
SpTe2M: An R Package for Nonparametric Modeling and
Monitoring of Spatio-Temporal Data

Kai Yang1 and Peihua Qiu2

1Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226
2Department of Biostatistics, University of Florida, Gainesville, FL 32610

Abstract

Spatio-temporal data are common in practice. Such data often have complicated

structures that are difficult to describe by parametric statistical models. Thus, it is

often challenging to analyze spatio-temporal data effectively since most existing sta-

tistical methods and software packages in the literature are based on parametric mod-

eling and cannot handle certain applications properly. This paper introduces the new

R package SpTe2M, which is developed for implementing some recent nonparamet-

ric methods for modeling and monitoring spatio-temporal data. This package provides

analytic tools for modeling spatio-temporal data nonparametrically and for monitoring

dynamic spatial processes sequentially over time. It can be used for different applica-

tions, including disease surveillance, environmental monitoring, and more. The use of

the package is demonstrated using the Florida influenza-like illness data observed dur-

ing 2012-2014 and the PM2.5 concentration data in China collected during 2014-2016.

Keywords: Change detection; Covariance estimation; Disease surveillance; Local smooth-

ing; Spatio-temporal data; Statistical process control.

1 Introduction

Spatio-temporal data become increasingly popular in many disciplines, including agriculture,

climate science, epidemiology, neuroscience, social science, and more. In the literature, there

have been many existing methods developed for analyzing spatio-temporal data (e.g., Cressie
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and Wikle 2011, Diggle et al. 2013). However, spatio-temporal data often have complicated

structures, including complex spatio-temporal variation, latent spatio-temporal correlation,

and unknown data distribution, which can hardly be described properly by parametric mod-

els (cf., Yang and Qiu 2020). But most existing methods for analyzing spatio-temporal data

are parametric, and it is well demonstrated in the literature that nonparametric methods

often perform better than the parametric methods in cases when some of the parametric

assumptions are violated (cf., Subection 3.2, Qiu and Yang 2023). Therefore, there is a need

to develop nonparametric methods and the corresponding software packages for analyzing

spatio-temporal data. This paper introduces a new R package, called SpTe2M, that pro-

vides analytic tools for modeling spatio-temporal data nonparametrically and for monitoring

dynamic spatial processes sequentially over time.

In the literature, there are some statistical methods and software packages available

for analyzing spatio-temporal data. One popular approach is the dynamic spatio-temporal

modeling framework that was first discussed in Stroud et al. (2001) and can be implemented

by using the R package spBayes (Finley et al. 2015). In the dynamic spatio-temporal

model, spatial observations are assumed to be normally distributed, and the sequence of

observed spatial response surfaces over time is assumed to follow a linear evolution process.

Some of its generalized versions have been proposed to extend the original dynamic spatio-

temporal model to cases with multiple responses (Bradley et al. 2015) and/or cases with

a nonlinear evolution equation (Wikle and Hooten 2010). As an alternative, Møller et al.

(1998) proposed a framework for modeling a spatio-temporal point process based on the log-

Gaussian Cox process, where the logarithm of the related spatio-temporal intensity function

is assumed to be a spatio-temporal Gaussian process, conditional on which the observed

spatio-temporal data are assumed to have a Poisson distribution (e.g., Diggle et al. 2013).

This method can be implemented using the lgcp package (Taylor et al. 2013). There are

some other methods for spatio-temporal modeling and prediction, including the hierarchical

Bayesian spatio-temporal modeling method via the R package spTimer (Bakar and Sahu

2015), the lattice kriging method via the R package LatticeKrig (Nychka et al. 2015), the
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local approximate Gaussian process method via the R package laGP (Gramacy 2016), the

fixed rank kriging method via the R package FRK (Zammit-Mangion and Cressie 2017), the

metakriging method (Guhaniyogi and Banerjee 2018), the non-stationary Gaussian process

method via the R package BayesNSGP (Risser and Turek 2020), and the nearest neighbor

Gaussian process method via the R package spNNGP (Finley et al. 2020).

The existing methods mentioned above require various parametric assumptions on the

spatio-temporal data variation, spatio-temporal data correlation, and/or data distribution.

Such parametric assumptions are rarely valid in practice, and nonparametric methods usu-

ally perform better in such cases. To fill the gap, Yang and Qiu (2018, 2019, 2022) developed

a nonparametric framework for modeling spatio-temporal data based on local kernel smooth-

ing, in which no parametric assumptions were imposed on the spatio-temporal mean function,

spatio-temporal covariance function, and data distribution. Thus, this spatio-temporal data

modeling approach is flexible and can be used reliably in many applications. Based on this

modeling approach, Yang and Qiu (2020) and Qiu and Yang (2021, 2023) proposed several

methods for online monitoring of spatial processes and detecting possible shifts in their dis-

tributions. These spatial process monitoring methods can be used to solve many real-world

applications, including environmental monitoring, disease surveillance, and more.

Regarding spatial process monitoring, major existing methods and software packages in

the literature include those based on the scan statistics via the R package scanstatistics

(Allévius 2018) and those based on the Knox statistics via the R package surveillance

(Meyer et al. 2017). The scan and Knox methods are designed mainly for retrospective

data analysis, in which the time interval is fixed in advance. They could not accommodate

some common structures in the observed spatio-temporal data, including seasonality and

spatio-temporal data correlation. They require the data distribution to have a parametric

form (e.g., normal, Poisson, or negative binomial). As a comparison, the online process

monitoring methods discussed in Yang and Qiu (2020) and Qiu and Yang (2021, 2023) do

not require such parametric assumptions and can accommodate complex structures in the

observed spatio-temporal data.
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To help researchers to use the nonparametric spatio-temporal data modeling and moni-

toring methods suggested in Yang and Qiu (2018, 2019, 2020, 2022) and Qiu and Yang (2021,

2023), the R package SpTe2M has been developed to implement these methods. This paper

provides an introduction and some demonstrations of the package. The remainder of the

paper is organized as follows. Section 2 provides a brief overview of the methods that can

be implemented in the SpTe2M package. Section 3 demonstrates the functionality of the

package using a real-world dataset about the influenza-like illness in Florida observed during

2012-2014. Section 4 discusses the application of the package to another real data example

about the PM2.5 concentrations in China during 2014-2016. Finally, Section 5 provides some

concluding remarks.

2 Overview of the Methods Implemented in SpTe2M

2.1 Nonparametric modeling of spatio-temporal data

Nonparametric spatio-temporal model. Let {y(ti, sij), j = 1, . . . ,mi, i = 1, . . . , n}

be the observed spatio-temporal data, where ti ∈ [0, T ] is the ith observation time, sij =

(su,ij, sv,ij)T ∈ Ω is the jth spatial location at time ti, mi is the number of spatial locations

at ti, and n is the number of observation times. These spatio-temporal observations are

assumed to follow the nonparametric spatio-temporal model

y(t, s) = µ(t, s) + ε(t, s), for t ∈ [0, T ], s ∈ Ω, (1)

where µ(t, s) is the mean of y(t, s), and ε(t, s) is a zero-mean random error. The spatio-

temporal data correlation is described by the following covariance function:

V (t, t′; s, s′) = Cov (y(t, s), y(t′, s′)) , for t, t′ ∈ [0, T ], s, s′ ∈ Ω. (2)

When (t, s) = (t′, s′), V (t, t; s, s) is just the variance of y(t, s), which is denoted as σ2(t, s),

for any (t, s) ∈ [0, T ]×Ω. In the above spatio-temporal model (1)-(2), we only assume that
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the mean and covariance functions µ(t, s) and V (t, t′; s, s′) are continuous functions. Since

there are no parametric assumptions imposed on µ(t, s), V (t, t′; s, s′) and the distribution

of ε(t, s), this model is flexible.

Estimation of the mean function µ(t, s). In this part, we discuss estimation of the

mean function µ(t, s) from the observed spatio-temporal data {y(ti, sij), j = 1, . . . ,mi, i =

1, . . . , n}. For any (t, s) ∈ [0, T ] × Ω, Yang and Qiu (2018) suggested estimating µ(t, s) by

the following local linear kernel smoothing procedure:

arg min
θ∈R4

n∑
i=1

mi∑
j=1

[y(ti, sij)− θµ − θt(ti − t)− θu(su,ij − su)− θv(sv,ij − sv)]2

×Kt

(
ti − t
ht

)
Ks

(
dE(sij, s)

hs

)
,

(3)

where θ = (θµ, θt, θu, θv)T , s = (su, sv)T , ht and hs are two bandwidths, Kt(·) and Ks(·) are

the Epanechnikov kernel function Ke(x) = 0.75(1− x2)I(|x| ≤ 1) (Epanechnikov 1969), and

dE(sij, s) is the Euclidean distance between the two spatial locations sij and s. The solution

of (3) to θµ is defined to be the estimate of µ(t, s), which has the expression

µ̂(t, s) = ζT1
(
GTWG

)−1
GTWY, (4)

where ζ1 = (1, 0, 0, 0)T , G = (G11, . . . ,Gnmn)T , Gij = (1, (ti − t), (su,ij − su), (sv,ij − sv))T ,

W = diag{wµ(1, 1; t, s), . . . , wµ(n,mn; t, s)}, wµ(i, j; t, s) = Kt((ti − t)/ht)Ks (dE(sij, s)/hs)

and Y = (y(t1, s11), . . . , y(tn, snmn))T . From (4), it can be checked that the estimate µ̂(t, s)

is a weighted average of all observations in a local spatio-temporal neighborhood of (t, s),

where the weights are determined by the two kernel functions and the neighborhood size is

controlled by the two bandwidths.

Estimation of the covariance function V (t, t′; s, s′). After the mean function µ(t, s)

is estimated by (3) and (4), we can compute the residuals ε̂(ti, sij) = y(ti, sij)− µ̂(ti, sij), for

j = 1, . . . ,mi and i = 1, . . . , n. Then, the covariance function V (t, t′; s, s′) can be estimated

from these residuals by the weighted moment estimation procedure, as discussed in Yang and

Qiu (2019). More specifically, the variance function σ2(t, s) = V (t, t; s, s) can be estimated
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by

σ̂2(t, s) =
∑n
i=1

∑mi
j=1 ε̂

2(ti, sij)wσ(i, j; t, s)∑n
i=1

∑mi
j=1 wσ(i, j; t, s) , for (t, s) ∈ [0, T ]× Ω, (5)

where wσ(i, j; t, s) = Kt ((ti − t)/gt)Ks (dE(sij, s)/gs), for 1 ≤ j ≤ mi and 1 ≤ i ≤ n, and

gt and gs are two bandwidths that can be different from the bandwidths ht and hs. When

(t, s) 6= (t′, s′), the covariance function V (t, t′; s, s′) can be estimated by

V̂ (t, t′; s, s′) =
∑n
i=1

∑mi
j=1

∑n
k=1

∑mk
l=1 ε̂(ti, sij)ε̂(tk, skl)wv(i, j, k, l; t, s, t′, s′)∑n

i=1
∑mi
j=1

∑n
k=1

∑mk
l=1 wv(i, j, k, l; t, s, t′, s′)

, (6)

where wv(i, j, k, l; t, s, t′, s′) = wσ(i, j; t, s)wσ(k, l; t′, s′). Note that the estimates σ̂2(t, s) and

V̂ (t, t′; s, s′) obtained by (5) and (6) may not be positive semidefinite, and thus may not be

legitimate variance and covariance functions. To address this issue, a modification is needed

to make them positive semidefinite. To this end, the matrix-projection-based modification

procedure discussed in Yang and Qiu (2019) is used, which can be implemented using the

function nearPD() in the R package Matrix.

A three-step estimation of µ(t, s) and V (t, t′; s, s′). Although the local linear ker-

nel smoothing procedure in (3)-(4) provides a reliable estimate of µ(t, s), the covariance

structure of the observed data is not taken into account in that procedure. Thus, it still

has room for improvement. To improve the local linear kernel smoothing estimator de-

fined in (4), Yang and Qiu (2022) developed a three-step local smoothing approach for

estimating the spatio-temporal mean and covariance functions. This method consists of

three main steps described below. (i) Calculate an initial estimate of µ(t, s) by (3)-(4).

(ii) Estimate the spatio-temporal covariance function V (t, t′; s, s′) by (5)-(6). (iii) Calcu-

late the final estimate of µ(t, s) using a weighted local linear kernel smoothing procedure,

in which the estimated spatio-temporal covariance function is used. Next, we describe the

third step in more details. Let Σ̂Y be the estimated covariance matrix of Y = (y(t1, s11),

. . . , y(tn, snmn))T obtained from V̂ (t, t′; s, s′), and Σ̂K = W−1/2Σ̂YW−1/2, where W =

diag{wµ(1, 1; t, s), . . . , wµ(n,mn; t, s)}, wµ(i, j; t, s) = Kt((ti − t)/bt)Ks (dE(sij, s)/bs), and

bt and bs are two bandwidths that can be different from the bandwidths ht and hs used in

the first step for computing the initial estimate of µ(t, s). Then, the final estimate of µ(t, s)
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is defined to be

µ̃(t, s) = ζT1
(
GT Σ̂−1

K G
)−1

GT Σ̂−1
K Y, (7)

where ζ1 and G are defined immediately after (4). From (7), it can be seen that the final

estimate µ̃(t, s) has taken into account spatio-temporal data correlation through Σ̂Y in Σ̂K.

2.2 Online monitoring of spatio-temporal data

In this part, we provide a detailed description of the online spatio-temporal process monitor-

ing methods suggested in Yang and Qiu (2020) and Qiu and Yang (2021 and 2023). Assume

that an in-control (IC) dataset {y(ti, sij), j = 1, . . . ,mi, i = 1, . . . , n} has been collected

before online process monitoring. After the IC spatio-temporal model defined in (1)-(2) is

estimated from the IC data, the regular (or IC) spatio-temporal pattern of the process un-

der monitoring can be described by the estimated mean, variance, and covariance functions

µ̂(t, s), σ̂2(t, s) and V̂ (t, t; s, s′). In practice, it is often reasonable to assume that the IC

spatio-temporal pattern is periodic in time due to seasonality, and [0, T ] covers at least one

entire period. In such applications, µ̂(t, s), σ̂2(t, s) and V̂ (t, t; s, s′) can be extended in the

time domain from [0, T ] to [0,∞) to describe the regular spatio-temporal pattern of the

process. Our major goal of online process monitoring is to detect any shifts in the observed

spatio-temporal pattern of the process from the regular spatio-temporal pattern.

Data decorrelation and standardization. Assume that the spatio-temporal ob-

servations to monitor at time t∗i ∈ (T,∞), for i ≥ 1, are collected at spatial locations

{s∗ij ∈ Ω, j = 1, . . . ,m∗i }. These observations are denoted as {y(t∗i , s∗ij), j = 1, . . . ,m∗i , i ≥ 1}.

Like observations in the IC data, the observations {y(t∗i , s∗ij), j = 1, . . . ,m∗i , i ≥ 1} could

be spatio-temporally correlated, and their IC means could vary across both space and time.

Thus, they cannot be monitored effectively by conventional statistical process control (SPC)

charts, because the conventional charts are designed for cases with independent and identi-

cally distributed IC process observations. In the SPC literature, it has been well discussed

that the conventional charts are unreliable and can give misleading results when they are
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used for monitoring serially correlated data (cf., Apley and Tsung 2002, Qiu et al. 2020).

To overcome this limitation, we can sequentially decorrelate the observed data before online

process monitoring, using the following data decorrelation and standardization procedure:

• When i = 1, let Y(t∗1) = (y(t∗1, s∗11), . . . , y(t∗1, s∗1m∗
1
))T , ε̂(t∗1, s∗1j) = y(t∗1, s∗1j)− µ̂(t∗1, s∗1j),

for 1 ≤ j ≤ m∗1, and ε̂(t∗1) = (ε̂(t∗1, s∗11), . . . , ε̂(t∗1, s∗1m∗
1
))T . Then, the decorrelated data

at time t∗1 is defined to be ê(t∗1) = (ê(t∗1, s∗11), . . . , ê(t∗1, s∗1m∗
1
))T = Σ̂

−1/2
1 ε̂(t∗1), where Σ̂1

is an estimate of Σ1 = Cov (Y(t∗1),Y(t∗1)) obtained from V̂ (t, t′; s, s′).

• When i > 1, let Y(t∗i ) = (y(t∗i , s∗i1), . . . , y(t∗i , s∗im∗
i
))T , Yi−1 =

(
YT (t∗1), . . . ,YT (t∗i−1)

)T
,

ε̂(t∗i , s∗ij) = y(t∗i , s∗ij) − µ̂(t∗i , s∗ij), for 1 ≤ j ≤ m∗i , ε̂(t∗i ) = (ε̂(t∗i , s∗i1), . . . , ε̂(t∗i , s∗im∗
i
))T ,

and ε̂i−1 = (ε̂T (t∗1), . . . , ε̂T (t∗i−1))T . Then, the decorrelated data at time t∗i is

ê(t∗i ) =
(
ê(t∗i , s∗i1), . . . , ê(t∗i , s∗im∗

i
)
)T

= Σ̂
−1/2
ii·i−1

(
ε̂(t∗i )− Σ̂T

i−1,iΣ̂
−1
i−1,i−1ε̂i−1

)
,

where Σ̂ii·i−1 = Σ̂i− Σ̂T
i−1,iΣ̂

−1
i−1,i−1Σ̂i−1,i, and Σ̂i, Σ̂i−1,i and Σ̂i−1,i−1 are the estimates

of Σi = Cov (Y(t∗i ),Y(t∗i )), Σi−1,i = Cov (Yi−1,Y(t∗i )) and Σi−1,i−1 = Cov (Yi−1,Yi−1),

respectively, all of which are obtained from V̂ (t, t′; s, s′).

After using the above data decorrelation and standardization algorithm, the original spatio-

temporal observations {y(t∗i , s∗ij), j = 1, . . . ,m∗i , i ≥ 1} are transformed to the decorrelated

and standardized observations {ê(t∗i , s∗ij), j = 1, . . . ,m∗i , i ≥ 1}. If the process under mon-

itoring is IC, then these decorrelated observations should be asymptotically uncorrelated

with each other, and the asymptotic mean and variance of each of them should be 0 and

1, respectively. Then, process monitoring can focus on these decorrelated and standardized

observations rather than the original observations.

Online monitoring of a spatial process. From the description in the previous part,

it can be seen that each decorrelated and standardized observation ê(t∗i , s∗ij) is a linear

combination of the original process observations. Thus, its IC distribution should be close

to the standard normal distribution under some regularity conditions by the central limit
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theorem. Consequently, the asymptotic distribution of ∑m∗
i

j=1 ê(t∗i , s∗ij)2 should be the χ2

distribution with the degrees of freedom of m∗i , and the asymptotic mean and variance of(∑m∗
i

j=1 ê(t∗i , s∗ij)2 −m∗i
)
/
√

2m∗i should be 0 and 1, respectively. Then, Yang and Qiu (2020)

suggested the following cumulative sum (CUSUM) chart for online process monitoring:

Ci = max
0, Ci−1 +

∑m∗
i

j=1 ê(t∗i , s∗ij)2 −m∗i√
2m∗i

− γ

 , for i ≥ 1, (8)

and the chart gives a signal at time t∗i if the charting statistic Ci exceeds a control limit L,

where C0 = 0 and γ > 0 is often called a reference value or an allowance constant (cf., Qiu

2014, Chapter 4).

Usually, the performance of a control chart is evaluated by the IC average run length

(ARL), denoted as ARL0 and defined as the average number of observation time points

from the beginning of process monitoring to a signal by the chart when the process is IC,

and the out-of-control (OC) ARL, denoted as ARL1 and defined as the average number of

observation time points from the occurrence of a process distributional shift to a signal time

by the chart. When designing a control chart like the one in (8), the ARL0 value is usually

pre-specified at a given level and its control limit is chosen to achieve the pre-specified ARL0

value. Then, the chart performs better if its ARL1 value is smaller for detecting a given

shift. See a systematic discussion about the design of a control chart in Qiu (2014).

To use the CUSUM chart (8), we need to specify the allowance constant γ. In the

literature, it has been well studied that a large γ value is good for detecting large shifts and

a small γ value is good for detecting small shifts (Qiu 2014, Chapter 4). Commonly used

γ values include 0.1, 0.2, 0.3, 0.5 and 1. For a pre-specified ARL0 value, we also need to

determine the control limit L such that the pre-specified ARL0 value is reached. To this end,

the block bootstrap procedure described in Section B of the supplementary file can be used.

Online monitoring of a spatial process using covariate information. The

CUSUM chart (8) provides a reliable tool for online monitoring of a spatial process. In

many applications, the spatio-temporal response y(t, s) is associated with some covariates.

For example, disease incidence can be affected by many risk factors including air temperature,

9



humidity, and other weather and/or environmental conditions. In such applications, it is our

belief that proper use of the covariate information can improve the performance of the re-

lated control chart. Next, we introduce the exponentially weighted moving average (EWMA)

chart suggested by Qiu and Yang (2021) that can make use of covariate information. This

chart is denoted as EWMAC hereafter, where the last letter “C” denotes “covariates”. The

EWMAC method consists of two main steps. First, a semiparametric spatio-temporal model

is fitted from an IC dataset to estimate the regular spatio-temporal pattern of the process

under monitoring in presence of the related covariates. Second, the EWMAC chart is de-

veloped for online process monitoring, which can accommodate the covariate information.

Next, we provide more details about these two steps.

Let {y(ti, sij), j = 1, . . . ,mi, i = 1, . . . , n} be an IC dataset obtained before online process

monitoring. Observations in this dataset are assumed to follow the semiparametric spatio-

temporal model

y(t, s) = µ(t, s) + XT
1 (t)β1 + XT

2 (t, s)β2 + ε(t, s), for (t, s) ∈ [0, T ]× Ω, (9)

where X1(t) is a vector of p1 time-dependent covariates, X2(t, s) is a vector of p2 space/time-

dependent covariates, β1 and β2 are their regression coefficients, µ(t, s) is the mean of

y(t, s) after excluding the part explained by X1(t) and X2(t, s), and ε(t, s) is a zero-mean

random error, for any (t, s) ∈ [0, T ] × Ω. It should be pointed out that there could be

time-independent covariates (they could depend on space) that are associated with y(t, s)

in practice. Such covariates are not included explicitly in the model (9) because they would

not provide any helpful information about the temporal variation of y(t, s) and thus are not

helpful for online process monitoring.

To estimate the regression coefficients β = (βT1 ,βT2 )T , Qiu and Yang (2021) proposed

the following iterative algorithm:

(i) Set β = 0 and obtain an initial estimate of µ(t, s) by (4), denoted as µ̂(0)(t, s).

(ii) In the kth iteration, for k ≥ 1, implement the following two steps:
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(a) Compute the least squares estimate of β, denoted as β̂(k), from the linear model

Z(k)(t, s) = XT
1 (t)β1 +XT

2 (t, s)β2 +ε(t, s), where Z(k)(t, s) = y(t, s)− µ̂(k−1)(t, s).

(b) Update the estimate of µ(t, s) by replacing Y in (4) by Y(k) = (y(k)(t1, s11), . . . ,

y(k)(tn, snmn))T , where y(k)(ti, sij) = y(ti, sij) − XT
1 (ti)β̂(k)

1 − XT
2 (ti, sij)β̂(k)

2 , for

each i and j. The updated estimate of µ(t, s) is denoted as µ̂(k)(t, s).

(iii) The iterative algorithm stops when ‖β̂(k) − β̂(k−1)‖1/‖β̂(k−1)‖1 ≤ ς, where ς > 0 is a

pre-specified small number and ‖x‖1 denotes the summation of absolute values of all

elements in the vector x. Then, β̂(k) and µ̂(k)(t, s) are the final estimates of β and

µ(t, s), respectively. These final estimates are also denoted as β̂ and µ̂(t, s).

By using the above iterative algorithm, we obtain the estimated regression coefficients β̂1 and

β̂2. Let z(t, s) = XT
1 (t)β̂1 +XT

2 (t, s)β̂2 denote the estimated covariate effect on the response

y(t, s), µy(t, s) and Vy(t, t′; s, s′) be the mean and covariance functions of y(t, s), and µz(t, s)

and Vz(t, t′; s, s′) be the mean and covariance functions of z(t, s). These functions can be

estimated from the IC dataset by using (3)-(4) and (5)-(6), and their respective estimates

are denoted as µ̂y(t, s), V̂y(t, t′; s, s′), µ̂z(t, s) and V̂z(t, t′; s, s′).

Next, we provide a detailed description of the EWMAC chart for detecting an upward

mean shift in the spatio-temporal process under monitoring. The EWMAC chart for detect-

ing downward shifts can be discussed similarly. Assume that the spatio-temporal observa-

tions to monitor are observed at times t∗i and locations {s∗ij, j = 1, . . . ,m∗i }, for i ≥ 1. These

observations are denoted as {y(t∗i , s∗ij), j = 1, . . . ,m∗i , i ≥ 1}, and the related observations

of the time-dependent and space/time-dependent covariates are denoted as {X1(t∗i ), i ≥ 1}

and {X2(t∗i , s∗ij), j = 1, . . . ,m∗i , i ≥ 1}, respectively. Before monitoring the spatio-temporal

process, let us first apply the data decorrelation and standardization algorithm discussed

before to both {y(t∗i , s∗ij)} and {z(t∗i , s∗ij)}, where z(t∗i , s∗ij) = XT
1 (t∗i )β̂1 + XT

2 (t∗i , s∗ij)β̂2, and

their decorrelated data are denoted as {êy(t∗i , s∗ij)} and {êz(t∗i , s∗ij)}. Then, the following

11



EWMA chart is used for detecting upward shifts in the process z(t, s):

Ez,i = λ

∑m∗
i

j=1 êz(t∗i , s∗ij)√
m∗i

+ (1− λ)Ez,i−1, for i ≥ 1,

where λ ∈ (0, 1] is a weighting parameter and Ez,0 = 0. If there is an upward mean shift in

z(t, s) at or before the time t∗i , then the value of Ez,i would be relatively large because of

the shift. Therefore, the EWMA charting statistic Ez,i provides a measure of the likelihood

of an upward mean shift in z(t, s). In the spatio-temporal process monitoring problem,

our ultimate goal is to detect shifts in y(t, s), which may or may not be caused by shifts

in z(t, s). In addition, shifts in z(t, s) are not our major concern in the current process

monitoring problem, although any helpful information in z(t, s) should be used in process

monitoring. By these considerations, Qiu and Yang (2021) suggested the following EWMAC

chart for online monitoring of y(t, s):

Ey,i = W(Ez,i;λ, κ)
∑m∗

i
j=1 êy(t∗i , s∗ij)√

m∗i
+ [1−W(Ez,i;λ, κ)]Ey,i−1, for i ≥ 1, (10)

where Ey,0 = 0, and W(Ez,i;λ, κ) ∈ (0, 1] is a weighting parameter that depends on the

covariate charting statistic Ez,i and two parameters λ ∈ (0, 1] and κ > 0. The chart gives a

signal at time t∗i if Ey,i > L, where L > 0 is a control limit.

Online monitoring of a spatial process using exponentially weighted spatial

LASSO. In many spatio-temporal process monitoring applications, a systematic process

shift starts in some small regions that are spatially clustered (Wang et al. 2018). This

kind of spatial feature has not been taken into account in the CUSUM chart (8) and the

EWMAC chart (10) because they treat the spatial locations equally in their construction.

To address this issue, Qiu and Yang (2023) proposed an effective method for spatio-temporal

process monitoring by combining the ideas of regression modeling in the space domain by

spatial LASSO and exponentially weighted data smoothing in the time domain. The related

control chart is denoted as EWSL, representing “exponentially weighted spatial LASSO”.

Some details about this chart are given below.

For online process monitoring, a basic strategy is to use as much available information
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about the process under monitoring as possible and give less weights to process observations

that are collected farther away from the current observation time in the decision-making

process. On the other hand, the spatial feature that process shifts usually start in small

clustered spatial regions should be taken into account as well. Based on these consider-

ations, Qiu and Yang (2023) proposed the EWSL chart that combined the following two

procedures. First, a spatial LASSO procedure is proposed to find small clustered regions

with possible shifts in the process distribution at the current observation time, which can ac-

commodate complex spatial data structures. Second, an exponentially weighted smoothing

procedure is suggested in the temporal domain to make use of all historical spatio-temporal

data. These two procedures are then combined seamlessly in the spatio-temporal domain for

online process monitoring. More specifically, by combining the spatial LASSO idea with the

exponentially weighted data smoothing idea, Qiu and Yang (2023) proposed the following

penalized exponentially weighted kernel smoothing procedure for estimating the means of

{ê(t∗i , s∗ij), j = 1, . . . ,m∗i } at time t∗i :

arg min
θ1,...,θm∗

i

m∗
i∑

j=1

i∑
k=1

m∗
k∑

l=1
[ê(t∗k, s∗kl)− θj]

2 Ks

(
dE(s∗kl, s∗ij)/h

)
(1− λ)(t∗i−t

∗
k)

+ ψ1

m∗
i∑

j=1
$1j|θj|+ ψ2

m∗
i∑

j=1
$2j

∣∣∣∣∣θj −
∑

1≤l≤m∗
i
Ks(dE(s∗ij, s∗il)/h)θl∑

1≤l≤m∗
i
Ks(dE(s∗ij, s∗il)/h)

∣∣∣∣∣ ,
(11)

where h > 0 is a bandwidth, Ks(·) is the Epanechnikov kernel function, ψ1, ψ2 > 0 are two

tuning parameters, $1j =
∣∣∣µ̃ê(t∗i , s∗ij)∣∣∣−1

and

$2j =
∣∣∣∣∣µ̃ê(t∗i , s∗ij)−

∑
1≤l≤m∗

i
Ks(dE(s∗ij, s∗il)/h)µ̃ê(t∗i , s∗il)∑

1≤l≤m∗
i
Ks(dE(s∗ij, s∗il)/h)

∣∣∣∣∣
−1

are the adaptive LASSO weights (cf., Zou 2006), and µ̃ê(t∗i , s∗ij) is the estimated mean of

ê(t∗i , s∗ij) obtained by (11) after choosing ψ1 = ψ2 = 0. Then, the solution of (11) to θj,

denoted as µ̂ê(t∗i , s∗ij), is defined to be the estimated mean of ê(t∗i , s∗ij), for j = 1, . . . ,m∗i .

It can be seen from (11) that the estimates {µ̂ê(t∗i , s∗ij), j = 1, . . . ,m∗i } have taken into

account the information from previous process observations. Due to the shrinkage property of

the spatial LASSO penalty in (11) (i.e., the last two terms in that expression), many elements
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in {µ̂ê(t∗i , s∗ij)} would be zero and only those at locations with process shifts would be non-

zero. So, to detect process shifts, it is natural to consider the statistic Qi = µ̂T
ê,i

Σ̂−1
µ̂

ê,i

µ̂ê,i,

where µ̂ê,i = (µ̂ê(t∗i , s∗i1), . . . , µ̂ê(t∗i , s∗im∗
i
))T , and Σ̂µ̂

ê,i

is an estimate of the covariance matrix

of µ̂ê,i. Then, the charting statistic of EWSL is the following standardized version of Qi:

SQi = Qi − Ê(Qi)√
V̂ar(Qi)

, for i ≥ 1, (12)

where Ê(Qi) and V̂ar(Qi) are the estimates of the mean and variance of Qi, respectively.

The chart (12) gives a signal at time t∗i if SQi > L, where L > 0 is a control limit.

3 Description of the R Package SpTe2M

The R Package SpTe2M has been developed recently to implement spatio-temporal data

modeling and monitoring methods described in Section 2. The package can be down-

loaded directly from the Comprehensive R Archive Network (CRAN) with the web address

https://cran.r-project.org/. After the package is downloaded to your computer, it can be

installed using the following R commands.

R> install.packages("SpTe2M")

R> library("SpTe2M")

In the current version of the SpTe2M package, there are seven main functions that

are summarized in Table 1. The package manual contains additional information for all

these functions. This documentation can be accessed conveniently in R using the following

commands:

R> help(package = "SpTe2M") # Access the package manual

R> ?spte_meanest # Read documentation about the spte_meanest() function
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The package also includes a vignette to illustrate how to implement the main functions in a

real data application. Users can run the R code below to have access to the vignette.

R> vignette('SpTe2M',package='SpTe2M') # Read the vignette

Table 1: Main functions in the SpTe2M package.

Function Description

spte_meanest() Estimate the spatio-temporal mean function

spte_covest() Estimate the spatio-temporal covariance function

spte_decor() Decorrelate the spatio-temporal data

sptemnt_cusum() Spatio-temporal process monitoring by the CUSUM chart (8)

spte_semiparmreg() Fit the semiparametric spatio-temporal model (9)

sptemnt_ewmac() Spatio-temporal process monitoring using the EWMAC chart (10)

sptemnt_ewsl() Spatio-temporal process monitoring using the EWSL chart (12)

Demonstration of the package SpTe2M using the Florida ILI dataset. In

the next two subsections, the functionality of the package SpTe2M is demonstrated using

the Florida influenza-like illness (ILI) data that were collected by the Electronic Surveil-

lance System for the Early Notification of Community-based Epidemics (ESSENCE) of the

Florida Department of Health (FDOH). ILI is a respiratory infection caused by a variety

of influenza viruses. Patients with ILI usually have severe respiratory illness with fever,

cough, sore throat, and even difficulty in breathing. In the US, it is reported that 15-40%

of the population develop illness from influenza every year. Among those ILI patients, there

are about 36,000 hospitalizations and 114,000 deaths due to influenza infection (Fiore et

al. 2010). Previously, the method to estimate the incidence rate of ILI is to carry out re-

peated seroprevalence surveys that are resource-intensive and slow. Thus, it is unfeasible

for early detection of ILI outbreaks. To overcome this difficulty, FDOH built a syndromic

surveillance system (i.e., ESSENCE) for collecting near real-time pre-diagnostic data from

264 emergency departments and urgent care centers that are distributed in all counties of

Florida. As a demonstration, the ILI incidence rates collected by the ESSENCE system for
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all 67 Florida counties on 06/15 (a summer time) and 12/15 (a winter time) in the three

years 2012-2014 are presented in Figure 1. It can be seen from the figure that ILI incidence

rates have seasonal patterns with more ILI cases in the winters and fewer ILI cases in the

summers. Moreover, there seems to be an unusual pattern of ILI incidence rates in the

winter of 2014 because the incidence rates on 12/15/2014 are much higher than those on

12/15/2012 and 12/15/2013. Next, we will demonstrate the use of different functions in

the SpTe2M package using this built-in ILI dataset that contains the observed daily ILI

incidence rates at 67 Florida counties during 2012-2014. In the literature, spatial data can

roughly classified into the following three categories: areal data, geospatial data, and point

process data (cf., Cressie and Wikle 2011). The ILI dataset belongs to the category of areal

data since observations included in the dataset are measured for 67 geographical regions.

In addition to observations of the variable Rate (i.e., ILI incidence rate), the dataset also

contains observations of the following 7 variables: County, Date, Lat (i.e., latitude of the

centroid of a county), Long (i.e., longitude of the centroid of a county), Time, Temp (i.e., air

temperature), and RH (i.e., relative humidity).

3.1 Spatio-temporal data modeling

This subsection demonstrates how to estimate the mean and covariance functions based on

the local linear kernel smoothing procedure (3)-(4) and the weighted moment estimation

procedure (5)-(6) by using the functions spte_meanest() and spte_covest() in SpTe2M. The

arguments of the function spte_meanest() are listed below:

• y: A vector of spatio-temporal observations of the response y.

• st: A 3-column matrix specifying the locations and times of the observations in y.

• ht: Optional user-supplied bandwidth ht used in (3). Its default value is NULL. If

ht=NULL, then it will be chosen by the modified cross-validation procedure defined in

(A1)-(A2) of the supplementary file.
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Figure 1: Observed ILI incidence rates in Florida on 06/15 and 12/15 in the three years

2012-2014.

• hs: Optional user-supplied bandwidth hs used in (3). Its default value is NULL. If

hs=NULL, then it will be chosen by the modified cross-validation procedure.

• cor: It indicates whether we should accommodate the covariance structure when es-

timating the mean function. If cor=FALSE, then the local linear kernel smoothing

procedure (3)-(4) is used. If cor=TRUE, then the three-step local smoothing estimate

(7) is used. Its default is FALSE.

• stE: A three-column matrix specifying the spatial locations and times where we want

to calculate the estimated values of the mean function. Its default is NULL. In such a
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case, stE=st.

The output of the function spte_meanest() is a list that contains three elements band-

width, stE and muhat, which correspond to the bandwidths (ht, hs), the times and spatial

locations, and the related mean estimates, respectively.

As an example, the command below estimates the mean function of the ILI data in the

year 2013 by the local linear kernel smoothing procedure (3)-(4).

R> data(ili_dat) # Load the ILI data

R> n <- 365; m <- 67 # Specify the number of observation times (i.e., 365)

# and the number of observation locations (i.e., 67

# counties) at each time.

R> N1 <- (1+n)*m; N2 <- n*m # Specify the numbers of observations

# in years 2012 and 2013

R> subdat <- ili_dat[(N1+1):(N1+N2),] # Obtain the ILI data in 2013

R> y.sub <- subdat$Rate; st.sub <- subdat[,c('Lat','Long','Time')]

R> mu.est <- spte_meanest(y=y.sub,st=st.sub)

In the above example, we do not specify the arguments ht, hs and cor when using the function

spte_meanest(). So, by default, the local linear kernel smoothing procedure (3)-(4) is used

for estimating the spatio-temporal mean function, and the bandwidths (ht, hs) involved in

the estimation procedure are chosen by the modified cross-validation procedure in (A1)-

(A2) of the supplementary file. Of course, we can also specify values of (ht, hs) by using

the arguments ht and hs. In addition, if we prefer to use the three-step local smoothing

procedure (7) to estimate the mean function, then we can set cor=TRUE. In such cases,

the bandwidths (bt, bs) involved in the three-step estimation procedure would be chosen by

minimizing the value of EMSE(bt, bs) defined in (A5) of the supplementary file.

The estimated means can be extracted by using the command mu.est$muhat. To visually

check whether they describe the observed ILI data well, we use the code below to plot the
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estimated means for the Broward county in the top-left panel of Figure 2, along with the

observed ILI incidence rates of that county.

R> mu <- mu.est$muhat; mu <- t(matrix(mu,m,n)); obs <- t(matrix(y.sub,m,n))

R> id <- 6 # the 6th county in the ILI dataset is the Broward county

R> plot(1:365,mu[,id],type='l',lty=1,lwd=1.5,ylim=c(0,8e-5))

R> points(1:365,obs[,id])

The estimated mean values for three other counties Lake, Pinellas and Seminole are also

presented in Figure 2. From the figure, it can be seen that the estimated spatio-temporal

mean function can well describe the longitudinal pattern of the observed ILI incidence rates.

Thus, the function spte_meanest() can indeed provide a reliable tool for estimating the

spatio-temporal mean function.

Next, we describe how to estimate the spatio-temporal covariance V (t, t′; s, s′) by using

the function spte_covest(). A typical spte_covest() code snippet looks as follows:

spte_covest(y,st,gt=NULL,gs=NULL,stE1=NULL,stE2=NULL)

Regarding the above command, the auguments y and st in spte_covest() are the same as those

in spte_meanest() explained earlier. The rest of the arguments are described in Table 2. The

output of spte_covest() is also a list, and its element covhat is the estimated covariance. To

estimate the covariance of the ILI data in the year 2013 by the weighted moment estimation

procedure (5)-(6), we can use the following code:

R> cov.est <- spte_covest(y=y.sub,st=st.sub)

In the above command, we did not specify the arguments gt and gs. In such cases, the two

bandwidths (gt, gs) would be determined by minimizing the mean squared prediction error

defined in (A3) of the supplementary file.
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Figure 2: Observed ILI incidence rates in four Florida counties during the year 2013 (small

circles) and the corresponding estimated mean functions (solid lines).

3.2 Spatio-temporal data monitoring

This subsection demonstrates how to monitor a spatio-temporal process by the methods

described in Subsection 2.2 using the package SpTe2M. Recall that construction of the

CUSUM chart (8) consists of two main steps. The first step is to model an IC spatio-

temporal dataset and estimate the regular spatio-temporal pattern of the IC data. Then,

in the second step, the control limit of the chart is first determined by the block bootstrap

procedure and then the chart can be used for online process monitoring. See the discussions

in Section 2 for more details. For the ILI data, the observed ILI incidence rates in the years
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Table 2: Arguments of the function spte_covest() for estimating V (t, t′; s, s′).

Argument Description

gt The bandwidth gt used in (5) and (6). Its default value is NULL.

If gt=NULL, then gt is chosen by (A3) of the supplementary file.

gs The bandwidth gs used in (5) and (6). Its default value is NULL.

If gs=NULL, then gs is chosen by (A3).

stE1 A three-column matrix specifying (s, t). Its default value is NULL. In such a case, stE1=st.

stE2 A three-column matrix specifying (s′, t′). Its default value is NULL. In such a case, stE2=st.

2012 and 2013 are quite stable (cf., Figure 1). So, these data will be used as the IC dataset

for setting up the CUSUM chart (8). The IC observations are divided into two parts: the IC

data in the year 2013 are used for estimating the mean and covariance functions of the IC

spatio-temporal model, and the data in the year 2012 are used for determining the control

limit of the chart, as described in Section B of the supplementary file. Then, the chart (8)

is used to monitor process observations in the year 2014. To this end, we first decorrelate

the observed ILI incidence rates in the year 2014 and then apply the CUSUM chart (8)

to the decorrelated data. All these procedures can be accomplished by using the function

sptemnt_cusum(). The main arguments of this function are listed below:

• y: A vector of spatio-temporal observations of the response y.

• st: A 3-column matrix specifying the locations and times of the observations in y.

• type: A vector specifying the type of each observation, and type could be “Mnt”, “IC1”

or “IC2”, where type=“Mnt” implies that the related observation is for process monitor-

ing, type=“IC1” implies that the related observation is in the IC data for determining

the control limit, and type=“IC2” implies that the related observation is in the IC data

for estimating the IC spatio-temporal mean and covariance functions. If there is a

single IC dataset specified, then it will be used for both purposes. If no observations

are specified as IC data, then an error will be returned.

• ARL0: The pre-specified IC average run length ARL0. The default value is 200.
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• gamma: The pre-specified allowance constant γ in the CUSUM chart (8). The default

value is 0.1.

• B: Bootstrap sample size. The default value is 1,000.

• bs: The block size b of the block bootstrap procedure. The default value is 5.

The following code is an example to monitor the ILI data using the CUSUM chart (8):

R> y <- ili_dat$Rate; st <- ili_dat[,c('Lat','Long','Time')]

R> type <- rep(c('IC1','IC2','Mnt'),c(N1,N2,N2))

R> ili.cusum <- sptemnt_cusum(y,st,type,ht=0.05,hs=6.5,gt=0.25,gs=1.5)

In this example, the bandwidths (ht, hs) for estimating the spatio-temporal mean function

are chosen based on the modified cross-validation procedure in (A1)-(A2) of the supplemen-

tary file. This bandwidth selection procedure can be implemented by using the function

mod_cv() in SpTe2M, and the selected bandwidths for (ht, hs) are 0.05 and 6.50, respec-

tively. Regarding the bandwidths (gt, gs) for estimating the covariance function, they are

determined by the mean square prediction error criterion defined in (A3) of the supplemen-

tary material. After running the function cv_mspe(), they are chosen to be 0.25 and 1.50,

respectively, in this example.

The function sptemnt_cusum() in the above code returns a list, and the computed

charting statistic values and the control limit of the CUSUM chart (8) can be accessed

via ili.cusum$cstat and ili.cusum$cl, respectively. Then, we can plot the CUSUM charting

statistic values versus the observation times by using the following code:

# plot the CUSUM chart

R> cstat <- ili.cusum$cstat; cl <- ili.cusum$cl

R> plot(1:365,cstat,type="l"); abline(h=cl,lty=2)
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The resulting plot is shown in the left panel of Figure 3. To better perceive the charting

statistic values around its first signal time 10/16/2014, the charting statistic values during

the time period from 09/15/2014 to 10/31/2014 are presented in the right panel of Figure 3.

Figure 3: The CUSUM chart for monitoring the ILI data in the year 2014 (left panel),

together with its zoom-in part during the time period from 09/15–10/31 in 2014 (right

panel). In each plot, the horizontal line denotes the control limit of the chart.

In some applications, we may want to apply the data decorrelation and standardization

procedure to some spatio-temporal observations. This can be accomplished by using the

spte_decor() function. For instance, to decorrelate the observed ILI incidence rates in the

year 2013, we can do the following:

R> decor <- spte_decor(y=y.sub,st=st.sub,y0=y.sub,st0=st.sub)

Then, the decorrelated and standardized data can be obtained via decor$std.res. The argu-

ments y, st, y0 and st0 of the above R command are explained below:

• y: A vector of the spatio-temporal observations to decorrelate.

• st: A 3-column matrix specifying the locations and times of the observations in y.
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• y0: A vector of the IC spatio-temporal observations that we can use to estimate the

IC mean and covariance functions by the procedures (3)-(4) and (5)-(6).

• st0: A 3-column matrix specifying the locations and times of the observations in y0.

In the ILI dataset, there are observations of the two covariates “air temperature” and

“relative humidity” available. Next, we try to monitor the observed ILI incidence rates data

by using these covariate information. To this end, the association between the two covariates

and the ILI incidence rates can be investigated by fitting the semiparametric spatio-temporal

model (9), which can be accomplished by using spte_semiparmreg(). The arguments y, st, ht,

hs and stE of this function have the same meaning as those of the function spte_meanest()

discussed earlier. The other arguments of spte_semiparmreg() are explained below:

• x: A p-column matrix containing the observed data of the p covariates.

• maxIter: The maximum number of iterations allowed in the iterative estimation proce-

dure for estimating Model (9). Its default value is 1,000.

• tol: The tolerance level ς of the convergence criterion in the iterative estimation pro-

cedure for estimating Model (9). Its default value is 0.0001.

Then, we can use the following code to fit the semiparametric model for the ILI data in

2013, and the estimated regression coefficients β̂ can be obtained via semi.est$beta. From

the estimated model, the estimated regression coefficients of “relative humidity” and “air

temperature” are −1.17 × 10−6 and −1.06 × 10−6, respectively. Therefore, both covariates

are negatively associated with the observed ILI incidence rates. This is consistent with our

intuition and the conclusions found in the literature (cf., Pica and Bouvier 2012).

R> x.sub <- as.matrix(subdat[,c('Temp','RH')])

R> semi.est <- spte_semiparmreg(y=y.sub,st=st.sub,x=x.sub)
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After the semiparametric model (9) is estimated, the EWMAC chart (10) can be used

to monitor the observed ILI incidence rates from the beginning of the year 2014. This can

be achieved by using the function sptemnt_ewmac() as follows:

R> x <- as.matrix(ili_dat[,c('Temp','RH')])

R> ili.ewmac <- sptemnt_ewmac(y,x,st,type,ht=0.05,hs=6.5,gt=0.25,gs=1.5)

# plot the EWMAC chart

R> cstat <- ili.ewmac$cstat; cl <- ili.ewmac$cl

R> plot(1:365,cstat,type="l"); abline(h=cl,lty=2)

Most arguments of sptemnt_ewmac() are the same as those of sptemnt_cusum(). In the

function sptemnt_ewmac(), ARL0.z is the pre-specified IC ARL value for the covariate chart

{Ez,i, i ≥ 1} (cf., the related discussion in Section C of the supplementary file) whose default

value is 200, and lambda is the weighting parameter λ used in the EWMAC chart (10)

whose default value is 0.1. The computed charting statistic values and the control limit of

the EWMAC chart (10) can be obtained using ili.ewmac$cstat and ili.ewmac$cl, respectively.

Figure 4 shows the EWMAC chart for monitoring the ILI data in the year 2014 (left panel),

as well as its zoom-in part in the time period from 09/25/2014 to 10/31/2014 (right panel).

From Figure 4, it is clear that the EWMAC chart gives its first signal on 09/23/2014 which

is 23 days earlier than the first signal of the CUSUM chart (8). So, it is indeed beneficial to

use the covariate information for monitoring the ILI incidence rates.

Finally, we demonstrate the application of the EWSL chart (12) by using the function

sptemnt_ewsl(). To this end, let us use the following code:

R> ili.ewsl <- sptemnt_ewsl(y,st,type,ht=0.05,hs=6.5,gt=0.25,gs=1.5)

# plot the EWSL chart

R> cstat <- ili.ewsl$cstat; cl <- ili.ewsl$cl

R> plot(1:365,cstat,type="l"); abline(h=cl,lty=2)

As can be seen from the code, the arguments of the function sptemnt_ewsl() are the

25



Figure 4: The EWMAC chart for monitoring the ILI data in the year 2014 (left panel),

together with its zoom-in part in the time period from 09/25/2014 to 10/31/2014 (right

panel). In each plot, the horizontal line denotes the control limit of the chart.

same as those of the function sptemnt_ewmac(). Here, we would like to mention that the

EWSL chart is based on the penalized exponentially weighted kernel smoothing procedure

(11). To use this procedure, the bandwidth h and the tuning parameters (ψ1, ψ2) should be

chosen properly. When using sptemnt_ewsl(), h is chosen by the cross-validation procedure

in (A6) and (ψ1, ψ2) are chosen by BIC defined in (A7) of the supplementary file.

To plot the EWSL chart, we can first obtain the EWSL charting statistic values and

the control limit via ili.ewsl$cstat and ili.ewsl$cl. Then, the plot can be generated, which is

shown in the left panel of Figure 5. Its zoom-in part in the time period during 09/15/2014-

10/31/2014 is shown in the right panel of the figure. From the figure, we can see that the

EWSL chart gives its first signal on 10/6/2014, which is 10 days earlier than that of the

CUSUM chart (8) shown in Figure 3.

It should be pointed out that we choose to use the county centroids as the locations of the

67 Florida counties in this example because this strategy is commonly used in the statistical
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Figure 5: The EWSL chart for monitoring the ILI data in the year 2014 (left panel), together

with its zoom-in part in the time period during 09/15/2014-10/31/2014 (right panel). In

each plot, the horizontal line denotes the control limit of the chart.

and epidemiological literatures (e.g., Hooten et al. 2019). In some applications, however,

it may be more natural to represent locations of the areal units by population centers or

some other strategies. For instance, most disease cases occur around the population centers

rather than the county centroids for some counties in the ILI example. In such a case,

population centers might be more appropriate to represent the county locations. After taking

this into consideration, we also implement the related methods in the package by using the

population centers as the county locations. The corresponding results are presented in Figure

S1 and Table S1 of the supplementary file. By comparing these results with those described

above, it can be seen that the performance of our methods is quite robust to the choice

of county locations, which can be explained below. Our spatio-temporal data modeling

methods are based on the local kernel smoothing procedure. The related nonparametric

estimators at a given location and time are weighted averages of neighboring data, where

the weights are determined by the kernel function and the neighborhood size is controlled by

the bandwidths. After replacing the county centroids by the population centers as the county
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locations, the weights in our estimation procedures become different for some counties but

the selected bandwidths are almost the same. In the kernel smoothing literature, it has been

well discussed that the choice of the kernel functions (or the weights) is less important than

the choice of the bandwidths (cf., Brabanter et al. 2011). This explains why our estimators

are quite robust to the choice of the county locations in this example.

4 PM2.5 Data Example

In this section, we further demonstrate the main functions in SpTe2M by using another real

data example related to the observed PM2.5 concentration levels described below. PM2.5

refers to fine inhalable particles in the air, with diameters less than 2.5 micrometers. Since

PM2.5 concentration is positively associated with the incidence of many diseases such as can-

cers and respiratory diseases, governments around the world have invested a great amount

of money in establishing data collection and monitoring systems to collect PM2.5 data and

monitor them sequentially over time. For instance, the China National Environmental Mon-

itoring Centre (CNEMC) has developed such a system to collect daily PM2.5 concentrations

at 183 major cities in China. Next, we apply the SpTe2M package to the PM2.5 data col-

lected by CNEMC during the years 2014-2016, which contain the observed data collected

at 183 air pollution monitoring stations. Unlike the ILI dataset, this dataset corresponds to

a continuous geospatial process in the space domain. We choose to apply the methods in

SpTe2M to the ILI and PM2.5 datasets to illustrate that they are useful for analyzing both

areal and geospatial data.

Let us first investigate the spatio-temporal pattern of the PM2.5 data by estimating

its mean and covariance functions. To this end, we first use the functions mod_cv() and

cv_mspe() to select the bandwidths (ht, hs) and (gt, gs) that are used in the procedures

(3)-(4) and (5)-(6), respectively.

R> data(pm25_dat); n <- 365; m <- 183
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R> pm.sub <- pm25_dat[1:(n*m),] # Extract the observed data in the year 2014

R> y.sub <- pm.sub$PM2.5; st.sub <- pm.sub[,c('Lat','Long','Time')]

R> mcv <- mod_cv(y=y.sub,st=st.sub)

R> mcv$bandwidth.opt

[1] 0.15 11.21

R> mspe <- cv_mspe(y=y.sub,st=st.sub)

R> mspe$bandwidth.opt

[2] 0.74 10.54

Then, these selected bandwidths are used in the local linear kernel smoothing procedure

(3)-(4) and the weighted moment estimation procedure (5)-(6) when applying the functions

spte_meanest() and spte_covest() to the PM2.5 data in the year 2014.

R> mu.est <- spte_meanest(y=y.sub,st=st.sub,ht=0.15,hs=11.21)

R> cov.est <- spte_covest(y=y.sub,st=st.sub,gt=0.74,gs=10.54)

The observed PM2.5 concentration levels along with the estimated mean values for the four

representative cities in China: Luzhou, Meizhou, Panzhihua and Shenzhen are presented in

Figure 6, which is made using the following code. It can be seen from the figure that the

estimated mean values describe the observed data well.

R> mu <- mu.est$muhat; mu <- t(matrix(mu,m,n)); obs <- t(matrix(y.sub,m,n))

R> id <- c(87,90,100,121); par(mfrow=c(2,2))

R> plot(1:365,mu[,id[1]],type='l',lty=1,lwd=1.5); points(1:365,obs[,id[1]])

R> plot(1:365,mu[,id[2]],type='l',lty=1,lwd=1.5); points(1:365,obs[,id[2]])

R> plot(1:365,mu[,id[3]],type='l',lty=1,lwd=1.5); points(1:365,obs[,id[3]])

R> plot(1:365,mu[,id[4]],type='l',lty=1,lwd=1.5); points(1:365,obs[,id[4]])

Next, we will discuss how to monitor the observed PM2.5 data by using the functions

sptemnt_cusum() and sptemnt_ewsl(). We cannot use the function sptemnt_ewmac() in this
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Figure 6: Observed PM2.5 concentration levels at four cities in China during the year 2014

(small circles) and the corresponding estimated mean functions (solid lines).

example since there are no covariates contained in the PM2.5 dataset. To use the related

functions, we first need to specify the argument type, which separates the observed data

into three parts: the IC observations for estimating the IC spatio-temporal model, the IC

observations for determining the control limit of a chart, and the observations for process

monitoring. To this end, the observed data in the year 2014 are used for estimating the

IC model, the observed data in the year 2015 are used for determining the control limits

of the related control charts, and the observed data in the year 2016 are for online process

monitoring using the CUSUM chart (8) and the EWSL chart (12). The specific code for

computing the charting statistic values and making the related control plots is given below.
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R> y <- pm25_dat$PM2.5; st <- pm25_dat[,c('Lat','Long','Time')]

R> type <- rep(c('IC2','IC1','Mnt'),each=(n*m))

## Compute the CUSUM charting statistic values

R> pm.cusum <- sptemnt_cusum(y,st,type,ht=0.15,hs=11.21,gt=0.74,gs=10.54)

# Plot the CUSUM chart

R> cstat <- pm.cusum$cstat; cl <- pm.cusum$cl

R> plot(1:365,cstat,type="l"); abline(h=cl,lty=2)

## Compute the EWSL charting statistic values

R> pm.ewsl <- sptemnt_ewsl(y,st,type,ht=0.15,hs=11.21,gt=0.74,gs=10.54)

# Plot the EWSL chart

R> cstat <- pm.ewsl$cstat; cl <- pm.ewsl$cl

R> plot(1:365,cstat,type="l"); abline(h=cl,lty=2)

The two control charts are presented in Figure 7. From the figure, it can be seen that the

first signals of the CUSUM chart (8) and the EWSL chart (12) are given on 4/7/2016 and

3/17/2016, respectively. So, in this example, the first signal of the EWSL chart is about 20

days earlier than that of the CUSUM chart.

5 Concluding Remarks

This paper introduces the R package SpTe2M that was developed recently to implement

some nonparametric methods for modeling and monitoring spatio-temporal data discussed in

Yang and Qiu (2018, 2019, 2020, 2022) and Qiu and Yang (2021, 2023). These methods can

well accommodate the complex structures of spatio-temporal processes, and thus are reliable

to use in practice. Some original computer codes of these methods were written in Fortran for

efficient computation. For users’ convenience, SpTe2M has packaged these Fortran codes in

R. Thus, the package SpTe2M should provide a convenient and effective tool for modeling

and monitoring spatio-temporal data. However, there are still some issues about the package
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Figure 7: The two control charts CUSUM and EWSL for monitoring the observed PM2.5

concentration levels in the year 2016. The dashed horizontal line in each plot denotes the

control limit of the related control chart.

that need to be addressed in the future. For example, the current package can only handle

cases with univariate spatio-temporal data (i.e., the response variable y(t, s) is univariate). It

is our belief that the related methods can be extended to cases with multiple spatio-temporal

response variables. In addition, it is often our interest in practice to study the relationship

between the response variable y(t, s) and some of its covariates, as discussed in Section 2.

The semiparametric model (9) and the related R function spte_semiparmreg() in the package

are designed for such a purpose. But, they depend on the assumption that the relationship

is linear. Of course, this assumption could be violated in certain applications. In such cases,

the semiparametric model (9) should be generalized to the one with space/time-varying

regression coefficients or even to a nonparametric model. In addition, after the related

control charts give their signals, a reliable post-signal diagnostic tool should be developed

to figure out when and where the detected shifts occur in both the time and space domains.

All these issues will be addressed in our future research, and the R package SpTe2M will

be updated accordingly.
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