SUPPLEMENTARY MATERIALS

Supplementary Materials for Nonparametric Estimation of the Spatio-Temporal Covariance Structure

Kai Yang | Peihua Qiu*

Department of Biostatistics, University of Florida, Gainesville, Florida, USA

Correspondence
Peihua Qiu, Department of Biostatistics, University of Florida, Gainesville, Florida, USA.
Email: pqiu@ufl.edu

Abstract
To save some space in the paper with the above title, the proofs of the theorems are presented in this supplementary file.

PROOF OF THEOREM 1

For simplicity of expression, we use y_{ij} and ε_{ij} to denote $y(t_i, s_{ij})$ and $\varepsilon(t_i, s_{ij})$, respectively. At a given point $(t, s) \in [0, 1] \times \Omega$, from (4), we have

$$
\hat{\lambda}(t, s) = e_i^T(X^TW_0X)^{-1}X^TW_0Y
= e_i^T(X^TW_0X)^{-1}X^TW_0\lambda + e_i^T(X^TW_0X)^{-1}X^TW_0\varepsilon
$$

(A.1)

where $\lambda = E(Y)$ and $\varepsilon = (\varepsilon_{11}, \ldots, \varepsilon_{1m_1}, \ldots, \varepsilon_{nm_n})^T$. For Π_1, by the Taylor’s expansion, it can be shown that

$$
\Pi_1 = e_i^T(X^TW_0X)^{-1}X^TW_0(X\beta + R) = \lambda(t, s) + \Pi_3,
$$

(A.2)

where $\beta = (\lambda(t, s), \partial \lambda(t, s)/\partial t, \partial \lambda(t, s)/\partial s)^T$, $R = (r_{11}, \ldots, r_{1m_1}, \ldots, r_{nm_n})^T$, $r_{ij} = ((t_i - t), (s_{ij} - s)^T)H(t'_{ij}, s'_{ij}((t_i - t), (s_{ij} - s))^T$, H is the Hessian matrix of $\lambda(t, s)$, and $t'_{ij}, j \in [0, 1], s'_{ij} \in \Omega$, for $j = 1, \ldots, m_j, i = 1, \ldots, n$. From (A.1) and (A.2), we have $\hat{\lambda}(t, s) = \hat{\lambda}(t, s) + \Pi_2 + \Pi_3$. For Π_2, it can be checked that

$$
\Pi_2 = e_i^T(X^TW_0X)^{-1}X^TW_0\varepsilon
= e_i^T(D(m, n)X^TW_0X)^{-1}D(m, n)X^TW_0\varepsilon
= e_i^TA_{-1}(t, s)B(t, s),
$$

(A.3)

where $D(m, n) = (nh_1m_1^2f(s))^{-1}$, $A(t, s) = D(n, m)X^TW_0X$ is a 4×4 matrix and $B(t, s) = D(n, m)X^TW_0\varepsilon$ is a vector of length 4. Next, we consider the first element of the vector $B(t, s)$, i.e.,

$$
B_1(t, s) = (nh_1)^{-1}\sum_{i=1}^{n} K_1((t_i - t)/h_1) \varepsilon_i(s),
$$

(A.4)

where $\varepsilon_i(s) = \{mh_2^2f(s)\}^{-1}\sum_{j=1}^{m_i} K_2(d_E(s_{ij}, s)/h_2) \varepsilon_{ij}$. We will show below that $B_1(t, s) = O_p(h_1^2 + h_2^2 + (1/(nh_1))^{1/2})$.

For the variance of $B_1(t, s)$ defined in (A.4), it is clear that

$$
\text{Var}(B_1(t, s)) = \{nh_1\}^{-2}\sum_{i=1}^{n} \sum_{k=1}^{n} K_1((t_i - t)/h_1) K_1((t_k - t)/h_1) \text{Cov}(\varepsilon_i(s), \varepsilon_k(s)).
$$

(A.5)
To calculate the covariance $\operatorname{Cov}(\varepsilon(s), \varepsilon_k(s))$, let S_n be the σ-algebra generated by $\{s_{ij}, j = 1, \ldots, m_i, i = 1, \ldots, n\}$. Given any possible values of $S = \{s_{ij}, j = 1, \ldots, m_i, i = 1, \ldots, n\}$, by the Davydov’s inequality, it can be checked that

$$E(\varepsilon_i(s)\varepsilon_i(k)|S) = (mh^2_{ij}f(s))^{-2} \sum_{j=1}^{m_i} \sum_{k=1}^{m_j} K_2 \left(\frac{d_E(s_{ij}, s)}{h^2_i} \right) K_2 \left(\frac{d_E(s_{kj}, s)}{h^2_k} \right) \operatorname{Cov}(\varepsilon_i(s), \varepsilon_i(k))$$

$$\leq 12 (mh^2_{ij}f(s))^{-2} C_2^{ij} C_0^{(\delta-2)/\delta} \sum_{j=1}^{m_i} \sum_{k=1}^{m_j} K_2 \left(\frac{d_E(s_{ij}, s)}{h^2_i} \right) K_2 \left(\frac{d_E(s_{kj}, s)}{h^2_k} \right)$$

\[(A.6)\]

$$= D^2(s) \exp \left\{ -\frac{C_1(\delta-2)}{\delta} |k-i| \right\} \times O(1),$$

where $D(s) = \max_{1 \leq i \leq n} D_i(s)$ and $D_i(s) = (mh^2_{ij}f(s))^{-1} \sum_{j=1}^{m_i} K_2 \left(\frac{d_E(s_{ij}, s)}{h^2} \right)$. Denote $C_{\min} = \min_{1 \leq i \leq n} m_i/m$ and $C_{\max} = \max_{1 \leq i \leq n} m_i/m$. Note that the random variable $D_i(s)$ is nonnegative, by the Bernstein’s inequality, it can be shown that

$$E(D(s)^2) = E\left[\left(\max_{1 \leq i \leq n} D_i(s) \right)^2 \right]$$

$$= E\left[\max_{1 \leq i \leq n} D_i^2(s) \right] \leq \sum_{k=0}^{\infty} (k+1) \Pr\left(\max_{1 \leq i \leq n} D_i^2(s) \geq k \right)$$

$$\leq 1 + n \sum_{k=1}^{\infty} (k+1) \max_{1 \leq i \leq n} \Pr\left(D_i(s) \geq \sqrt{k} \right)$$

\[(A.7)\]

$$\leq 1 + n \sum_{k=1}^{\infty} (k+1) \exp \left\{ -mh^2_2 \left(C_{\min} \left(\sqrt{k} - C_{\max} \right) \right) \right\}$$

$$= O(1) + O(1) \times \sum_{k=1}^{\infty} (k+1) \exp \left\{ -mh^2_2 \left(C_{\min} \left(\sqrt{k} - C_{\max} \right) - 1 \right) \right\} = O(1).$$

It follows from (A.6) and (A.7) that

$$\operatorname{Cov}(\varepsilon(s), \varepsilon_k(s)) = E \left[E(\varepsilon(s)\varepsilon_k(s)|S) \right]$$

$$= E(D^2(s)) \exp \left\{ -\frac{C_1(\delta-2)}{\delta} |k-i| \right\} \times O(1)$$

\[(A.8)\]

Then by (A.5), we have

$$\operatorname{Var}(B_1(t,s)) = O(1) \times [nh_1]^{-2} \sum_{i=1}^{n} \sum_{k=1}^{n} K_1 \left((t_i-t)/h_1 \right) K_1 \left((t_k-t)/h_1 \right) \exp \left\{ -\frac{C_1(\delta-2)}{\delta} |k-i| \right\}$$

$$= O(1) \times [nh_1]^{-2} \sum_{i=1}^{n} \sum_{k=1}^{n} K_1 \left((t_i-t)/h_1 \right) \exp \left\{ -\frac{C_1(\delta-2)}{\delta} \tau \right\}$$

\[(A.9)\]

$$= O(1) \times [nh_1]^{-1} \sum_{\tau=0}^{\infty} \exp \left\{ -\frac{C_1(\delta-2)}{\delta} \tau \right\} = O(1/(nh_1)).$$

Note that $E(B_1(t,s)) = 0$, we have

$$B_1(t,s) = O_p\left(\left\{ 1/(nh_1) \right\}^{1/2} \right) = O_p(\nu(n,m)),$$

\[(A.10)\]

where $\nu(n,m) = h^2_1 + h^2_2 + \{1/(nh_1)\}^{1/2}$. After defining $\nu^2(n,m) = \nu(n,m) + \{1/(mh^2_2)\}^{1/2}$ and $\mu_2(K) = \text{diag}\{\mu_{21}(K), \mu_{22}(K), \mu_{22}(K)\}$, where $\mu_{21}(K) = \int x^2 K_1(x) dx$, $\mu_{22}(K) = \int u^2 K_2(d_E(u,0)) du$, and $u = (u_1, u_2)^T$. It can be shown similarly that

$$A(t,s) = \begin{pmatrix} a + O_p(\nu^2(n,m)) & \mathbf{1}^T \mathbf{H} \mathbf{O}_p(\nu(n,m)) \\ \mathbf{H} \mathbf{1} \mathbf{O}_p(\nu(n,m)) & C(1 + O_p(\nu^2(n,m))) \end{pmatrix},$$

$$\mathbf{B}(t,s) = \begin{pmatrix} O_p(\nu(n,m)) \\ \mathbf{H} \mathbf{1} \mathbf{O}_p(\nu(n,m)) \end{pmatrix},$$
where \(a \in [C_{\min}, C_{\max}] \), and all elements of the \(3 \times 3 \) matrix \(C \) are in the same order of the corresponding elements of \(H^2 \mu_v(K), I = (1,1,1)^T \) and \(H = \text{diag}(h_1, h_2, h_3) \). It follows that

\[
\Pi_2 = e_i^T A^{-1}(t,s) B(t,s) = O_p(v(n,m)).
\] (A.11)

By using similar arguments, we have \(\Pi_3 = O_p(v(n,m)) \). By combining this result with (A.1), (A.2) and (A.11), the result in (11) of the paper is true.

PROOF OF THEOREM 2

From (A.1)-(A.3), we have \(\hat{\lambda}(t,s) = \lambda(t,s) + \Pi_2 + \Pi_3 \), where \(\Pi_2 = e_i^T A^{-1}(t,s) B(t,s) \), and \(A^{-1}(t,s) \) and \(B(t,s) \) are defined in the proof of Theorem 1. Next we will show that \(B_i(t,s) = O_p(a(n,m)) \) uniformly for \((t,s) \in [0,1] \times \Omega \), where \(a(n,m) = \{\log^2(n)/(nh_1^2)\}^{1/2} \).

First, note that the spatial location of interest \(\Omega \) is bounded, then it is clear that \([0,1] \times \Omega \) can be covered by \(N^* = O(|a(n,m)h_1|^{-3}) \) regions \(\{R_l; l = 1, ..., N^*\} \), where \(R_l = \{(t,s) : |t - t_l^*| \leq a(n,m)h_1, \; d_E(s,s_l^*) \leq a(n,m)h_1 \} \) and \(\{(t_l^*, s_l^*), l = 1, ..., N^*\} \) are the centroids of the \(N^* \) regions. Since both kernel functions \(K_1(x) \) and \(K_2(x) \) are Lipschitz-1 continuous, let \(0 < L_K < \infty \) be their Lipschitz constant. Because it is assumed that \(h_1/h_2 = O(1) \), we can find some constant \(C_2 > 0 \) such that \(h_1 \leq C_2h_2 \). Define \(C_K = \sup_{x \in \Omega} \{K_1(x), K_2(x)\} \). Then, for any \((t,s) \in R_l \) and a sufficiently large \(n \), we have

\[
\left| K_1 \left(\frac{t - t_l^*}{h_1} \right) K_2 \left(\frac{d_E(s_{ij}, s)}{h_2} \right) - K_1 \left(\frac{t - t_l^*}{h_1} \right) K_2 \left(\frac{d_E(s_{ij}, s_l^*)}{h_2} \right) \right| \\
\leq C_L K_l h_1^{-1} \left(|t - t_l^*| + C_2 d_E(s_{ij}, s_l^*) \right) \left(\frac{|t - t_l^*|}{h_1} \leq 2L_1 \right) \left(\frac{d_E(s_{ij}, s_l^*)}{h_2} \leq 2L_2 \right),
\] (A.12)

where \([L_1, L_1]\) and \([-L_2, L_2]\) are the finite supports for \(K_1(x) \) and \(K_2(x) \), respectively. Define \(\tilde{K}_1(x) = 1/(2L_1)|x| \leq 2L_1 \) and \(\tilde{K}_2(x) = 1/(4\pi L_2^2)|x| \leq 2L_2 \). Then, by (A.12), there exists a constant \(C_3 > 0 \) such that

\[
\left| K_1 \left(\frac{t - t_l^*}{h_1} \right) K_2 \left(\frac{d_E(s_{ij}, s)}{h_2} \right) - K_1 \left(\frac{t - t_l^*}{h_1} \right) K_2 \left(\frac{d_E(s_{ij}, s_l^*)}{h_2} \right) \right| \\
\leq C_3 a(n,m) \tilde{K}_1 \left(\frac{t - t_l^*}{h_1} \right) \tilde{K}_2 \left(\frac{d_E(s_{ij}, s_l^*)}{h_2} \right).
\] (A.13)

Define

\[
\tilde{\mathcal{B}}_i(t,s) = \{nh_1^2 f(s)\}^{-1} \sum_{i=1}^{n} \sum_{j=1}^{m} \tilde{K}_1 \left(\frac{(t - t_l^*)}{h_1} \right) \tilde{K}_2 \left(\frac{d_E(s_{ij}, s_l^*)}{h_2} \right) |\epsilon_{ij}|
\]

Since \(\tilde{K}_1(\cdot) \) and \(\tilde{K}_2(\cdot) \) satisfy the assumptions about the kernel function in Theorem 1, it can be checked that

\[
E \left(\tilde{\mathcal{B}}_i(t,s) \right) \leq C^{1/6} \left(1 + O(h_2^2 + 1/(nh_1)) \right) < \infty,
\]

where \(\delta \) and \(C_\epsilon \) are defined in Theorem 1. Based on the result in (A.13), it can be checked that

\[
\sup_{(t,s) \in R_l} \left| \mathcal{B}_i(t,s) - E[\mathcal{B}_i(t,s)] \right| \leq C_3 a(n,m) \left[\tilde{\mathcal{B}}_i(t_l^*, s_l^*) + E \left(\tilde{\mathcal{B}}_i(t_l^*, s_l^*) \right) \right]
\]

\[
\leq C_3 a(n,m) \left[\tilde{\mathcal{B}}_i(t_l^*, s_l^*) + E \left(\tilde{\mathcal{B}}_i(t_l^*, s_l^*) \right) \right] + 2C_3 a(n,m) E \left(\mathcal{B}_i(t_l^*, s_l^*) \right)
\]

\[
\leq 2C_3 a(n,m) M,
\] (A.14)

where the final inequality is obtained because \(a(n,m) < 1 \) and \(T > E(\mathcal{B}_i(t,s)) \) when \(n, m \) and \(T \) are large enough. By (A.14), it can be checked that

\[
\Pr \left(\sup_{(t,s) \in [0,1] \times \Omega} |B_i(t,s) - E[B_i(t,s)]| > (2 + 4C_3)T a(n,m) \right) \\
\leq N^* \max_{1 \leq i \leq N^*} \Pr \left(|B_i(t_l^*, s_l^*) - E[B_i(t_l^*, s_l^*)]| > 2T a(n,m) \right)
\]

\[
+ N^* \max_{1 \leq i \leq N^*} \Pr \left(|\tilde{B}_i(t_l^*, s_l^*) - E[\tilde{B}_i(t_l^*, s_l^*)]| > 2T a(n,m) \right).
\] (A.15)
For the two parts on the right-hand side of (A.15), we can use similar arguments to find their upper bounds, because both $(K_i(x), K_j(x))$ and $(\bar{K}_i(x), \bar{K}_j(x))$ satisfy the assumptions on the kernel functions given in Theorem 1.

Second, for any $(t, s) \in [0, 1] \times \Omega$, by the fact that $E(\epsilon_i(t, s)) = 0$, we have

$$\Pr \left(|\epsilon_i(t, s)| > 2T a(n, m) \right) = 4 \exp \left(\frac{-T^2 \log(n)}{64 \Theta_1 D(s)^2 + T^{3/2}} \right) + 4 \exp \left(\frac{-m C K T^{1/2}}{64 \Theta_1 D(s)^2 + T^{3/2}} \log(n) \right),$$

(A.18)

when $\log(n) > 1$. Note that the second term on the right-hand side of (A.18) is independent of the choice of $\{s_{ij}, j = 1, \ldots, m_i, i = 1, \ldots, n\}$. Then, by the Bernstein’s inequality, we have

$$\Pr \left(|\epsilon_i(t, s)| > a(n, m)T \right) \leq 4 \exp \left(\frac{-T^2 \log(n)}{64 \Theta_1 D(s)^2 + T^{3/2}} \right),$$

(A.19)

where C_{\max} and C_{\min} are defined in the proof of Theorem 1. In addition, from (A.17), by the Markov’s inequality, we have

$$\Pr \left(|\epsilon_i(t, s)| > a(n, m)T \right) = O \left(\left(\frac{a(n, m)T}{\varphi_n^4} \right)^{-1} \right).$$

(A.20)
Therefore, by combining (A.19) with (A.20), when T is large enough, we have
\[
\Pr \left(|B_i(t^*, s^*_i) - E(B_i(t^*, s^*_i))| > 2a(n, m)T \right) = O \left(\left\{ a(n, m)T \phi_n^2 \right\}^{-1} \right) \\
+ O \left(n^{-T^{1/2}/65} \right) + O \left(n \exp \left(-mh_2^2 \left(C_{min} T^{1/2} - 1 \right) \right) \right) \\
+ O \left(n \exp \left\{ -\log(n) \frac{C_1 T^{1/2}}{10C_K} \right\} \right).
\] (A.21)

By (A.15) and (A.21), it can be shown that, when T is large enough,
\[
\Pr \left(\sup_{(t, s) \in [0, 1] \times \Omega} |B_i(t, s) - E(B_i(t, s))| > (2 + 4C_T)Ta(n, m) \right) \\
= O \left(\{a(n, m)^4h_1T\phi_n^2\}^{-1} \right) + O \left(a(n, m)^{-3}h_1^{-3}n^{-T^{1/2}/65} \right) \\
+ O \left(a(n, m)^{-3}h_1^{-3}n \exp \left\{ -mh_2^2 \left(C_{min} T^{1/2} - 1 \right) \right\} \right) \\
+ O \left(a(n, m)^{-3}h_1^{-3}n \exp \left\{ -\log(n) \frac{C_1 T^{1/2}}{20C_K} \right\} \right) = o(1).
\] (A.22)

Note that $E(B_i(t, s)) = 0$. So, by (A.22), we have $B_i(t, s) = O_p(a(n, m))$, which is uniformly true for all $(t, s) \in [0, 1] \times \Omega$. The vector of the remaining elements of $B(t, s)$ can be proved in a similarly way to be of the order $H1O_p(a(n, m))$, where $H = \text{diag}(h_1, h_2, h_3)$ and $I = (1, 1, 1)^T$. Thus, we have
\[
B(t, s) = \begin{pmatrix} O_p(a(n, m)) \\ H1O_p(a(n, m)) \end{pmatrix},
\]
which are uniformly true for all $(t, s) \in [0, 1] \times \Omega$.

Next, we will study the properties of $A(t, s)$. To this end, let $b(n, m) = h_1^2 + h_2^2 + (\log(n)^2/(nh_2^2))^{1/2}$, and $b^*(n, m) = b(n, m) + (\log(m)/(mh_2^2))^{1/2}$. Then, it can be shown by similar arguments to those for deriving (A.12)-(A.22) that
\[
A(t, s) = \begin{pmatrix} a + O_p(b^*(n, m)) & 1^T H O_p(b^*(n, m)) \\ H1O_p(b^*(n, m)) & C(1 + O_p(b^*(n, m))) \end{pmatrix},
\]
where $a \in [C_{min}, C_{max}]$, all elements of the 3×3 matrix C are in the same order of the corresponding elements of $H^2 \mu_2(K)$, and $\mu_2(K)$ is defined in the proof of Theorem 1. By combining the above results, we have
\[
\Pi_2 = e_1^T A(t, s)^{-1} B(t, s) = O_p(a(n, m)),
\] (A.23)
which is uniformly true for all $(t, s) \in [0, 1] \times \Omega$. For Π_3 defined in (A.2), in a similar way that we study the property of $B(t, s)$, it can be checked that
\[
\Pi_3 = O_p\left(h_1^2 + h_2^2 \right),
\] (A.24)
which is uniformly true for all $(t, s) \in [0, 1] \times \Omega$. By combining the results in (A.1), (A.2), (A.23) and (A.24), the result (12) in Theorem 2 has been proved.

PROOF OF THEOREM 3

First, we consider the convergence property of $\hat{\sigma}^2(t, s)$. Since
\[
\hat{e}_{ij} - e_{ij} = \left(y_{ij} - \hat{\lambda}(t, s_{ij}) \right) - \left(y_{ij} - \lambda(t, s_{ij}) \right) = \lambda(t, s_{ij}) - \hat{\lambda}(t, s_{ij}),
\]
we know from Theorem 2 that $\hat{e}_{ij} - e_{ij}$ is bounded by a term of the order $O_p(b(n, m))$ uniformly for all i and j. Then we have
\[
\hat{\sigma}^2(t, s) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} w_{i, j} \hat{e}_{ij}^2}{\sum_{i=1}^{n} \sum_{j=1}^{m} w_{i, j}} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} w_{i, j} e_{ij}^2}{\sum_{i=1}^{n} \sum_{j=1}^{m} w_{i, j} (i, j)} + O_p(b(n, m)) =: \Pi_5/\Pi_4 + O_p(b(n, m)),
\] (A.25)
Similarly, it can be shown that

$$\Pi_5 = \frac{1}{nh_3^3} \sum_{i=1}^n \frac{m_i}{m} K_i (\frac{t_i - t}{h_3}) [\sigma^2(t, s)f(s) + O(h_3^2)]$$

(A.26)

By similar arguments to those in (A.6)-(A.9), it can be checked that $\text{Var}(\Pi_4) = O(1/(nh_3^3))$. By combining this result with that in (A.26), we have

$$\Pi_5 = \frac{1}{nh_3^3} \sum_{i=1}^n \frac{m_i}{m} K_i (\frac{t_i - t}{h_3}) + O_p(\hat{v}(n, m)).$$

(A.27)

Similarly, it can be shown that

$$\Pi_4 = \frac{1}{nh_3^3} \sum_{i=1}^n \frac{m_i}{m} K_i (\frac{t_i - t}{h_3}) + O_p(\hat{v}(n, m)) + \{mh_3^2\}^{-1/2},$$

(A.28)

It follows from (A.25), (A.27) and (A.28) that the result in (13) of the paper is true.

Second, for any $\sigma \geq 0$, $s, s' \in \Omega$, and $t', t \in [0, 1]$ such that $n(t' - t) = \sigma + o(1)$, we consider the convergence property of $\tilde{V}(t, t'; s, s')$. To this end, we first decompose $\tilde{V}(t, t'; s, s') - V(t, t'; s, s')$ into three parts. Define

$$\tilde{V}(t, t'; s, s') = \sum_{i,j} \sum_{(k,l) \neq (i,j)} \frac{w_2(i, j, k, l) \epsilon_{ij} \epsilon_{kl}}{\sum_{i,j} \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l)},$$

and

$$\beta^*(t, t'; s, s') = \sum_{i,j} \sum_{(k,l) \neq (i,j)} \frac{w_2(i, j, k, l) V(t, t'; s, s')}{\sum_{i,j} \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l)}.$$

Then, it is straightforward that

$$\tilde{V}(t, t'; s, s') - V(t, t'; s, s') = \{\tilde{V}(t, t'; s, s') - V^*(t, t'; s, s')\} + \{V^*(t, t'; s, s') - V(t, t'; s, s')\}.$$

(A.29)

where

$$\Lambda_1 = \sum_{i,j} \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l) \left(\epsilon_{ij} \epsilon_{kl} - V(t, t'; s, s') \right), \quad \Lambda_2 = \sum_{i,j} \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l),$$

$$\Lambda_3 = \sum_{i,j} \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l) \left(V(t, t'; s, s') \right), \quad \Lambda_4 = \sum_{i,j} \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l) \left(\epsilon_{ij} \epsilon_{kl} - \epsilon_{ij} \epsilon_{kl} \right).$$

Next, we will show that each of Λ_1/Λ_2, Λ_3/Λ_2 and Λ_4/Λ_2 can be bounded by a term of the order $O_p(\hat{v}(n, m) + b(n, m))$, where $\hat{v}(n, m) = h_3^2 + h_3^2 + \{nh_3\}^{-1/2}$ and $b(n, m) = h_3^2 + h_3^2 + \{\log(n^2/(nh_3^3))\}^{1/2}$. To this end, let us first consider Λ_1. From its definition, it can be checked that $E (\Lambda_1 | S_\sigma) = 0$, where S_σ is the σ-algebra generated by $S = \{s_1, \ldots, s_{nm}\}$. It follows from this that

$$E (\Lambda_1) = E \left[E (\Lambda_1 | S_\sigma) \right] = 0.$$

(A.30)

Denote $R(i, j, k, l; i', j', k', l') = E \{ w_2(i, j, k, l) w_2(i', j', k', l') \} | \text{Cov}(\epsilon_{ij} \epsilon_{kl}, \epsilon_{i'j'} \epsilon_{k'l'})$. To calculate the variance of Λ_1, since $E (\Lambda_1 | S_\sigma) = 0$ and $\text{Var}(\Lambda_1) = \text{Var} (E (\Lambda_1 | S_\sigma)) + E \left[\text{Var} (\Lambda_1 | S_\sigma) \right]$, we have

$$\text{Var}(\Lambda_1) = \sum_{i,j} \sum_{(k,l) \neq (i,j)} \sum_{i',j',k',l'} \sum_{i',j',k',l'} \text{Cov}(\epsilon_{ij} \epsilon_{kl}, \epsilon_{i'j'} \epsilon_{k'l'}) \text{Cov}(\epsilon_{ij} \epsilon_{kl}, \epsilon_{i'j'} \epsilon_{k'l'}) \leq \sum_{i,j} \sum_{k,l} \sum_{i',j',k',l'} R(i, j, k, l; i', j', k', l') \leq 2 \sum_{i,j} \sum_{k,l} \sum_{i',j',k',l'} R(i, j, k, l; i', j', k', l')$$

(A.31)

$$= O(1) \times \sum_{i,j} \sum_{k,l} \sum_{i',j',k',l'} R(i, j, k, l; i', j', k', l') = O(1) \times (\Lambda_{1,1} + \Lambda_{1,2} + \Lambda_{1,3}).$$

where
where
\[\Lambda_{1,1} = \sum_{i,j} \sum_{i' \geq i} \sum_{k' \geq i'} \sum_{j \leq j'} R(i, j, k; i', j', k', l'), \]
\[\Lambda_{1,2} = \sum_{i,j} \sum_{i' \geq i} \sum_{k' \geq i} \sum_{j' \leq j} R(i, j, k; i', j', k', l'), \]
\[\Lambda_{1,3} = \sum_{i,j} \sum_{i' \geq i} \sum_{k' \geq i} \sum_{j' \leq j} R(i, j, k; i', j', k', l'). \] (A.32)

Next, we will find the upper bounds for \(\Lambda_{1,1}, \Lambda_{1,2}, \) and \(\Lambda_{1,3}, \) respectively. To this end, we first consider \(\text{Cov}(\epsilon_{ij,k}, \epsilon_{i'j',k'}) \), for any \(i, j, k, l, i', j', k', \) and \(l' \) such that \(i \leq k, \) \(i' \leq k' \) and \(i \leq l' \). Note that, if \(i \leq k \leq l' \), by the Davydov’s inequality, we have
\[|\text{Cov}(\epsilon_{ij,k}, \epsilon_{i'j',k'})| \leq C_4 \exp(-C_3 |l'| - k), \] (A.33)
where \(C_4 = 12 C_\epsilon^3 C_0^{(\delta-4)/6} \) and \(C_3 = C_1(\delta - 4)/\delta. \) If \(i' < k' \), then it can be shown that
\[|\text{Cov}(\epsilon_{ij,k}, \epsilon_{i'j',k'})| \leq |\text{Cov}(\epsilon_{ij,k}, \epsilon_{i'j',k'})| + |E(\epsilon_{ij,k})E(\epsilon_{i'j',k'})| + |E(\epsilon_{ij,k})E(\epsilon_{i'j',k'})| \]
\[\leq C_4 \{ \exp(-C_3 |l' - k|) + \exp(-C_3 |l' - k')| + \exp(-C_3 |l'| - l|) \}. \] (A.34)

If \(k' < k \), it is clear that
\[|\text{Cov}(\epsilon_{ij,k}, \epsilon_{i'j',k'})| \leq 2C_4. \] (A.35)

Denote \(\Delta_n(t, t') = \{|t - t'| - 1/n, |t - t'| + 1/n\}. \) For the quantity \(\Lambda_{1,1} \), it can be shown from (A.33) that
\[\Lambda_{1,1} = O(1) \times m^3 h_3^4 \sum_{i,j} \sum_{i' \geq i} \sum_{k' \geq i'} \sum_{j \leq j'} K_i(t_i - t_i') K_k(t_k - t_k') K_j(t_j - t_j') \times \text{I}(\{|t_i - t_k| \in \Delta_n(t, t')\}) \text{I}(\{|t_{i'} - t_{k'}| \in \Delta_n(t, t')\}) \exp(-C_3 |l' - k|). \] (A.36)

Note that, for every integer number \(k \), the number of different \(i \)’s such that \(I(\{|t_i - t_k| \in \Delta_n(t, t')\}) = 1 \) cannot exceed 3. Meanwhile, given the value of \(i' \), we have at most 3 different \(k' \)’s such that \(I(\{|t_{i'} - t_{k'}| \in \Delta_n(t, t')\}) = 1 \). Thus, it follows from (A.36) that
\[\Lambda_{1,1} = O(1) \times C_K^3 m^3 h_3^4 \sum_{i,j} \sum_{i' \geq i} \sum_{k' \geq i'} \sum_{j \leq j'} K_i(t_i - t_i') \exp(-C_3 |l' - k|) \]
\[= O(m^3 h_3^4) \times \sum_{i,j} \sum_{i' \geq i} \sum_{k' \geq i'} \sum_{j \leq j'} \exp(-C_3 \tau) \]
\[= O(m^3 h_3^4) \times \sum_{i,j} \sum_{i' \geq i} \sum_{k' \geq i'} \sum_{j \leq j'} \exp(-C_3 \tau), \] (A.37)

where \(C_K = \sup_{x \in \mathbb{R}} \{K_1(x), K_2(x)\} \). When \(t' \) is fixed, it has been well studied that \((nh_3)^{-1} \sum_{k=1}^n K_1((t_k - t')/h_3) = 1 + O(1/(nh_3)). \) However, in the setup of Theorem 3 of the paper, \(t' \) may change with the number of observation times \(n. \) As a result, in order to obtain the upper bound of \(\Lambda_{1,1}, \) we have to calculate the upper bound of \(\sum_{u \in [0,1]} (t_k - u)/h_3 \). Define \(\Delta_k = (t_{k-1}, t_k], \) for \(k = 1, \ldots, n, \) where \(t_0 = 0 \) and \(\{t_k = k/n, k = 1, \ldots, n\}. \) Then, for any \(u \in [0,1], \) it can be shown that
\[\frac{1}{n h_3} \sum_{k=1}^n K_1\left(\frac{t_k - u}{h_3}\right) = \frac{1}{h_3} \sum_{k=1}^n \int K_1(\frac{x - u}{h_3})I(x \in \Delta_k)dx = \frac{1}{h_3} \sum_{k=1}^n \int K_1(\frac{x - u}{h_3})I(x \in \Delta_k)dx
+ \frac{1}{h_3} \sum_{k=1}^n \int \left\{K_1(\frac{t_k - u}{h_3}) - K_1(\frac{x - u}{h_3})\right\}I(x \in \Delta_k)dx
\leq \int K_1(t)dz + \frac{1}{h_3} \sum_{k=1}^n \int \left\{K_1(\frac{t_k - u}{h_3}) - K_1(\frac{x - u}{h_3})\right\}I(x \in \Delta_k)dx
= 1 + \frac{1}{h_3} \sum_{k=1}^n \int \left\{K_1(\frac{t_k - u}{h_3}) - K_1(\frac{x - u}{h_3})\right\}I(x \in \Delta_k)dx. \] (A.38)
Note that when \(x \in \Delta_k \), \(K_1 \left((t_k - u)/h_3 \right) - K_1 \left((x - u)/h_3 \right) \leq L_K |x - t_k| h_3^{-1} |l(t_k - u) \leq 2L_1 h_3 \), where \(L_K \) is the Lipschitz constant of the kernel functions and \([−L_1, L_1] \) is the finite support of \(K_1(x) \). It follows that

\[
\left| \frac{1}{h_3} \sum_{k=1}^{n} \int \left\{ K_1 \left(\frac{t_k - u}{h_3} \right) - K_1 \left(\frac{x - u}{h_3} \right) \right\} I(x \in \Delta_k) dx \right|
\leq \frac{1}{h_3} \sum_{k=1}^{n} \int \left| K_1 \left(\frac{t_k - u}{h_3} \right) - K_1 \left(\frac{x - u}{h_3} \right) \right| I(x \in \Delta_k) dx
\leq \frac{1}{h_3} \sum_{k=1}^{n} \int L_K |x - t_k| h_3^{-1} |l(t_k - u) \leq 2L_1 h_3| I(x \in \Delta_k) dx
\leq L_K (nh_3^2)^{-1} \sum_{k=1}^{n} \int |l(t_k - u) \leq 2L_1 h_3| I(x \in \Delta_k) dx
\leq L_K (nh_3^2)^{-1} (4L_1 h_3 + 2/n).
\]

Combining the results in (A.39) and (A.38), it immediately follows that \((nh_3)^{-1} \sum_{k=1}^{n} K_1 \left((t_k - u)/h_3 \right) \leq 1 + L_K (nh_3^2)^{-1} (4L_1 h_3 + 2/n) \), for any \(u \in [0, 1] \). Thus,

\[
\sup_{u \in [0, 1]} (nh_3)^{-1} \sum_{k=1}^{n} K_1 \left((t_k - u)/h_3 \right) \leq 1 + L_K (nh_3^2)^{-1} (4L_1 h_3 + 2/n) = 1 + O(nh_3)^{-1}.
\]

(A.40)

Based on the results in (A.37) and (A.40), we have

\[
\Lambda_1,1 = O(nm^4 h_3^4 h_4^8) \times (nh_3)^{-1} \sum_{k=1}^{n} K_1 \left((t_k - t)/h_3 \right)
= O(nm^4 h_3^4 h_4^8) \times \sup_{u \in [0, 1]} (nh_3)^{-1} \sum_{k=1}^{n} K_1 \left((t_k - u)/h_3 \right) = O(nm^4 h_3^4 h_4^8).
\]

(A.41)

To calculate the second part \(\Lambda_{1,2} \) in (A.32), note that the number of different \(k \)'s such that \(i' < k \leq k' \) is no more than \(|k' - i'| \) and \(|k' - i'| \leq r_n + 1 \), where \(r_n \) is the closest positive integer less than or equal to \(n|t - t'| \). By using the result in (A.34), we have

\[
\Lambda_{1,2} = O(1) \times m^4 h_3^8 \sum_{i} \sum_{i' < k' < k} \sum_{i < k < k'} K_1 \left(\frac{t_i - t}{h_3} \right) K_1 \left(\frac{t_k - t'}{h_3} \right) K_1 \left(\frac{t_{i'} - t'}{h_3} \right) K_1 \left(\frac{t_{i'} - t'}{h_3} \right) \times 1 \left(|t_{i'} - t_{k'}| \geq \Delta_n(t, t') \right)
\times \left(\exp \left(-C_5 |i' - i| \right) + \exp \left(-C_5 |i' - k'| \right) + \exp \left(-C_5 |i' - i| \right) \right)
= O(nh_3^4 m^4 h_4^8) + O(m^4 h_4^8) \sum_{i} (r_n + 1) K_1 \left(\frac{t_i - t}{h_3} \right) \exp \left(-C_5 |r_n - 1| \right)
+ O(nh_3^4 m^4 h_4^8) \sum_{i} \sum_{i'} K_1 \left(\frac{t_i - t}{h_3} \right) K_1 \left(\frac{t_{i'} - t}{h_3} \right) \exp \left(-C_5 |i' - i| \right)
= O(nh_3^4 m^4 h_4^8) + O(nh_3^4 m^4 h_4^8) \times \sup_{u \in [0, 1]} (nh_3)^{-1} \sum_{i}^{n} K_1 \left(\frac{t_i - u}{h_3} \right) \sum_{r=0}^{\infty} \exp \left(-C_5 r \right) = O(nh_3^4 m^4 h_4^8).
\]

(A.42)

Note that \(k - i \leq k' - i' + 2 \) if both \(|t_k - t_i| \) and \(|t_k - t_{i'}| \) are in \(\Delta_n(t, t') \), \(i \leq k \), and \(i' \leq k' \). It follows that \(k \leq k' + 2 - (i' - i) \). When \(i' \geq i \), the number of different \(k \)'s satisfying \(k > k' \) and \(k < k' + 2 - (i' - i) \) is less than or equal to 2. From the definition of \(\Lambda_{1,3} \) and the result in (A.35), it can be easily checked that

\[
\Lambda_{1,3} = O(nh_3 m^4 h_4^8).
\]

(A.43)

From the results in (A.41)-(A.43), we have \(\text{Var}(\Lambda_1) = O(nm^4 h_3^4 h_4^8) \). It follows from this result and (A.30) that

\[
\Lambda_1 = O_p(nm^2 h_3^4 h_4^8 \nu(n, m)).
\]

(A.44)

For \(\Lambda_2 \), by using the similar arguments in (A.30)-(A.44), we can obtain the result that

\[
\Lambda_2 = \sum_{i=1}^{n} \sum_{k=1}^{n} K_1 \left(\frac{t_i - t}{h_3} \right) K_1 \left(\frac{t_k - t'}{h_3} \right) \times m_m m_k f(s) f(s') h_4^8 + O_p(nm^2 h_3^4 h_4^8 \nu(n, m)),
\]

(A.45)
where \(\tilde{v}(n, m) = v(n, m) + \{ mh_4^2 \}^{-1/2} \). Since \(n(t - t') = o + o(1) \), when \(n \) is large enough, for arbitrary \(1 \leq i \leq n \), we can find at least one integer \(1 \leq k \leq n \) such that \(I(\{ |t_i - t_k| \} \in \Delta_n(t, t')) = 1 \). Moreover, it can be easily checked that \(|K_1((t, t')/h_3) - K_1((t_k - t')/h_3)| \leq L_K(nh_3)^{-1} \) when \(I(\{ |t_i - t_k| \} \in \Delta_n(t, t')) = 1 \). So, we have

\[
(nh_3)^{-1} \sum_{i=1}^{n} \sum_{k=1}^{n} K_1 \left(\frac{t_i - t_k}{h_3} \right) K_1 \left(\frac{t_k - t'}{h_3} \right) \mathbb{1}(\{ |t_i - t_k| \in \Delta_n(t, t') \}) \geq (nh_3)^{-1} \sum_{i=1}^{n} K_1 \left(\frac{t_i - t}{h_3} \right) - L_K(nh_3)^{-2} \sum_{i=1}^{n} K_1 \left(\frac{t_i - t}{h_3} \right)
\]

\[
\geq (nh_3)^{-1} \inf_{u \in [0, 1]} \sum_{i=1}^{n} K_1 \left(\frac{t_i - u}{h_3} \right) - L_K(nh_3)^{-2} \sup_{u \in [0, 1]} \sum_{i=1}^{n} K_1 \left(\frac{t_i - u}{h_3} \right) = \frac{1}{2} \mu(K_1^2) + O(\frac{1}{nh_3}),
\]

where \(\mu(K_1^2) = \int K_1^2(x) dx \). It follows from (A.44)-(A.46) that

\[
\Lambda_1/\Lambda_2 = O_p(\tilde{v}(n, m)). \tag{A.47}
\]

For \(\Lambda_3 \), note that \(V(t, t'; s, s') \) is twice continuously differentiable. By the Taylor’s expansion, the following result is true:

\[
\Lambda_3 = O_p(nm^2 h_3 h_4^2 \tilde{v}(n, m)). \tag{A.48}
\]

From (A.45), (A.46) and (A.48), we have

\[
\Lambda_3/\Lambda_2 = O_p(\tilde{v}(n, m)). \tag{A.49}
\]

So far, we have shown that \(\Lambda_1/\Lambda_2 + \Lambda_2/\Lambda_2 = O_p(\tilde{v}(n, m)) \). To prove that the result in (14) of the paper is true, it suffices to show that \(\Lambda_2/\Lambda_2 = O_p(\tilde{v}(n, m)) \). From the definition of \(\Lambda_2 \) and \(\Lambda_4 \) and the result that \(\hat{\epsilon}_{ij} - \epsilon_{ij} \) is bounded by a term of the order \(O_p(b(n, m)) \) uniformly for all \(i \) and \(j \) (see the arguments at the beginning of the proof), we have

\[
|\Lambda_2| \leq \sum_{i,j} \left| \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l) [\hat{\epsilon}_{ij} - \epsilon_{ij}] [\hat{\epsilon}_{kl} - \epsilon_{kl}] \right| \leq \sum_{i,j} \left| \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l) [\hat{\epsilon}_{ij} - \epsilon_{ij}] [\hat{\epsilon}_{kl} - \epsilon_{kl}] \right|
\]

\[
\leq \sum_{i,j} \left| \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l) \right| + \sum_{i,j} \left| \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l) [\hat{\epsilon}_{kl} - \epsilon_{kl}] \right|
\]

\[
= O_p(b(n, m)^2) + O_p(b(n, m)) \times \sum_{i,j} \left| \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l) \right|
\]

\[
+ O_p(b(n, m)) \times \sum_{i,j} \left| \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l) \hat{\epsilon}_{kl} \right|
\]

\[
\leq O_p(b(n, m)^2) + O_p(b(n, m)) \times \sum_{i,j} \left| \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l) \right| + O_p(b(n, m)) \times \sum_{i,j} \left| \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l) \right|
\]

\[
= O_p(b(n, m)^2) + O_p(b(n, m)) \times \sum_{i,j} \left| \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l) \right|.
\]

Similar to the arguments in (A.31)-(A.47), it can be shown that

\[
\sum_{i,j} \left| \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l) \epsilon_{kl} \right| = O_p(1), \quad \text{and}
\]

\[
\sum_{i,j} \left| \sum_{(k,l) \neq (i,j)} w_2(i, j, k, l) \epsilon_{ij} \right| = O_p(1).
\]

The results in (A.50) and (A.51) imply that

\[
\Lambda_4/\Lambda_2 = O_p(b(n, m)). \tag{A.52}
\]

By combining the results in (A.47), (A.49) and (A.52), the result in (14) of the paper has been proved.