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Abstract

Statistical process control (SPC) charts provide a powerful tool for monitoring production

lines in manufacturing industries. They are also used widely in other applications, such as se-

quential monitoring of internet traffic flows, disease incidences, health care systems, and more.

In practice, quality/performance variables are often affected in a complex way by many co-

variates, such as material, labor, weather conditions, social/economic conditions, and so forth.

Among all these covariates, some could be observed, some might be difficult to observe, and

the others might even be difficult for us to notice their existence. Intuitively, an SPC chart

could be improved by using helpful information in covariates. However, because of the complex

relationship between the quality/performance variables and the covariates, shifts in the qual-

ity/performance variables could be due to certain covariates whose data cannot be collected.

On the other hand, shifts in some observable covariates may not necessarily cause shifts in the

quality/performance variables. Thus, it is challenging to properly use covariate information for

process monitoring in a general setting. This paper suggests a method to handle this problem.

An effective exponentially weighted moving average chart is developed, in which its weighting

parameter is chosen large if the related covariates included in the collected data tend to have a

shift and small otherwise. Because the covariate information is used in the weighting parameter

only, the chart is designed solely for detecting shifts in the quality/performance variables, but it

can react to a future shift in the quality/performance variables quickly because the helpful co-

variate information has been used in its observation weighting mechanism. Extensive numerical

studies show that this method is effective in many different cases.

Key Words: Auxiliary variables; Covariates; Exponentially weighted moving average charts;

Regression modelling; Statistical process control; Weighting function.

1



1 Introduction

Statistical process control (SPC) charts are widely used in industries for monitoring quality/performance

variables of some sequential processes, such as the production lines, health care systems, internet

traffic flows, and more. In practice, the quality/performance variables, or simply performance vari-

ables hereafter, are often associated with certain covariates. As examples, the unemployment rate

of a country often depends on certain economic indices, such as inflation, GDP growth, population,

and foreign direct investment; the daily number of patients with upper-respiratory conditions re-

ceived by a hospital often depends on humidity, temperature, and other local weather conditions. In

such applications, proper use of covariate information has the potential to improve the performance

of a control chart. This paper suggests a general approach to achieve this goal.

Conventional SPC charts are originally designed for monitoring production lines in the manu-

facturing industry for quality control and management purposes (Qiu 2014). They are often clas-

sified into the following four groups: Shewhart charts (Shewhart 1931), cumulative sum (CUSUM)

charts (Page 1954), exponentially weighted moving average (EWMA) charts (Roberts 1959), and

change-point detection (CPD) charts (Hawkins et al. 2003). Early SPC research assumes that

process observations are independent and identically distributed when the underlying process is

in-control (IC), and that the IC process distribution has a parametric form (e.g., normal). It has

been well demonstrated in the literature that a conventional SPC chart would not be reliable to

use if one or more of these model assumptions are violated (Hawkins and Olwell 1998, Qiu 2014).

Therefore, recent research focuses more on nonparametric or distribution-free SPC where a para-

metric form is not required for describing the process distribution (e.g., Chakraborti et al. 2001,

Qiu 2018, Qiu and Hawkins 2001), on dynamic process monitoring where the identical distribution

assumption is not imposed (e.g., Qiu and Xiang 2014, Qiu et al. 2018), and on serially correlated

data monitoring where the data independence assumption is lifted (e.g., Apley and Tsung 2002,

Capizzi and Masarotto 2008, Lee and Apley 2011, Qiu et al. 2020). All these control charts focus

on monitoring the performance variables only, and no covariate information is taken into account

in process monitoring.

In practice, performance variables of a sequential process are often affected by many differ-

ent covariates, reflecting the impact of environmental and other factors on the performance of

the process. In the literature, there are some existing discussions about process monitoring by
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accommodating covariates, under the frameworks of risk-adjusted process monitoring (e.g., Payn-

abar et al. 2012, Sachlas et al. 2019, Steiner et al. 2000, Steiner and Jones 2010, Woodall et

al. 2015), regression-adjusted and variable-selection-based multivariate process monitoring (e.g.,

Hawkins 1991, Jiang et al. 2012, Jiang et al. 2016, Peres and Fogliatto 2018, Wang and Jiang

2009, Zou and Qiu 2009, Zou et al. 2011), and cause-selecting control charts (e.g., Asadzadeh

et al. 2008, Wade and Woodall 1993, Zhang 1984). These control charts are designed for some

specific process monitoring problems and they are reliable to use in handling the problems that

they are designed for. More specifically, the risk-adjusted process monitoring methods are mainly

for the sequential monitoring of certain processes (e.g., surgeries) by adjusting the potential impact

of some covariates (e.g., risk levels of patients). To use such methods, a (logistic) regression model

is first built for describing the relationship between the performance variables and the covariates,

and then a control chart is applied to the log-likelihood ratio scores or the residuals obtained from

the estimated regression model to adjust for the covariate effect (cf., Steiner et al. 2000, Steiner

and Jones 2010). The regression-adjusted and variable-selection-based multivariate process mon-

itoring charts are for monitoring performance variables and the related covariates jointly. To use

such methods, the overlapping information among all variables is first removed through regression

modelling (cf., Hawkins 1991) or variable-selection (cf., Jiang et al. 2012) to improve the effective-

ness of the related control charts. The cause-selecting control charts are designed for monitoring

multi-stage production processes. In order to distinguish shifts at the current stage from those in

the previous stage, a regression model relating the performance variables at the current stage to

their values at the previous stage is first built. Then, the impact of the performance variables at

the previous stage on their values at the current stage can be removed before process monitoring

at the current stage (cf., Asadzadeh et al. 2008).

In many applications, our ultimate goal is to detect shifts in the performance variables promptly,

and the shifts in the covariates or in the relationship between the covariates and the performance

variables are either not our concern at all or our secondary concern only. For instance, in the

surveillance of an infectious disease like influenza, weather conditions could be important covariates.

But, we are mainly concerned about detection of disease outbreaks in this problem. If the weather

information is helpful for a fast detection of disease outbreaks, then such information should be

used in disease surveillance. But, shifts in weather conditions or shifts in the relationship between

weather conditions and disease incidence rates are usually not our major concern. Furthermore,
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shifts in weather conditions may not always result in shifts in disease incidence rates, because of

their complicated relationship. In manufacturing industries, quality of products produced by a

production line depends on many covariates, including workers’ skill training and education level.

In monitoring such production lines, we are mainly concerned about shifts in the distribution of

product quality variables. Shifts in workers’ skill training and education level or in their relationship

with the product quality variables are often secondary. But, if the information in workers’ skill

training and education level is helpful for promptly detecting shifts in the product quality variables,

then such information should be incorporated in process monitoring. The risk-adjusted and cause-

selecting control charts described in the previous paragraph are effective for the process monitoring

problems that they are designed for. However, they may not be effective for the applications

mentioned above, because these charts would be sensitive to shifts in the covariates and/or in the

relationship between the covariates and the performance variables. Once a signal is given by such

charts, it is often difficult to judge whether the signal is due to a shift in the performance variables,

a shift in the covariates, or a shift in their relationship. For the applications discussed above, the

joint monitoring schemes described in the previous paragraph may not be effective either for several

reasons. First, the number of covariates could be large in practice, and thus the joint monitoring

problem could be complicated due to the large number of variables to monitor simultaneously.

Second, after a joint monitoring scheme gives a signal, it is still unknown whether the detected

shift is in the performance variables or in the covariates. Although this issue can be addressed by

certain post-signal diagnostic procedures, it will complicate the entire monitoring process. More

importantly, in cases when the post-signal diagnosis confirms that the detected shift is actually

not in the performance variables, the interventions taken after the signal, including stopping the

related process in certain applications, would waste much resource.

In this paper, we suggest an idea to make use of the helpful information in covariates when

monitoring the performance variables. The proposed method is for applications in which our major

task is for detecting shifts in the performance variables only, while some covariates are available and

can be used as auxiliary variables. We use the EWMA charting scheme to demonstrate the suggested

idea in this paper, but the same idea might also be applied to the CUSUM and CPD charting

schemes. By the suggested idea, the weighting parameter of the EWMA chart for monitoring

the performance variables of a process is chosen large if the covariates tend to have a shift and

small otherwise. This characteristic is similar to that of an adaptive EWMA chart in the SPC
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literature (Capizzi and Masarotto 2003), although the former adjusts the weighting parameter by

using covariate information while the latter changes the weighting parameter value according to an

estimated shift size of the performance variables. Because the suggested EWMA charting statistic

is a weighted average of the current and all past observations of the performance variables, it is

sensitive to shifts in the performance variables only, and would not react to shifts in the covariates

and/or in the relationship between the covariates and the performance variables if such shifts do not

cause any shifts in the performance variables. At the same time, because the weighting parameter

of the proposed EWMA chart is chosen large when the covariates tend to have a shift, it puts most

weights on the current and a few past observations and consequently it can react to a future shift in

the performance variables quickly in cases when such a shift is mainly due to the covariates. Thus,

the proposed chart would be more effective to detect shifts in the performance variables, compared

to the corresponding charts that ignores the covariate information completely.

As a side note, it should be pointed out that the research problem discussed here is different

from profile monitoring discussed in the literature (e.g., Kang and Albin 2000, Noorossana et al.

2011, Paynabar et al. 2016, Qiu et al. 2010). In profile monitoring, the major objective is to

monitor the relationship between response variables and predictors over time, and the observed

data at a given time point is a set of observations of the response variables and predictors (i.e.,

a profile). In cases with a single response variable and a single predictor, the observed data at a

given time point is a set of observations of the pair (response variable, predictor) (or, a curve).

In the current problem, however, the observed data at a given time point is a single vector of the

performance variables and the covariates. Thus, no profiles are involved in the current problem

and the existing profile monitoring methods cannot be used to solve the current problem.

The remainder of the article is organized as follows. The proposed method is described in

detail in Section 2. Some simulation studies are presented in Section 3 to evaluate its numerical

performance in comparison with some alternative approaches. A case study is discussed in Section

4 to demonstrate the proposed method. Several remarks conclude the article in Section 5. Some

extra numerical results are provided in a supplemental file.
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2 Adaptive SPC By Using Covariate Information

Assume that Y is a performance variable of a sequential process and X = (X1, X2, . . . , Xp)
T is a

p-dimensional covariate vector. Their observations at time t are denoted as (Xt, Yt). When the

process is IC, assume that their observations follow the model

Yt = f(Xt) + εt, for t = 1, 2, . . . , (1)

where f(·) is a nonparametric regression function, and {εt, t = 1, 2, . . .} are the random errors.

In regression analysis, there are two different ways to handle the covariates in X, i.e., they are

treated as deterministic quantities or random variables. Usually, in cases when their values are pre-

specified in data collection, they are treated as deterministic quantities. Otherwise, they are treated

as random variables (cf., Cook and Weisberg 1999). In the current process monitoring problem,

observations of X are collected together with the performance variable Y . Thus, they are treated

as random variables here. In model (1), it is routinely assumed that {εt} are independent from

{Xt}. For simplicity, we further assume that the random errors are independent and identically

distributed with mean zero and variance σ2ε .

Let us first describe our proposed method in cases when the model (1) is linear. In such cases,

f(Xt) = β0 + XT
t β, for each t, where β0 and β = (β1, β2, . . . , βp)

T are regression coefficients. In

such cases, the IC quantities of β0,β, σ2ε , and the mean µX and covariance matrix ΣX of X can be

estimated from an IC dataset {(X̃t, Ỹt), t = 1, 2, . . . ,m} of size m. More specifically, µX and ΣX

can be estimated by the sample mean and sample covariance matrix of the IC dataset, respectively,

and β0,β, and σ2ε can be estimated by the ordinary least square estimation (cf., Cook and Weisberg

1999) from the IC data. The related estimates are denoted as µ̂X, Σ̂X, β̂0, β̂, and σ̂2ε , respectively.

From (1), it can be checked that µY = β0+µTXβ and σ2Y = βTΣXβ+σ2ε . So, they can be estimated

by

µ̂Y = β̂0 + µ̂TXβ̂, σ̂2Y = β̂T Σ̂Xβ̂ + σ̂2ε .

From model (1), the covariates in X are associated with the performance variable Y through the

regression function f(X) = β0+XTβ. If the likelihood of a shift in XTβ is large, then the likelihood

of a shift in Y would also be relatively large. Based on this observation, we need to have a metric

to measure the likelihood of a shift in XTβ at the current time point t. A natural choice would be
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the following EWMA charting statistic applied to the estimated and standardized values of XT
t β:

EX,t = λ

(Xt − µ̂X)T β̂√
β̂T Σ̂Xβ̂

+ (1− λ)EX,t−1, for t ≥ 1, (2)

where EX,0 = 0, and λ ∈ (0, 1] is a weighting parameter. From (2), the value of EX,t would be

close to 0 when there is no shift in the mean of XTβ and substantially different from 0 otherwise.

Thus, the value of EX,t can be used for measuring the likelihood of a shift in XTβ. Let us assume

that we are interested in detecting an upward shift in Y in a specific application. In such cases, we

should focus on upward shifts in XTβ as well due to the increasing relationship between XTβ and

Y that is described in model (1). So, the EWMA chart (2) would give a signal of an upward shift

in XTβ if

EX,t > hX, (3)

where hX > 0 is a control limit. For a control chart like (2)-(3), its performance is often measured

by the IC average run length (ARL), denoted as ARL0, and the out-of-control (OC) ARL, denoted

as ARL1. In the SPC literature, ARL0 is defined to be the average number of observations from

the beginning of process monitoring to the signal time when the process is IC, and ARL1 is defined

to be the average number of observations from the occurrence of a shift to the signal time after the

process becomes OC. Usually, the value of ARL0 is pre-specified, and the chart performs better for

detecting a given shift if the value of ARL1 is smaller. Let the ARL0 value of the chart (2)-(3) be

denoted as ARLX,0. Then, the control limit hX can be computed to achieve a pre-specified value

of ARLX,0 by a bootstrap procedure from the IC dataset (cf., Chatterjee and Qiu 2009).

Next, we would like to use EX,t in detecting an upward shift in Y . To this end, consider the

following EWMA charting statistic:

EY,t = φ(EX,t;λ, hX)

(
Yt − µ̂Y
σ̂Y

)
+ [1− φ(EX,t;λ, hX)]EY,t−1, for t ≥ 1, (4)

where EY,0 = 0, and φ(EX,t;λ, hX) ∈ (0, 1] is a weight that depends on EX,t and (λ, hX). Then,

the chart gives a signal of an upward shift in Y if

EY,t > hY , (5)

where hY > 0 is a control limit chosen to achieve a pre-specified value of ARL0, denoted as

ARLY,0. Once the weighting function φ(EX,t;λ, hX) and the value of ARLY,0 are chosen, hY

can be determined by a bootstrap procedure from the IC dataset, similar to the determination
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of the control limit hX in (3). The chart (4)-(5) is denoted as EWMAC hereafter, indicating an

EWMA chart using covariates. Note that EY,t is a weighted average of the current and all previous

observations of the performance variable Y by the time point t. Thus, it is sensitive to shifts in

Y only, and robust to shifts in X or in the relationship between X and Y if such shifts do not

cause shifts in Y . The chart (4)-(5) is designed for detecting upward shifts in Y . If detection of a

downward or arbitrary shift in Y is our interest in a specific application, then the corresponding

charts can be defined in a similar way. See Chapter 4 in Qiu (2014) for a detailed discussion.

To use the EWMAC chart (4)-(5) for detecting upward shifts in Y , we still need to choose the

weighting function φ(EX,t;λ, hX). Obviously, it should be an increasing function of EX,t, implying

that more weight should be put on the current and nearby observations of Y when computing the

charting statistic EY,t if the value of EX,t is larger. In that way, the helpful information in the

covariate vector X can be used for a faster detection of shifts in Y . To this end, the following three

functions can be considered:

φH(x;λ, hX) =


1− (1− λ) /(x/hX) , if x > hX,

λ, otherwise;

(6)

φB(x;λ, hX) =


λ+ (1− λ)

[
1− 1/(x/hX)2

]2
, if x > hX,

λ, otherwise;

(7)

and

φL(x;λ, hX) =


min {1, λ+ (x/hX − 1)} , if x > hX,

λ, otherwise.

(8)

The first two functions φH(x;λ, hX) and φB(x;λ, hX) are the so-called Huber’s function (Huber

1981) and Tukey’s bisquare function (Beaton and Tukey 1974), respectively. Both of them take

values in the interval [λ, 1). The third function φL(x;λ, hX) is linear in x when x > hX, with an

upper-bound of 1. See Figure 1 for a demonstration of all three functions. From the figure, it can

be seen that (i) all three functions are larger than λ when x > hX, (ii) φL(x;λ, hX) is larger than

both φH(x;λ, hX) and φB(x;λ, hX) when x > hX, and (iii) the two functions φH(x;λ, hX) and

φB(x;λ, hX) are always smaller than 1, while φL(x;λ, hX) can reach 1 when x > (2−λ)hX. Among

the three weighting functions, because φL(x;λ, hX) is the largest when x > hX, the EWMAC
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chart using φL(x;λ, hX) should perform the best among the three possible EWMAC charts for

detecting shifts that are strongly associated with the covariates. On the other hand, in cases when

a shift to detect is not associated with the covariates at all, the charting statistic EX,t that is based

solely on the covariates cannot provide any useful information for detecting the shift in Y . In such

cases, the EWMAC chart using φH(x;λ, hX) or φB(x;λ, hX) should perform better than the one

using φL(x;λ, hX), because the weighting functions φH(x;λ, hX) and φB(x;λ, hX) are both closer

to the constant weighting parameter λ than the weighting function φL(x;λ, hX). Between the two

weighting functions φH(x;λ, hX) and φB(x;λ, hX), φB(x;λ, hX) should be a better choice than

φH(x;λ, hX) in cases when a shift in the covariates is relatively small, since φB(x;λ, hX) would be

closer to λ in such cases. These conclusions will be confirmed numerically in Section 3.

x

φH

φB

φL

0 hX (2 − λ)hX 2hX

0
λ

1

Figure 1: Demonstration of the weighting functions φH(x;λ, hX), φB(x;λ, hX), and φL(x;λ, hX).

Implementation of the proposed EWMAC chart can be summarized as follows:

i) Estimate the IC parameters µX,ΣX, β0,β, and σ2ε from an IC dataset.

ii) For a given parameter λ, compute the value of EX,t by (2).

iii) For a given value of ARLX,0, determine the value of hX in (3) by a bootstrap procedure from

the IC dataset.

iv) Choose a weighting function from the ones in (6)-(8).
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v) For a given value of ARLY,0, determine the value of hY in (5) by a bootstrap procedure from

the IC dataset.

vi) Compute the value of the charting statistic EY,t by (4). The chart gives signal if (5) is true.

So, besides ARLY,0 which is often pre-specified, the EWMAC chart depends on the parameters

λ and ARLX,0 and on the weighting function φH(x;λ, hX). Selection of these quantities will be

discussed in Section 3 through numerical examples.

From the above description, implementation of the EWMAC chart (4)-(5) involves estimation

of the model (1) and determination of the control limits hX and hY . Next, we briefly discuss the

computational complexity of these steps. When the model (1) is assumed to be linear, it can be

checked that the computational complexity of its model estimation by the least squares procedure

is O
(
p2m+ p3

)
. In the case study discussed in Section 4, it takes about 8 and 31 seconds CPU

time by the bootstrap procedure with 10,000 bootstrap replications to determine hX and hY ,

respectively, on our Mac desktop with a 2.9 GHz Intel Core i5 processor. As a comparison, for the

conventional EWMA chart with a constant weighting parameter λ, it requires O(m) operations to

estimate the related IC parameters, and about 8 seconds CPU time to calculate its control limit

by the block bootstrap procedure with 10,000 bootstrap replications. Although the computation

of the IC quantities for the EWMAC chart is a bit more demanding than that for the conventional

EWMA chart, such computation is implemented for only once before online process monitoring

and thus it is not a substantial burden. Once the IC quantities are computed, the online process

monitoring using the EWMAC chart (4)-(5) is straightforward and its computation at each time

point is trivial.

In the above description of the proposed method, the regression function f(X) is assumed to be

linear. In cases when f(X) is nonparametric, then it needs to be estimated by some nonparametric

regression methods, such as the local polynomial kernel smoothing, the smoothing spline, and the

regression spline methods (Fan and Gijbels 1996, Qiu 2005, Wahba 1990), from an IC dataset. For

simplicity of discussion, let us assume that there is only one covariate (i.e., p = 1), which is denoted

as X. The observations of (X,Y ) in the IC dataset are denoted as {(X̃i, Ỹi), i = 1, 2, . . . ,m}. Then,

we can consider the following local linear kernel smoothing procedure: for a given point x ∈ X ,

min
a,b∈R2

m∑
i=1

{
Ỹi − [a+ b(X̃i − x)]

}2
K

(
X̃i − x
hm

)
, (9)
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where K(u) is a density kernel function with the support [−1/2, 1/2], hm > 0 is a bandwidth, and

X is the interval of all possible values of X. In (9), a straight line is fitted in a neighborhood of x

with width hm by the weighted least square estimation, with the weights determined by the kernel

function K(u). The solution to a of the minimization problem (9) is then used for estimating f(x),

and it has the following expression:

f̂(x) =

m∑
i=1

ỸiK

(
X̃i − x
hm

)
w2 − w1(X̃i − x)

w0w2 − w2
1

, (10)

where wj =
∑m

i=1(X̃i − x)jK( X̃i−x
hm

), for j = 0, 1, 2. In the local linear kernel smoothing procedure

(9), the bandwidth hm needs to be chosen properly in advance. Throughout this paper, the com-

monly used leave-one-out cross validation (LOOCV) procedure is used for this purpose. See Li and

Racine (2004) for a detailed description of this procedure. Then, to use the proposed online mon-

itoring scheme (2)-(5), the only change needed is to replace the EWMA charting statistic defined

in (2) by

EX,t = λ

(
f̂(Xt)− µ̂f

σ̂f

)
+ (1− λ)EX,t−1, for t ≥ 1,

where µ̂f and σ̂2f are the sample mean and sample variance of {f̂(X̃i), i = 1, . . . ,m}.

In cases when multiple covariates exist (i.e., p > 1), the local smoothing methods (e.g., (9)-

(10)) may not work well for estimating f(x), for x ∈ Rp, because of the curse of dimensionality.

In such cases, alternative approaches should be considered. One such approach is under the gen-

eralized additive model (GAM) framework (e.g., Hastie and Tibshirani 1990). Under that frame-

work, it is assumed that f(x) = g1(x1) + g2(x2) + · · · + gp(xp), where x = (x1, x2, . . . , xp)
′, and

g1(·), g2(·), . . . , gp(·) are univariate nonparametric functions. Compared to (1), the GAM frame-

work might be more feasible in cases with relatively small IC data size, but the price to pay for this

feasibility includes the additive structure imposed on f(x) and the relatively intensive computa-

tion. In cases when p is large, a variable selection procedure might be needed when estimating the

model (1) and constructing the EWMA charting statistic EX,t. To this end, some existing variable

selection methods (e.g., Fan and Li 2001, Tibshirani 1996, Zou 2006) and variable-selection-based

control charts (e.g., Wang and Jiang 2010, Zou and Qiu 2010) should be helpful. In cases when

the model (1) is linear and interactions among the covariates cannot be neglected, model selection

and estimation become challenging, because of the large number of possible interaction terms and

the hierarchical principle (i.e., lower-order terms need to be included in the model if a higher-order

term is in the model) that needs to be followed in model selection. To handle such cases, Bien et
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al. (2013) suggested a lasso-based approach, which should be helpful. In some applications, the

performance variable Y might be multivariate, and observations of (Y,X) at different time points

could be correlated with a time-varying IC distribution. In such cases, the related existing research

described in Section 1 should be helpful. All these issues will be addressed systematically in our

future research.

3 Numerical Studies

In this section, we present some simulation results regarding the numerical performance of the

proposed EWMAC chart described in Section 2. This section is organized in six parts. The first

five parts are about cases when f(x) in model (1) is linear, while the last part considers cases

when f(x) is nonparametric. More specifically, in Section 3.1, the effect of different choices of

the weighting function φ(EX,t;λ, hX) (cf., (6)–(8)) on the performance of the EWMAC chart is

investigated. Then, in Section 3.2, the impact of the parameters (λ,ARLX,0) on the EWMAC

chart is studied. In Sections 3.1-3.2, the IC parameters (β0,β) and the IC distributions of X and

Y are assumed to be known in advance. In practice, they are often unknown. Instead, we usually

have an IC dataset with sample size m, and we can estimate (β0,β) from the IC dataset and search

for (hX, hY ) by a bootstrap procedure. The impact of the IC data size m on the performance of

the EWMAC chart is discussed in Section 3.3. The EWMAC chart is compared to some competing

charts in Section 3.4. In Section 3.5, we investigate the performance of the EWMAC chart in cases

when p is large. The performance of the EWMAC chart in cases when f(·) is nonparametric is

studied in Section 3.6.

In Sections 3.1-3.4, it is assumed that f(X) = β0 + XTβ in the IC model (1), the parameters

β0 and β are chosen to be 0 and (0.5, 0.5, . . . , 0.5)T , and the dimension p of the covariate vector X

is chosen to be 1, 3, or 5. The random errors {εt} are generated from the N(0, σ2ε) distribution, and

the observations {Xt} of the covariate vector are generated from the Np(0,ΣX) distribution, where

ΣX = σ2xIp×p. In the simulation examples, unless stated otherwise, both σε and σx are chosen to be

0.5. After the occurrence of a shift at the beginning of process monitoring, the process observations

are assumed to follow the following OC model:

Yt = (β0 + δY ) + (Xt + δx)Tβ + εt, (11)
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where δY is a constant, δx = (δx, δx, . . . , δx)T is a p-dimensional vector, and the quantities β0,β,

and εt are the same as those in the IC model (1). So, δx is the shift size in the mean of each

covariate, and δY is the shift size in the mean of Yt that has nothing to do with the covariates. The

following four types of shifts will be considered:

(I) δY = 0.2 + 0.2ν, δx = 0, for ν = 1, 2, 3, 4;

(II) δY = 0.2 + 0.2ν, δx = 0.025ν, for ν = 1, 2, 3, 4;

(III) δY = 0.025ν, δx = 0.1 + 0.05ν, for ν = 1, 2, 3, 4;

(IV) δY = 0, δx = 0.1 + 0.05ν, for ν = 1, 2, 3, 4.

In type (I), the covariates have no mean shift, and the mean of Yt has four shifts with different sizes

and these shifts do not depend on the covariates. In types (II) and (III), the mean shift in Yt has

two components, one is due to the covariates and the other has nothing to do with the covariates,

both components have different sizes, and the one due to the covariates is smaller than the other

component in type (II) while the opposite is true in type (III). In type (IV), the mean shift in Yt

is completely due to the mean shift in the covariates. Throughout this section, all ARL values are

calculated from 10,000 replicated simulations unless indicated otherwise. In addition, the ARLY,0

value of the EWMAC chart is fixed at 200 in all examples.

3.1 Impact of different weighting functions on the EWMAC chart

In Section 2, we suggested three different weighting functions to be used in the proposed EWMAC

chart. In this part, we compare the three functions in terms of the numerical performance of

the EWMAC chart. To this end, let us consider cases when p = 3, λ =0.1, 0.3, or 0.5, and

ARLX,0 = 200. In such cases, the calculated ARL1 values of the EWMAC chart based on 10,000

replicated simulations are presented in Table 1, together with their standard errors (Note: standard

error equals standard deviation of ARL divided by
√

10, 000 = 100). From the table, we can have

the following conclusions. i) When the shifts are not associated with the covariates (i.e., shift

type (I)), the EWMAC chart performs uniformly the best when it uses the weighting function

φB(x;λ, hX) and it performs the worst when it uses φL(x;λ, hX) in such cases. ii) When the

shifts in Y are completely due to the shifts in covariates (i.e., shift type (IV)), the chart performs
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uniformly the best when it uses the weighting function φL(x;λ, hX) and it performs the worst when

it uses φB(x;λ, hX) in such cases. iii) For shift types (II) and (III) when a mean shift in Y has

two components with one due to the covariates and the other independent from the covariates,

φB(x;λ, hX) is more appropriate to use when the second component is more substantial (i.e., type

(II)), while φL(x;λ, hX) is more appropriate to use when the first component is substantially larger.

iv) It seems that small λ values are good for detecting small shifts and large λ values are good for

detecting large shifts for each weighting function, which is generally true for EWMA charts (cf.,

Qiu 2014, Chapter 5). v) It seems that the impact of different values of λ is more significant than

the impact of different weighting functions. Based on this example and the analysis about the three

weighting functions in Section 2, we suggest choosing the weighting function φB(x;λ, hX) if a future

shift in Y is believed to be (almost) unassociated with the covariates. On the other hand, if the

future shift in Y is believed to be strongly associated with the covariates, then we suggest choosing

the weighting function φL(x;λ, hX). If we do not know the relationship between the future shift

in Y and the covariates in X, then any one of the three weighting functions can be used, since the

performance of the proposed chart shown in Table 1 is similar across the three different weighting

functions. Regarding the selection of λ, it can be pre-specified as in a conventional EWMA chart.

Namely, a relatively large value is preferred if a future shift in Y is expected to be large, and a

relatively small value should be used otherwise.

3.2 Impact of the parameters (λ,ARLX,0) on the EWMAC chart

Besides the weighting function, the EWMAC chart has two parameters (λ,ARLX,0) to choose. In

this part, we study their impact on the performance of the EWMAC chart. To this end, let us

consider cases when λ = 0.1, 0.3, or 0.5, ARLX,0 = 100, 200, or 300, p = 3, ARLY,0 = 200, and

the weighting function is chosen to be φL(x;λ, hX). In such cases, the calculated ARL1 values

of the EWMAC chart based on 10,000 replicated simulations are presented in Table 2. From the

table, we can have the following conclusions. i) The EWMAC chart performs uniformly the best

when ARLX,0 = 300 for detecting shifts of the types (I) and (II) that either have nothing to do

with the covariates or are minimally affected by the covariates, and it performs uniformly the best

when ARLX,0 = 100 for detecting shifts of the types (III) and (IV) that are completely or mainly

contributed by the covariates. ii) When the ARLX,0 value and the type of shifts are given, it seems

that small λ values are good for detecting small shifts and large λ values are good for detecting large
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Table 1: Calculated ARL1 values and their standard errors (in parentheses) of the EWMAC chart

using one of the three different weighting functions for detecting the mean shifts in Y when p = 3

and ARLX,0 = ARLY,0 = 200. In each row, numbers in italic denote cases with the smallest ARL1

values when comparing different weighting functions and λ is fixed, and numbers in bold denote

cases with the smallest ARL1 values when comparing different λ values and the weighting function

is fixed.

φB(x;λ, hX) φH(x;λ, hX) φL(x;λ, hX)

Type ν λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.1 λ = 0.3 λ = 0.5

(I) 1 14.16(0.09) 16.88(0.14) 22.02(0.20) 14.72(0.09) 17.29(0.14) 22.30(0.20) 14.99(0.09) 17.91(0.15) 23.19(0.21)

2 8.44(0.04) 8.67(0.06) 10.56(0.09) 8.71(0.04) 8.80(0.06) 10.68(0.09) 8.82(0.04) 9.02(0.06) 10.98(0.09)

3 5.92(0.02) 5.51(0.02) 6.21(0.05) 6.10(0.03) 5.57(0.03) 6.26(0.05) 6.18(0.03) 5.69(0.03) 6.42(0.05)

4 4.61(0.02) 3.97(0.02) 4.14(0.03) 4.73(0.02) 4.01(0.02) 4.17(0.03) 4.79(0.02) 4.08(0.02) 4.27(0.03)

(II) 1 12.57(0.07) 14.53(0.11) 18.89(0.17) 13.07(0.08) 14.79(0.12) 19.12(0.17) 13.29(0.08) 15.31(0.12) 19.79(0.18)

2 7.27(0.04) 7.13(0.04) 8.45(0.07) 7.49(0.04) 7.24(0.04) 8.53(0.07) 7.59(0.04) 7.42(0.05) 8.77(0.07)

3 5.09(0.02) 4.50(0.02) 4.87(0.03) 5.24(0.02) 4.56(0.02) 4.91(0.03) 5.31(0.02) 4.56(0.02) 5.01(0.03)

4 3.96(0.02) 3.29(0.02) 3.29(0.02) 4.06(0.02) 3.32(0.02) 3.31(0.02) 4.11(0.02) 3.37(0.02) 3.37(0.02)

(III) 1 20.17(0.14) 30.31(0.27) 41.89(0.40) 19.42(0.13) 29.28(0.26) 41.00(0.39) 19.03(0.13) 28.03(0.25) 38.63(0.37)

2 13.29(0.08) 18.32(0.15) 25.67(0.24) 12.84(0.08) 17.68(0.15) 25.17(0.23) 12.63(0.07) 16.92(0.14) 23.54(0.22)

3 9.80(0.05) 12.18(0.09) 16.78(0.15) 9.52(0.05) 11.80(0.09) 16.45(0.15) 9.38(0.05) 11.37(0.09) 15.34(0.14)

4 7.74(0.04) 8.82(0.06) 11.61(0.10) 7.55(0.03) 8.55(0.06) 11.32(0.10) 7.46(0.03) 8.20(0.06) 10.65(0.09)

(IV) 1 21.63(0.15) 34.23(0.31) 47.40(0.46) 20.61(0.14) 32.74(0.29) 46.15(0.44) 20.00(0.14) 30.95(0.28) 42.57(0.41)

2 14.68(0.09) 22.20(0.19) 31.85(0.30) 14.03(0.09) 21.09(0.18) 30.90(0.29) 13.64(0.08) 19.51(0.17) 27.86(0.26)

3 10.93(0.06) 15.20(0.12) 21.95(0.20) 10.48(0.06) 14.53(0.12) 21.31(0.19) 10.19(0.05) 13.48(0.11) 19.22(0.17)

4 8.72(0.04) 11.14(0.08) 15.97(0.14) 8.39(0.04) 10.64(0.08) 15.49(0.14) 8.15(0.04) 9.87(0.07) 13.60(0.12)

shifts, which is consistent with the results in Table 1. iii) By comparing results for detecting shifts

of the types (I)-(II) with those for detecting shifts of the types (III)-(IV), it seems that λ should be

chosen smaller for detecting shifts of the types (III)-(IV) when the shifts are completely or mainly

contributed by the covariates. The above conclusion ii) is generally true for EWMA charts, as

mentioned in the previous part. The conclusion i) is intuitively reasonable because in cases when

shifts are mainly due to the covariates, the EWMAC chart would perform better if the weighting

function is larger, which can be accomplished by using a smaller ARLX,0 value due to the facts

that the control limit hX would be smaller in such cases and consequently the weighting function

would be larger (cf., Figure 1). The conclusion iii) can be explained in a similar way that a smaller

λ value would result in a smaller hX value. Consequently, the weighting function would become

larger, which is favorable for detecting shifts that are mainly contributed by covariates (i.e., those

of types (III) and (IV)). This example shows that both ARLX,0 and λ should be chosen small if a

future shift in Y is mainly due to the covariates, and relatively large otherwise. We also considered
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cases when p = 1 or 5 and other setups are the same as those in Table 2. The corresponding results

are presented in the supplemental file, and similar conclusions to those in Table 2 can be made.

Table 2: Calculated ARL1 values and their standard errors (in parentheses) of the EWMAC chart

when the weighting function is chosen to be φL(x;λ, hX), ARLY,0 = 200, and p = 3. In each row,

numbers in italic denote cases with the smallest ARL1 values when comparing different ARL0,X val-

ues with λ fixed, and numbers in bold denote cases with the smallest ARL1 values when comparing

different λ values with ARL0,X fixed.

ARLX,0 = 100 ARLX,0 = 200 ARLX,0 = 300

Type ν λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.1 λ = 0.3 λ = 0.5

(I) 1 21.19(0.14) 20.24(0.17) 25.86(0.24) 14.99(0.09) 17.91(0.15) 23.19(0.21) 14.07(0.09) 17.21(0.14) 22.64(0.21)

2 11.40(0.06) 9.87(0.06) 12.05(0.10) 8.82(0.04) 9.02(0.06) 10.98(0.09) 8.40(0.04) 8.78(0.06) 10.80(0.09)

3 7.73(0.03) 6.10(0.03) 6.87(0.05) 6.18(0.03) 5.69(0.03) 6.42(0.05) 5.90(0.03) 5.55(0.03) 6.32(0.05)

4 5.86(0.02) 4.32(0.02) 4.51(0.03) 4.79(0.02) 4.08(0.02) 4.27(0.03) 4.60(0.02) 4.00(0.02) 4.20(0.03)

(II) 1 18.12(0.11) 17.18(0.11) 21.70(0.20) 13.29(0.08) 15.31(0.12) 19.79(0.18) 12.50(0.07) 14.75(0.12) 19.41(0.18)

2 9.63(0.05) 8.08(0.05) 9.48(0.08) 7.59(0.04) 7.42(0.04) 8.76(0.07) 7.24(0.03) 7.21(0.05) 8.63(0.07)

3 6.52(0.02) 4.97(0.02) 5.31(0.03) 5.31(0.02) 4.65(0.02) 5.01(0.03) 5.07(0.02) 4.54(0.02) 4.95(0.03)

4 4.98(0.02) 3.55(0.02) 3.53(0.02) 4.11(0.02) 3.37(0.02) 3.36(0.02) 3.95(0.02) 3.33(0.02) 3.31(0.02)

(III) 1 17.34(0.12) 25.54(0.23) 35.69(0.33) 19.03(0.13) 28.03(0.25) 38.63(0.37) 20.05(0.14) 29.08(0.26) 40.11(0.38)

2 11.72(0.07) 15.60(0.13) 22.16(0.20) 12.63(0.07) 16.92(0.14) 23.54(0.21) 13.24(0.08) 17.50(0.15) 24.38(0.23)

3 8.76(0.05) 10.55(0.08) 14.26(0.13) 9.38(0.05) 11.37(0.08) 15.34(0.14) 9.78(0.05) 11.75(0.09) 15.99(0.14)

4 7.01(0.03) 7.68(0.05) 9.98(0.08) 7.46(0.03) 8.20(0.06) 10.65(0.09) 7.73(0.04) 8.48(0.06) 10.99(0.09)

(IV) 1 17.88(0.12) 27.32(0.24) 39.17(0.37) 20.00(0.14) 30.95(0.28) 42.57(0.41) 21.47(0.15) 32.30(0.29) 44.79(0.43)

2 12.30(0.07) 17.58(0.15) 25.47(0.23) 13.64(0.08) 19.52(0.17) 27.86(0.25) 14.54(0.10) 20.72(0.19) 29.40(0.29)

3 9.30(0.05) 12.10(0.09) 17.40(0.16) 10.19(0.05) 13.48(0.11) 19.22(0.17) 10.83(0.06) 14.20(0.12) 20.20(0.19)

4 7.47(0.04) 8.92(0.06) 12.45(0.11) 8.15(0.04) 9.87(0.07) 13.60(0.12) 8.64(0.04) 10.42(0.08) 14.39(0.13)

3.3 Impact of the IC data size m on the EWMAC chart

In the proposed EWMAC chart, the IC parameters, including (β0,β) in model (1) and the control

limit hY in (5), need to be estimated from an IC dataset of size m. So, its performance would

depend on m. Generally speaking, the larger the IC data size, the better the performance of the

EWMAC chart. But, what is the necessary IC data size to have a reliable performance of the

EWMAC chart? To answer this question, we perform a numerical study, in which m changes from

100 to 800 with a constant step of 100, p = 1, 3 or 5, β0 = 0, β = (0.5, 0.5, 0.5)T , σε = σx = 0.5,

ARLX,0 = ARLY,0 = 200, λ = 0.1, 0.3 or 0.5, and other setups are the same as those in the example

of Table 2. To run a simulation, we first generate an IC dataset of size m from model (1). Then,

the regression coefficients (β0,β) are estimated from the IC data, and the parameters (hX, hY )

are computed from the IC dataset by bootstrap with a bootstrap sample size of 10,000. Then,
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10,000 observations are generated from the OC model, the EWMAC chart is used for monitoring

these observations, and the number of observation times from the beginning of monitoring to the

first signal from the chart is recorded as a run length (RL) value. This sequential monitoring

process is repeated for 10,000 times, and the average of the 10,000 RL values can be regarded

as the actual ARL value. Because this ARL value depends on the initial IC dataset, we repeat

the entire simulation mentioned above, including generation of the initial IC dataset, estimation

of (β0,β), determination of (hX, hY ), and computation of ARL, for 1,000 times to reduce the

randomness in the results. Then, the average of the 1,000 ARL values is used as the final estimate

of the actual ARL value. We first studied the IC performance of the EWMAC chart, by setting

all related shifts to be 0. The computed actual ARLY,0 values are shown in Figure 2, where the

shaded area in each plot denotes ARLY,0 values that are within 5% of the nominal level of 200.

From the plots in the figure, it can be seen that i) the difference between the actual and nominal

ARLY,0 values gets smaller when m is larger, ii) their difference depends on p and λ, and the

difference would be smaller if p is smaller or λ is larger, and iii) the difference would be within 5%

of the nominal level if m ≥ 400 in all cases considered. In this example, we also investigated the

sampling variability by calculating the standard deviation of the 1,000 IC ARL values, denoted as

SDARLY,0. The smaller the SDARLY,0 value, the more stable the IC performance of the control

chart. The calculated SDARLY,0 values are presented in Figure S.1 of the supplementary file.

From the plots of the figure, it can be seen that i) the chart with larger weighting parameter λ

has more sampling variability, which is consistent with the conclusion in Saleh et al. (2015), ii)

SDARLY,0 values are generally larger when p increases, and iii) SDARLY,0 becomes smaller when

m is larger and SDARLY,0 would be within 15% of the nominal ARLY,0 value of 200 in all cases

considered when m ≥ 400. From the results in Figures 2 and S.1, it seems that the control chart

would have a stable IC performance when m ≥ 400 in this example. In addition, we studied the

impact of m on the OC performance of the EWMAC chart, by comparing the actual ARL1 values,

computed in a similar way to that described above when computing the actual ARLY,0 values, and

the nominal ARL1 values, computed in cases when the true model (1) was assumed known. It was

found that the actual ARL1 values would be within 5% of the corresponding nominal ARL1 values

when m ≥ 100 for detecting the four types of shifts considered in the previous examples.
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Figure 2: Actual ARLY,0 values of the EWMAC chart when the IC data size m changes from 100

to 800, the nominal ARLY,0 value is 200, and p = 1, 3 or 5. Shaded area in each plot denotes

ARLY,0 values that are within 5% of the nominal level of 200.

3.4 Comparison with some alternative control charts

In this part, we compare the proposed EWMAC chart with some alternative control charts described

below. First, we consider the conventional upward EWMA chart that monitors the performance

variable Y only and ignores the covariates in X completely. This chart can be accomplished by

the chart (4)-(5) after the weighting function φ(EX,t;λ, hX) is replaced by the constant λ, and it is

denoted as EWMA here. Second, the adaptive EWMA chart suggested by Capizzi and Masarotto

(2003), denoted as AEWMA, is considered here. The major idea of AEWMA is to determine

its weighting parameter value according to an estimated shift size at the current time point. In

the chart, a score function is needed to turn the estimated shift size to a legitimate weight. The

recommended score function in Capizzi and Masarotto (2003) is used in this part. Third, it is

natural to monitor both the performance variable Y and all covariates in X simultaneously. To

this end, we consider using the general multivariate EWMA chart suggested by Lowry et al. (1992),

which is briefly described below. Let Y ∗t = (Yt,X
T
t )T and µY ∗ and ΣY ∗ be its IC mean and IC

covariance matrix. Both µY ∗ and ΣY ∗ can be estimated from the IC data. The estimates are

denoted as µ̂Y ∗ = (µ̂Y , µ̂
T
X)T and Σ̂Y ∗ , respectively. Then, the multivariate EWMA charting

statistic is defined as

Tt = ET
t Σ̂−1Y ∗Et, where Et = λ(Y ∗t − µ̂Y ∗) + (1− λ)Et−1,

where λ is a weighting constant. The chart gives a signal when Tt is larger than a control limit. The

above multivariate EWMA chart is designed for detecting arbitrary shifts. Because the proposed
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EWMAC chart is designed for detecting upward shifts in Y only, to make them comparable, the

above multivariate EWMA chart should be modified for detecting upward shifts in Y as well. To

this end, we consider the following modification: whenever the first element of Et is negative, the

entire vector of Et is reset to 0. In that way, the downward shifts in Y could hardly be detected by

the modified chart because they would most probably make the first element of Et negative. This

modified multivariate EWMA chart is denoted as MEWMA. Fourth, we consider a risk-adjusted

control chart that shares a similar idea to that of the EWMA chart in Steiner and Jones (2010) which

uses the observed minus expected deaths scores when constructing its charting statistic. To this

end, a regression model is first built from the IC dataset, with Y as response and X as predictors.

Then, for online process monitoring, the conventional EWMA chart for detecting upward shifts

is applied to the residuals {ε̂t} of Phase II observations calculated using the estimated regression

model. The resulting control chart is denoted as RA. Fifth, we consider the regression-adjusted

multivariate control chart suggested by Hawkins (1991) for monitoring Y and X jointly. To use

this chart, the overlapping information in individual variables should be deleted first, as discussed

in Section 1. This chart is denoted as ZNO. Finally, we consider a cause-selecting control chart,

denoted as CSC. The CSC charting scheme consists of two control charts, referred to as the X-chart

and Z-chart (cf., Asadzadeh 2008). The X-chart is used to monitor the covariates in X, and it is

chosen to be the conventional EWMA chart if p = 1 and the multivariate EWMA chart proposed

by Lowry et al. (1992) otherwise. The Z-chart is used to monitor the residuals {ε̂t} mentioned

above, and it is chosen to be the conventional EWMA chart. The entire CSC charting scheme gives

a signal when at least one of the two charts gives a signal. It should be pointed out that all these

alternative control charts are designed for purposes that are different from the one of the proposed

method. The main reason to consider them here is to show that they are ineffective to solve the

current research problem and thus the proposed method is needed.

To compare the seven charts EWMAC, EWMA, AEWMA, MEWMA, RA, ZNO and CSC, we

consider cases when p = 3, β = 0.5, σε = σx = 0.5, m = 400, and ARL0 = 200 in all charts, and

the other setups are the same as those in the example of Table 2. For the RA and CSC charts, the

least-square method is used when estimating all the regression coefficients in the linear regression

model Yt = β0 + XT
t β + εt. The IC parameters in all charts are estimated from the IC data in

advance and their control limits are determined by the bootstrap procedure with the bootstrap

sample size of 10,000 from the IC data. To make the comparison fair, we focus on the optimal
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performance of all charts. Namely, to detect a given shift, the parameters (e.g., the weighting

parameter λ or the allowance constant k) of the charts are chosen such that their ARL1 values

reach the minimum. Otherwise, their performance may not be comparable, if λ and k are chosen

to be the same in all charts. See a related discussion about this issue in Qiu (2018). The calculated

optimal ARL1 values of the seven charts are shown in Figure 3. It can be seen from the figure

that i) the proposed EWMAC chart is better than the other six charts for detecting shifts of types

(III) and (IV) when the shifts in Y are mainly or completely due to shifts in the covariates, ii) the

EWMAC chart performs almost the same as the charts EWMA, AEWMA, CSC, MEWMA and

ZNO when detecting shifts of types (I) and (II), and slightly worse than RA in such cases, and iii)

the RA chart performs the best when detecting shifts of types (I) and (II), but poorly for detecting

shifts of types (III) and (IV). The last conclusion is expected because the shifts of types (I) and

(II) are not or minimally related to covariates and the variability of the risk-adjusted residuals

would be smaller than that of the original observations of Y . Thus, the related chart based on the

residuals would be more effective than the chart based on the original observations of Y . However,

for detecting shifts of types (III) and (IV) that are mainly or completely due to the covariates,

RA has little power because the risk-adjusted residuals contain little information about the shifts

after the covariate effect is deducted from the original observations of Y . This example confirms

that the proposed chart EWMAC is effective in detecting shifts in Y , after the helpful information

in X has been taken into account. Even in cases when a potential shift in Y has nothing to do

with the covariates in X (cf., the top-left panel in Figure 3), EWMAC would not lose much power

in detecting such a shift because the weighting function φ(EX,t;λ, hX) used in (4) would be the

same as λ due to the fact that EX,t is likely smaller than hX in such cases. As a comparison, the

risk-adjusted chart RA could be unreliable to use in cases when the shift in Y is mainly due to the

covariates in X.

3.5 Cases when p is large

In the numerical examples presented in the previous parts, p is chosen to be 1, 3 or 5, which is quite

small. In this part, we study the performance of the EWMAC chart in some cases when p is large. To

this end, let us consider cases when p = 50, the first 10 elements of β are all 0.5, and the remaining

elements are 0. The other setups are the same as those in Table 2. In such cases, the regression

model (1) can be estimated by a Lasso-based model fitting procedure, which can be accomplished
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Figure 3: Calculated optimal ARL1 values of the seven charts EWMAC, EWMA, AEWMA,

MEWMA, RA, ZNO and CSC for detecting shifts of types (I)–(IV) when p = 3. Note that

the y-axis in each plot is in log scale.

by using the function glmnet() in the R package glmnet where the tuning parameter is chosen

by the 10-fold cross-validation. First, let us study the impact of (λ,ARLX,0) on the performance

of the EWMAC chart in cases when σε = σx = 0.5, λ = 0.1, 0.3 or 0.5, ARL0,X = 100, 200 or

300, and ARL0,Y = 200. The calculated ARL1 values based on 10,000 replicated simulations are

presented in the supplementary file. It can be seen that similar conclusions to those from Table 2

can be made here. Second, we study the impact of the IC sample size m on the performance of the

EWMAC chart by changing m from 100 to 800. The calculated actual ARLY,0 values of EWMAC

are shown in Figure 4. From the figure, we can see that the actual ARLY,0 value would be within

5% of the nominal ARLY,0 level of 200 when m ≥ 600. We also computed the SDARLY,0 values

of the EWMAC chart, which are shown in Figure S.2 of the supplementary material. From the

figure, it can be seen that the SDARLY,0 values are within 15% of the nominal ARLY,0 of 200 when

m ≥ 600. In addition, we find that the actual ARL1 values could be within 5% of the corresponding
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nominal ARL1 values (i.e., the ARL1 values when the model (1) is assumed known) when m ≥ 300

for detecting shifts of types (I)-(IV) considered earlier. By comparing these results with those in

Section 3.3, it can be seen that more IC data are required to have a reliable performance of the

EWMAC chart when p is larger.
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Figure 4: Actual ARLY,0 values of the EWMAC chart when the IC data size m changes from 100

to 800, the nominal ARLY,0 value is 200, p = 50, and λ = 0.1, 0.3 and 0.5. Shaded area denotes

the ARLY,0 values that are within 5% of the nominal level of 200.

Finally, the proposed EWMAC chart is compared with the six competing charts EWMA,

AEWMA, MEWMA, RA, ZNO and CSC in this example when m is fixed at 600 and all other

setups keep the same as those in Section 3.4. To make the comparison as fair as possible, the model

(1) is estimated by the R-function glmnet() for the three charts EWMAC, RA and CSC that

depend on that model. In all the seven control charts, the ARL0 value is fixed at 200, and their

control limits are determined by the bootstrap procedure with the bootstrap sample size of 10,000.

Their calculated optimal ARL1 values for detecting shifts of the types (I)–(IV) are presented in

Figure 5. From the plots of the figure, it can be seen that similar conclusions to those from Figure

3 can be made here, and the proposed EWMAC chart still performs well in this example when p is

relatively large.
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Figure 5: Calculated optimal ARL1 values of the seven charts EWMAC, EWMA, AEWMA,

MEWMA, RA, ZNO and CSC for detecting shifts of types (I)–(IV) when p = 50. Note that

the y-axis in each plot is in log scale.

3.6 Cases when f(X) is nonparametric

In the previous parts, f(X) is assumed to be linear. In this part, we consider some cases when f(X)

is nonparametric and study the performance of the proposed EWMAC chart in such cases. To this

end, let us consider cases when p = 1 and f(x) = 0.5 exp(x). In such cases, f(x) is estimated by the

local linear kernel smoothing procedure (9)-(10) and the corresponding EWMAC chart is described

in the paragraph with Equation (10) in Section 2. First, we investigate the impact of (λ,ARLX,0)

on the performance of the proposed EWMAC chart in cases when σε = σx = 0.5, λ = 0.1, 0.3 or

0.5, ARL0,X = 100, 200 or 300, ARL0,Y = 200, and the other setups are the same as those in the

example of Table 2. The calculated ARL1 values based on 10,000 replications are presented in

the supplemental file. Similar conclusions to those in Section 3.2 (cf., Table 2) can be made from

this table. More specifically, it can be seen from the table that i) the EWMAC chart performs the

best when ARL0,X = 300 for detecting shifts of the types (I) and (II), and it performs the best
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when ARL0,X = 100 for detecting shifts of the types (III) and (IV), ii) small λ values are good for

detecting small shifts and large λ values are good for detecting large shifts, and iii) for detecting

shifts that are mainly or completely due to shifts in covariates (i.e., shifts of the types (III) and

(IV)), λ should be chosen relatively small to have a good shift detection performance.

Next, we study the effect of the IC sample size m on the performance of the EWMAC chart.

In the above example, let m = 100, 200, . . . , 800, and all other setups are kept unchanged. Then,

the calculated actual ARLY,0 values of EWMAC are presented in Figure 6, where the shaded area

denotes the ARLY,0 values that are within 5% of the nominal ARLY,0 level of 200. From Figure 6,

it can be seen that it is enough to have m ≥ 400 to ensure that the actual ARLY,0 values are within

5% of the nominal level of 200 in all cases considered. In addition, we calculated the SDARLY,0

values of EWMAC and the results were presented in Figure S.3 of the supplementary file. From

the figure, the SDARLY,0 values are all within 15% of the nominal ARLY,0 value of 200 when

m ≥ 400. Also, we find that the actual ARL1 values are within 5% of the corresponding nominal

ARL1 values when m ≥ 100 for detecting all four types of shifts (I)-(IV) considered in the example

of Table 1. This part of the results is omitted here to save some space.
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Figure 6: Actual ARLY,0 values of the EWMAC chart when the IC data size m changes from 100

to 800, the nominal ARLY,0 value is 200, p = 1, f(x) = 0.5 exp(x) and λ = 0.1, 0.3 and 0.5. Shaded

area denotes the ARLY,0 values that are within 5% of the nominal level of 200.

Finally, we compare the performance of the seven chart EWMAC, EWMA, AEWMA, MEWMA,
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RA, ZNO and CSC in this example when m is fixed at 400 and the charts are set up in the same way

as that in Section 3.4. To make the comparison as fair as possible, the nonparametric regression

function f(x) is estimated by the local linear kernel smoothing procedure (9)-(10) for the charts

EWMAC, RA and CSC. In all charts, the ARL0 value is fixed at 200, and their control limits are

determined by the bootstrap procedure with the bootstrap sample size of 10,000. The calculated

optimal ARL1 values of the seven charts are shown in Figure 7, and similar conclusions to those

from Figure 3 in Section 3.4 can be made here. Thus, results in this part confirm that the proposed

chart EWMAC performs well in cases when f(x) is nonparametric.
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Figure 7: Calculated optimal ARL1 values of the seven charts EWMAC, EWMA, AEWMA,

MEWMA, RA, ZNO and CSC for detecting shifts of types (I)–(IV) when p = 1 and f(x) =

0.5 exp(x). Note that the y-axis in each plot is in log scale.
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4 Case Study

In this section, we apply the related control charts to a case study about the weekly initial jobless

claims (Y ) in Arizona. By definition, the initial jobless claims in Arizona in the current week are

referred to those individuals who filed for state unemployment insurance for the first time during

the previous week. For the weekly initial jobless claims, we are mainly concerned about upward

shifts because they could have a negative impact on the stability of our society. It is well-known

that the initial jobless claims are usually associated with economic conditions. More specifically, the

economic policy uncertainty index (X), commonly used in the economic literature as an effective

measure of the uncertainty in tax, spending, regulatory, and monetary policies, is believed to

contain useful information about the initial jobless claims (cf., Baker et al. 2016). The data of

(X,Y ) can be downloaded from the web page of the Federal Reserve Economic Data with the link

https://fred.stlouisfed.org. In this paper, we use the data during 2005-2009, which are shown in

Figure 8, to demonstrate the application of the proposed EWMAC chart.
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Figure 8: Observed weekly initial jobless claims and economic policy uncertainty index readings

in Arizona during 2005–2009. The vertical dotted line in each plot separates the IC data and the

data for online monitoring.

In this paper, the proposed EWMAC chart is constructed and designed in cases when process

observations are temporally independent. In the current dataset, however, autocorrelation could

exist in the observed data and thus it should be be properly addressed before the EWMAC chart can

be applied. To this end, we consider using the flexible ARMA(p, q) time series model (cf., Box and

Jenkins 1976) to describe the data autocorrelation, where p and q are the orders of autoregression
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and moving average, respectively. More specifically, the data of X and Y are modelled by two

separate ARMA(p, q) models, and the parameters p and q are determined by the popular Bayesian

Information Criterion (BIC, Schwarz 1978). The BIC criterion is chosen because of its consistency

property in selecting the true model (cf., Yang 2005). After the model selection by BIC, the

following ARMA(1,0) model is obtained for describing the observed data of Y :

(Yt − µy)/σe,y = φ(Yt−1 − µy)/σe,y + ey,t,

where ey,t’s are the i.i.d. random errors with mean 0 and variance 1. The estimated values for µy,

φ, and σe,y are µ̂y = 3429.54, φ̂ = 0.61, and σ̂e,y = 649.47, respectively. Similarly, the following

ARMA(0,0) model is obtained for describing the observed data of X:

(Xt − µx)/σe,x = ex,t,

where the estimates of µx and σe,x are µ̂x = 60.02 and σ̂e,x = 20.17. Then, we can calculate the

standardized residuals as follows: for t ≥ 1,

êy,t = (Yt − µ̂y)/σ̂e,y − φ̂(Yt−1 − µ̂y)/σ̂e,y, êx,t = (Xt − µ̂x)/σ̂e,x.

The time series of the calculated standardized residuals are shown in Figure 9.
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Figure 9: Standardized residuals {ey,t} and {ex,t} of the weekly initial jobless claim data in Arizona.

It is well demonstrated in the literature that shift detection in the original data is equivalent

to shift detection in the residuals obtained from an ARMA model, in the sense that a shift occurs

in the original data if and only if there is a shift in the residuals (e.g., Apley and Tsung 2002).

Next, we apply the proposed EWMAC chart to the calculated residuals. To this end, the observed

27



data in years 2005 and 2006 are used as the IC data, which look quite stable in Figures 8 and 9.

From the IC data, the IC parameters, including the regression coefficients (β0, β1) in the model

êy,t = β0 + β1êx,t + εt, can be estimated. The estimated values of (β0, β1) are β̂0 = −0.02 and

β̂1 = 0.085. Since β̂1 is positive, it can be concluded that the decorrelated observations of Y is

positively associated with the decorrelated observations of X, which is consistent with our intuition.

In the charts (2)-(3) and (4)-(5), we choose λ = 0.3, ARLX,0 = ARLY,0 = 200, and the weighting

function to be φL(x;λ, hX), as in some simulation examples. Then, the control limits hX and hY

can be determined by a bootstrap procedure with the bootstrap sample size of 10,000 from the

IC data. Next, the proposed EWMAC chart is used to monitor the residuals {ey,t} starting from

the 1st week of 2007. The EWMA statistic EX,t for monitoring the decorrelated observations of

X and the corresponding weights φL(EX,t;λ, hX) are shown in Figure 10. From the left panel of

the figure, it can be seen that EX,t is below the control limit hX during most times in 2007 and

exceeds hX starting from the beginning of 2018. Consequently, from the right panel of the figure,

we can see that the weights φL(EX,t;λ, hX) used in the chart (4)-(5) are equal to λ = 0.3 during

most times in 2007, and become large starting from the beginning of 2018. The EWMAC charting

statistic EY,t is shown in the top-left panel of Figure 11, and its first signal is given at the 2nd week

of 2018. As a comparison, the six competing charts EWMA, AEWMA, MEWMA, RA, ZNO and

CSC with ARL0 = 200 and λ = 0.3 (or k = 0.3) are also shown in Figure 11. Their control limits

are all determined by the bootstrap procedure with 10,000 bootstrap samples from the IC data.

The first signals of the charts EWMA, AEWMA, MEWMA, RA, ZNO and CSC are at the 13th,

13th, 4th, 14th, 7th, and 7th weeks, respectively. So, the first signal by the proposed EWMAC

chart is 11 weeks earlier than the ones by EWMA and AEWMA, 2 weeks earlier than the one by

MEWMA, 12 weeks earlier than the one by RA, and 5 weeks earlier than the ones by ZNO and

CSC. This example illustrates that it is indeed beneficial to use useful information in the weekly

readings of the economic policy uncertainty index when detecting an upward shift in the weekly

initial jobless claims in Arizona during 2007-2009, because the resulting chart (i.e., EWMAC) can

give a signal of the upward shift at least 2 weeks earlier than the competing methods considered,

so that Arizona government can make timely interventions to handle the issue of increasing jobless

claims.
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Figure 10: The EWMA statistic EX,t and the corresponding weights φ(EX,t;λ, hX) in the initial

jobless claim example. The dashed line in the left panel denotes the control limit hX.

5 Concluding Remarks

We have presented a new SPC methodology for monitoring process performance variables while

using helpful information in covariates. This method is appropriate for applications in which only

shifts in the performance variables are our major concern and need to be detected promptly, and

shifts in the covariates or in the relationship between the performance variables and covariates are

either secondary or not our concern at all. Because a shift in the covariates may not necessarily

cause a shift in the process performance variables and vice versa in some applications, the process

monitoring problem discussed in the paper is quite challenging. The proposed EWMAC charting

scheme handles the problem by using the helpful information of covariates in the weighting function

(cf., (4)) only. If the covariates tend to have a shift, then the value of this weighting function would

be relatively large. Consequently, more weights will be put on the current and several most recent

observations of the process performance variables, making the chart more sensitive to a future shift

in the process performance variables. However, because the charting statistic in (4) is a weighted

average of the observations of the process performance variables, its signals can only be triggered

by shifts in the process performance variables. In the previous two sections, it has been shown by

some numerical studies that the proposed method is effective in various cases considered.

There are still some issues in the proposed EWMAC chart that need to be addressed in our

future research. For instance, three possible weighting functions are considered in the paper (cf.,

(6)-(8)). It is still unknown to us whether there is any more powerful weighting functions for the
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Figure 11: Seven control charts for monitoring the weekly initial jobless claim data in Arizona

during 2007-2009. In each plot, the horizontal line(s) denotes the control limit(s), and the vertical

dotted line denotes the first signal time of the related control chart.

EWMAC chart. In the current method, the weighting function φ(EX,t;λ, hX) is determined based

on the covariate information only. Actually, it can also use the helpful information in the past data

of Y , as discussed in Li and Qiu (2014). The current EWMAC chart is constructed based on the

EWMA charting scheme. It is our belief that the idea presented in the paper can also be applied to

the CUSUM and CPD charting schemes. But, the details still need to be further developed. Also,

similar to a conventional one-sided EWMA chart without using a reflecting barrier, the one-sided

EWMAC charts discussed in the paper could have the inertia problem (cf., Woodall and Mahmoud

2005). Some modifications might be needed to address this issue (e.g., Yashchin 1993). In addition,

although the adaptive weighting approach adopted by the proposed EWMAC chart is an effective

way to take advantage of the useful covariate information, other strategies like control charts with
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variable sampling rates could also be considered in the future research. Finally, as pointed out in

Section 2, cases when the process performance variable Y is multivariate, when process observations

are correlated over observation times, or when the process IC distribution is time-varying need to

be studied carefully in the future research.

Supplementary Materials

supplement.pdf: This document contains some extra numerical results about the control charts

discussed in Section 3 of the main paper.

ComputerCodesAndData.zip: This zip file contains the real-data used in Section 4 of the paper,

the R code to implement the proposed EWMAC chart, and a brief ReadMe file to explain

how to use the R code.
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