation examples, the block length b used in the block-bootstrap procedure

described in Section 2.3 for determining the bandwidths (ht,0, hs,0) is fixed at 5. In this part, we
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Table 1: Estimated MASE values and their standard errors (in parentheses) for six spatio-temporal

methods when the sample size (m,n) changes from (36,50) to (100,100) and the spatio-temporal

data correlation changes from relatively weak to relatively strong cases. ∗The standard error num-

bers in parentheses are in the scale of 1 × 10−3. In each row, the smallest MASE value is in

bold.

(m,n) (φt, φs) DSTM LGCP SWA LLKS Step1 Step2

(36,50)

(0.3,1) 0.218(3.40∗) 0.235(2.33) 0.237(3.41) 0.054(1.81) 0.050(1.73) 0.048(1.85)

(0.3,3) 0.175(1.73) 0.231(1.55) 0.215(1.78) 0.044(0.99) 0.044(0.96) 0.042(1.12)

(0.3,5) 0.152(1.13) 0.228(1.17) 0.200(1.20) 0.038(0.72) 0.037(0.67) 0.036(0.84)

(0.6,1) 0.238(4.55) 0.241(4.64) 0.239(4.52) 0.117(3.50) 0.086(3.01) 0.077(3.12)

(0.6,3) 0.202(2.40) 0.230(2.14) 0.216(2.36) 0.094(1.86) 0.076(1.69) 0.064(1.82)

(0.6,5) 0.185(1.62) 0.221(1.12) 0.201(1.57) 0.079(1.23) 0.068(1.15) 0.054(1.25)

(0.9,1) 0.246(8.54) 0.255(8.12) 0.238(8.50) 0.197(8.38) 0.184(8.13) 0.166(7.96)

(0.9,3) 0.237(4.97) 0.243(4.65) 0.217(4.86) 0.170(4.66) 0.156(4.58) 0.130(4.41)

(0.9,5) 0.230(3.61) 0.237(3.65) 0.201(3.38) 0.139(3.14) 0.135(3.15) 0.109(3.19)

(100,100)

(0.3,1) 0.225(2.43) 0.233(1.78) 0.231(2.43) 0.041(1.10) 0.034(1.02) 0.030(1.03)

(0.3,3) 0.192(1.26) 0.225(1.12) 0.202(1.26) 0.034(0.56) 0.029(0.72) 0.026(0.81)

(0.3,5) 0.168(0.82) 0.208(0.67) 0.179(0.82) 0.026(0.34) 0.024(0.33) 0.022(0.47)

(0.6,1) 0.233(3.26) 0.239(2.78) 0.231(3.25) 0.095(2.32) 0.064(2.02) 0.047(1.94)

(0.6,3) 0.211(1.69) 0.224(1.74) 0.202(1.68) 0.071(1.12) 0.054(1.01) 0.039(1.11)

(0.6,5) 0.194(1.09) 0.203(0.91) 0.179(1.07) 0.060(0.70) 0.046(0.64) 0.033(0.78)

(0.9,1) 0.251(7.27) 0.244(6.21) 0.238(7.29) 0.194(7.04) 0.161(6.62) 0.129(6.25)

(0.9,3) 0.241(3.61) 0.238(3.20) 0.206(3.58) 0.169(3.43) 0.133(3.20) 0.102(3.21)

(0.9,5) 0.235(2.27) 0.231(2.11) 0.181(2.19) 0.137(2.07) 0.113(1.96) 0.083(2.06)

study the impact of b on the performance of the mean estimate λ̂(t, s). In the setup of Table 1,

let (m,n) = (36, 50) and b change among 1, 3, 5, 7 and 9. The difference of average squared errors

(DASE) of λ̂(t, s) when two different block sizes are used is defined as

DASE(b1, b2) = ASE(b1)−ASE(b2),

where b1 and b2 are two different block sizes, and ASE(b1) and ASE(b2) are the ASE values of

λ̂(t, s) when block sizes b1 and b2 are used, respectively. To present the results in a concise way,

we use b = 5 as a baseline case, and compare other choices of b to this case. Namely, the values of

DASE(b1, 5) are computed for b1 = 1, 3, 7 or 9. The results of DASE(b1, 5) based on 100 replicated

simulations are shown in Figure 1 by box plots. From the plots, it can be seen that i) the results

would not be good if we choose b = 1, ii) the results are good when b = 3, 5, or 7, and iii) the
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Table 2: The percentage of improvement in MASE (PIMASE) values when comparing the proposed

method Step2 with five competing methods in cases considered in Table 1.

(m,n)=(36,50) (m,n)=(100,100)

(φt, φs) DSTM LGCP SWA LLKS Step1 DSTM LGCP SWA LLKS Step1

(0.3,1) 354% 390% 394% 13% 4% 650% 677% 670% 37% 13%

(0.3,3) 316% 450% 412% 5% 5% 638% 765% 677% 31% 12%

(0.3,5) 322% 533% 456% 6% 3% 664% 845% 714% 18% 9%

(0.6,1) 209% 213% 210% 52% 12% 396% 409% 391% 102% 36%

(0.6,3) 216% 259% 238% 47% 19% 441% 474% 418% 82% 38%

(0.6,5) 243% 309% 272% 46% 26% 488% 515% 442% 82% 39%

(0.9,1) 48% 54% 43% 19% 11% 95% 89% 84% 50% 25%

(0.9,3) 82% 87% 67% 31% 20% 136% 133% 102% 66% 30%

(0.9,5) 111% 117% 84% 28% 24% 183% 178% 118% 65% 36%

results would not be good if b is chosen too large. The conclusion i) confirms that block-bootstrap

with block size b > 1 is necessary to accommodate data correlation. The conclusions ii) and iii)

confirm that b = 5 is a reasonable choice.

As mentioned in Section 2.2, the mean estimate λ̂(t, s) in (7) by the three-step estimation

procedure (3)-(7) can actually be further updated in an iterative way. In this part, we study whether

the performance of the mean estimate can be improved substantially by using more iterations. More

specifically, besides Step1 and Step2 considered in Table 1, we also consider Step3 and Step4, where

Step3 denotes the mean estimate obtained by (7) after the estimates of the variance and convariance

functions are updated by (5) and (6) with the initial mean estimate λ̃(t, s) replaced by the mean

estimate λ̂(t, s) of Step2 when defining the residuals, and Step4 denotes the mean estimate after

another iteration. As in the previous example, to compare two methods, we use the DASE metric,

with Step2 as the baseline method (i.e., DASE is defined to be ASE of an alternative method minus

ASE of Step2). In the setup of Table 1 when (m,n) = (36, 50), the results based on 100 replicated

simulations are shown in Figure 2 by box plots. From the plots of Figure 2, it can be seen that i)

Step2 is much better than Step1 (i.e., the first iteration is very helpful), and ii) Step3 and Step4

improves Step2 only marginally. Because of the computational burden with more iterations, we

recommend using λ̂(t, s) in (7) (i.e., the one obtained after the first iteration) as the final estimate

of λ(t, s).
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Figure 1: Boxplots of the DASE values DASE(b1, 5), where block length b2 = 5 is used as the

baseline for comparing different values of the block size b used in the block-bootstrap procedure

described in Section 2.3, in cases when (m,n) = (36, 50), φs = 1, 3, or 5, and φt = 0.3, 0.6 or 0.9.

In each plot, for given values of (φt, φs), the four boxes are for cases when b1 = 1, 3, 7, and 9,

respectively.

In all previous examples, the design points {(ti, sij), i = 1, . . . , n, j = 1, . . . ,mi} are determinis-

tic and regularly spaced in [0, 1]× [0, 1]2. In this part, we consider cases when the spatial locations

are generated randomly in [0, 1]2, to investigate whether different types of design points would

change the performance of the mean estimates. To this end, let us consider the same setup as that

of Table 1 when (m,n) = (36, 50), except that the observation locations {sj , j = 1, . . . ,m} here are

generated from the two-dimensional uniform distribution in [0, 1]2. In such cases, the calculated

MASE values of the six competing methods based on 100 replicated simulations are presented in

Table 3, along with their standard errors. It can be seen that the results are similar to those in

Table 1 with a fixed design.

At the end of this section, we would like to point out that the computation of the pro-

posed method Step2 is relatively simple because λ(t, s) and V (t, t′; s, s′) are both estimated by

local smoothing procedures in small neighborhoods. More specifically, when estimating λ(t, s)

by (7), only the observations in the neighborhood of (t, s) (i.e., N (t, s) = {y(ti, sij) : |ti − t| ≤

ht,2, dE(sij , s) ≤ hs,2}) are used. Assume that there are N∗ observations in N (t, s). Then, when

we take the Moore-Penrose generalized inverse of the matrix Σ̃K , we only need to calculate the

inverse of a related small submatrix of Σ̃K with the dimension N∗×N∗, because all other elements

in Σ̃K are 0. Note that the number N∗ would be much smaller than the total number of observa-
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Figure 2: Boxplots of the DASE values to compare mean estimates obtained after the first several

iterations of the iterative model estimation of (1) in cases when (m,n) = (36, 50), φs = 1, 3, or

5, and φt = 0.3, 0.6 or 0.9. For specific values of (φt, φs) in each plot, the three boxes are for

comparing Step1, Step3 and Step4 with Step2, respectively, with Step2 as a baseline method.

tions mn. In the simulation examples when (m,n) = (100, 100) and (φt, φs) = (0.6, 3), the average

computation time (ACT) for estimating the mean function λ(t, s) at a given time and a given

location is about 0.08 second using a Mac desktop with a 2.9 GHz Intel Core i5 processor, where

ACT = {mn}−1
∑n

i=1

∑m
j=1 CTij and CTij is the computation time for computing λ̂(ti, sij). To

further investigate the impact of (m,n) on ACT, consider cases when m = 36, 64, 100, 225, or 400,

n = 50, 100, 200, 300, 400, or 500, and (φt, φs) = (0.6, 3). The computed ACT values are presented

in Figure S.1 of the supplementary file. From Figure S.1, it can be seen that ACT gets larger when

m or n becomes larger and it requires about 3.28 seconds to compute the estimate λ̂(t, s) when

(m,n) = (400, 500).

5 Application to A Hand, Foot and Mouth Disease Dataset

In this section, we present an application of our proposed method to a hand, foot and mouth

disease (HFMD) dataset that contains weekly incidence rates of HFMD in 21 cities of Sichuan

province in China during 2009-2010 (52 weeks). To implement the proposed method, the threshold

value cn is chosen to be 20, the block size b used in the block-bootstrap procedure is chosen to be 5,

and the parameters ht,01 and ht,02 are chosen to be 0.05 and 0.3, respectively, as in the simulation
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Table 3: Estimated MASE values and their standard errors (in parentheses) for six spatio-temporal

methods when (m,n) = (36, 50) and all other setups are the same as those in Table 1, except that

the spatial locations here are generated from a uniform distribution in [0, 1]2. ∗The standard error

numbers in parentheses are in the scale of 1 × 10−3. In each row, the smallest MASE values is in

bold.

(φt, φs) DSTM LGCP SWA LLKS Step1 Step2

(0.3,1) 0.220(3.38∗) 0.231(2.30) 0.233(3.41) 0.060(1.76) 0.051(1.71) 0.046(1.77)

(0.3,3) 0.181(1.77) 0.225(1.63) 0.194(1.81) 0.054(0.99) 0.049(0.98) 0.043(1.18)

(0.3,5) 0.160(1.20) 0.218(1.09) 0.167(1.26) 0.041(0.71) 0.041(0.70) 0.040(0.87)

(0.6,1) 0.233(4.55) 0.237(4.24) 0.235(4.52) 0.117(3.38) 0.091(3.05) 0.079(3.12)

(0.6,3) 0.206(2.46) 0.230(2.25) 0.195(2.41) 0.105(1.91) 0.083(1.76) 0.066(1.79)

(0.6,5) 0.190(1.71) 0.224(1.32) 0.168(1.70) 0.100(1.37) 0.076(1.25) 0.061(1.39)

(0.9,1) 0.246(8.60) 0.245(8.42) 0.233(8.57) 0.203(8.36) 0.193(8.19) 0.171(7.86)

(0.9,3) 0.237(5.20) 0.239(4.85) 0.196(5.03) 0.184(5.12) 0.182(4.99) 0.152(4.94)

(0.9,5) 0.231(3.91) 0.228(3.85) 0.172(3.79) 0.183(3.92) 0.169(3.78) 0.139(3.90)

examples. For the parameters hs,01 and hs,02, we first compute the largest distance between any

two different cities, and then choose hs,01 and hs,02 to be 0.05 and 0.3 times of that largest distance.

The estimated mean function λ̂(t, s) for 4 cities (Deyang, Luzhou, Neijiang and Ngawa Autonomous

Prefecture) are presented in Figure 3, along with the observed data.

Besides the mean estimate by Step2, we also consider the five alternative methods DSTM,

LGCP, SWA, LLKS and Step1 that are discussed in Section 4. Since the true mean function λ(t, s)

is unknown in real-data applications, the performance metric MASE cannot be used in such cases.

Instead, we use the following mean square prediction error (MSPE), defined as

MSPE =
1

n

n∑
i=1

 1

mi

mi∑
j=1

(
λ̂−(ij)(ti, sij)− y(ti, sij)

)2 ,

and the mean absolute prediction error (MAPE), defined as

MAPE =
1

n

n∑
i=1

 1

mi

mi∑
j=1

∣∣∣λ̂−(ij)(ti, sij)− y(ti, sij)
∣∣∣
 ,

where λ̂−(ij)(ti, sij) is the leave-one-out estimate of λ(ti, sij) with the (i, j)th observation y(ti, sij)

deleted when estimating λ(ti, sij). The calculated values of MSPE of DSTM, LGCP, SWA, LLKS,
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Figure 3: Observed incidence rates (little circles) of the hand, foot and mouth disease in four cities

of Sichuan province in China, and the estimated mean incidence rate functions (solid curves). All

incidence rates are in the scale of 10−5.

Step1 and Step2 are 6.26 × 10−11, 4.58 × 10−11, 4.66 × 10−11, 2.87 × 10−11, 2.24 × 10−11 and

1.91 × 10−11, respectively, and their MAPE values are 5.61 × 10−6, 3.97 × 10−6, 4.06 × 10−6,

3.18× 10−6, 2.85× 10−6 and 2.61× 10−6. It can be seen that Step2 outperforms all 5 alternative

methods quite substantially in terms of both MSPE and MAPE in this example.

To further investigate the six methods, the maps of the absolute residual values for the data in

the 20th, 30th and 40th weeks are shown in columns 1-6 of Figure 4. For each city, the residual at

a given week is defined to be the absolute difference between the observed and estimated incidence

rates. From these maps, it can be seen that the first four methods have relatively large residuals

at some cities, while the residuals of Step1 and Step2 are relatively small.

6 Concluding Remarks

Spatio-temporal data are common in practice with many applications. Most existing methods

either impose various restrictive model assumptions or ignore partially or completely the spatio-

20



longitude

la
tit

u
d

e

0

1e−5

2e−5

Figure 4: Maps of the absolute residual values of the method DSTM (1st column), LGCP (2nd

column), SWA (3rd column), LLKS (4th column), Step1 (5th column) and Step2 (6th column) in

21 cities of Sichuan province in China at the 20th (1st row), 30th (2nd row) and 40th (3rd row)

week in the year 2009.

temporal data correlation during data modelling and estimation. In the previous several sections,

we have presented a new three-step local smoothing procedure for jointly estimating the mean

and variance/covariance functions of spatio-temporal data, in which both the mean structure and

the variance/covariance structure are kept flexible. Because the proposed method is based on

local smoothing, its computation is relatively simple. Effective bandwidth selection procedures

are also developed for implementing the proposed method. Both the theoretical arguments and

numerical studies have confirmed that the proposed method can work well in practice. There are

still a number of issues that need to be addressed in our future research. For instance, bandwidths

used in the proposed method are constants across the entire design time interval and space. In

practice, curvature of the mean function λ(t, s) and the data variability could be quite different

in both time and space. Thus, variable bandwidths might be more reasonable to use. Also, there

could be covariates (e.g., weather conditions) that affect the main response variable y in practice.

In such cases, these covariates should be taken into account when modelling the observed data.

To accommodate the covariate effect, the current spatio-temporal model could be generalized to

a semiparametric model or a generalized additive model. Such possible generalizations are not

straightforward and will be studied carefully in our future research. We will continue to work on

21



these and some other research problems to make the proposed method more effective and powerful

for analyzing spatio-temporal data.
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