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Abstract

Online sequential monitoring of the incidence rates of chronic or infectious diseases is crit-

ically important for public health. Governments have invested a great amount of money in

building global, national and regional disease reporting and surveillance systems. In these sys-

tems, conventional control charts, such as the cumulative sum (CUSUM) and the exponentially

weighted moving average (EWMA) charts, are usually included for disease surveillance purposes.

However, these charts require many assumptions on the observed data, including the ones that

the observed data should be independent at different places and/or times, and they should follow

a parametric distribution when no disease outbreaks are present. These assumptions are rarely

valid in practice, making the results from the conventional control charts unreliable. Motivated

by an application to monitor the Florida influenza-like illness data, we develop a new sequential

monitoring approach in this paper, which can accommodate the dynamic nature of the observed

disease incidence rates (i.e., the distribution of the observed disease incidence rates can change

over time due to seasonality and other reasons), spatio-temporal data correlation, and arbitrary

data distribution. It is shown that the new method is more reliable to use in practice than the

commonly used conventional charts for sequential monitoring of disease incidence rates. Be-

cause of its generality, the proposed method should be useful for many other applications as

well, including spatio-temporal monitoring of the air quality in a region or the sea-level pressure

data collected in a region of an ocean.

Key Words: Change detection; Correlation; Disease surveillance; Dynamic systems; Early

detection; Nonparametric methods; Process control; Sequential monitoring.

1 Introduction

A disease outbreak refers to the occurrence of disease cases in excess of what would normally

be expected. In recent years, we experienced the outbreaks of Zika, Ebola, SARS, H1N5, H7N9,
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MERS-CoV, chikungunya, and many other damaging infectious diseases. Our society is under

a constant threat of bioterrorist attacks and pandemic influenza. It is therefore important to

effectively monitor the occurrence of infectious diseases constantly and detect their outbreaks as

promptly as possible. Early detection of infectious disease outbreaks can help governments and

individuals to take appropriate disease control and prevention measures in a timely manner so that

the disease epidemic can be controlled at an early stage and thus its damage can be minimized. This

paper aims to develop a new and effective statistical method for sequential monitoring of infectious

disease incidence rates and for early detection of their outbreaks. Because of its generality, our

proposed method should be useful for other spatio-temporal monitoring problems as well, including

the air quality surveillance in environmental research and the sea-level pressure monitoring in

oceanography.

Because of the importance to early detect the infectious disease outbreaks, some global, national

and regional disease reporting systems have been established to collect/provide data about certain

measurements of some important diseases. Commonly used measures of disease frequency include

prevalence and incidence (Noordzij et al. 2010). The prevalence reflects the total number of

existing disease cases, while the incidence refers to the number of newly diagnosed cases of a

disease. Compared to the prevalence, the incidence is more useful in understanding disease etiology

and providing guiding principles for targeting interventions. Thus, it is preferred in many disease

surveillance systems. Besides, two main types of disease incidence data are available in practice,

including (i) number of newly confirmed cases and (ii) incidence rate of a disease. Even though the

number of disease cases can provide some useful information about the current burden of a disease,

it suffers from the limitation that it cannot distinguish a large population with a low disease rate

from a small population with a high disease rate. To overcome this limitation, we can consider

the disease incidence rate, defined as the total number of new cases in a region divided by the

population of the region in a specific observation time period. This paper is motivated by the

incidence rate data of the influenza-like illness (ILI), which is a respiratory infection caused by a

variety of influenza viruses. A suspect ILI case is defined as the severe respiratory illness with

fever (> 100◦F), cough, sore throat, and difficulty in breathing. It is estimated that 15-40% of the

population develop illness from influenza each year in the US. About 36,000 people per year die

from influenza infection, and about 114,000 people per year have to be admitted to hospital due to

influenza infection (Fiore et al. 2010). A traditional method to estimate the incidence rate of ILI
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is to carry out repeated seroprevalence surveys. But, such surveys are resource-intensive and slow.

Thus, they are unfeasible for early detection of disease outbreaks. To overcome that difficulty,

the Florida Department of Health (FDOH) has built an Electronic Surveillance System for the

Early Notification of Community-based Epidemics at Florida (ESSENCE-FL) recently, which is a

syndromic surveillance system for collecting near real-time pre-diagnostic data from participating

hospitals and urgent care centers in Florida. Currently, the system collects data from acute care

visits to 229 emergency departments and 35 urgent care centers distributed in all counties of Florida,

and the collected data are updated once a day. Figure 1 presents the observed incidence rates of ILI

for all 67 counties of Florida on 06/01/2012 (a summer time) and 12/01/2012 (a winter time). From

the two plots, we can see that the ILI incidence rates in winter were generally higher than those

in summer, and the ILI epidemic in some counties (e.g., the Liberty county in the northwestern

Florida) was serious in the winter time.
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Figure 1: Observed ILI incidence rates in Florida on 06/01/2012 (left) and 12/01/2012 (right). Darker

colors denote larger values.

In the surveillance systems like ESSENCE-FL, some conventional process monitoring tools,

such as the cumulative sum (CUSUM) and the exponentially weighted moving average (EWMA)

charts, are usually included for routine disease surveillance (cf., Chen et al. 2010, Kite-Powell et al.

2010). These charts, however, require the assumptions that the observed data are independent and

follow a parametric distribution (Qiu 2014). In practice, these assumptions are hardly valid, and

it has been well demonstrated in the statistical process control (SPC) literature that results from

the conventional control charts would be unreliable or even misleading in cases when their required

assumptions are violated (e.g., Capizzi 2015, Chakraborti et al. 2015, Hackl and Ledolter 1991, Qiu

and Hawkins 2001). To address this issue, many new SPC methods have been developed recently.

For instance, monitoring of correlated data has been discussed in many papers, including Apley
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and Lee (2003), Li and Qiu (2019), Psarakis and Papaleonida (2016), and Zhang (1998). Usually,

a parametric time series model is used in these methods for describing the data correlation, and

then a control chart is applied to the residuals obtained from the estimated time series model. To

address the violation of the normality assumption in practice, many nonparametric or distribution-

free control charts have been developed in the literature. See, for instance, Bakir and Reynolds

(1979), Capizzi and Masarotto (2013), Chakraborti et al. (2001), Chen et al. (2016), Holland

and Hawkins (2014), Qiu (2008, 2018), Qiu and Hawkins (2001), and Qiu and Li (2011). To

accommodate the dynamic nature of certain processes in practice (i.e., their process distributions

would change over time), the so-called dynamic screen system (DySS) has been developed recently

(e.g., Qiu and Xiang 2014, 2015, You and Qiu 2019, Zhang et al. 2015). Some versions of the DySS

method can accommodate both time-varying process distributions and temporally correlated data

(Li and Qiu 2016, 2017). In the statistical/epidemiological literature, there exist some retrospective

methods for identifying spatial or spatio-temporal disease clusters, including the Knox, local Knox,

and scan methods (e.g., Knox and Bartlett 1964, Kulldorff 1997, Marshall et al. 2007). As pointed

out by Marshall et al. (2007), Woodall et al. (2008), and Zhou and Lawson (2008), these methods

would not be as effective as the CUSUM charts commonly used for process monitoring, because

the former cannot be used for prospective surveillance of infectious diseases and they could not

properly accommodate the spatio-temporal data correlation either. In the literature, there are

some discussions about prospective online monitoring of spatial data. For instance, Jiang et al.

(2011) suggested a likelihood ratio (LR) based control chart for monitoring spatial data. However,

their problem is different from the current problem, in that the underlying in-control (IC) spatial

data distribution was assumed to be normal (in order to use the LR framework) and unchanged

over time in the former problem, while the current problem does not have these assumed properties.

Colosimo et al. (2014), Wang et al. (2014), Zang and Qiu (2018) and some others discussed several

different spatial data monitoring problems in which all the IC spatial process distributions were

assumed to be unchanged over time, and thus methods in these papers cannot be applied to the

current problem either.

Infectious disease data often have complicated structures. For instance, the distribution of

disease incidence within a given region and a given time interval often cannot be approximated

well by a Poisson, negative binomial, or normal distribution (cf., Zhang et al. 2015), because

of the facts that many confounding risk factors could affect the disease incidence in practice,
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these risk factors may not be easy to measure, and sometimes it is even difficult for us to notice

their existence. Besides, disease incidence often has complex spatio-temporal patterns like spatial

clustering, seasonality and day-of-week variation (cf., Zhao et al. 2011), which cannot be described

well by a parametric model either. Furthermore, the observed disease incidence data at different

time points and different spatial locations are usually correlated: the closer the distance between

two observation time points or locations, the stronger the correlation. Such spatio-temporal data

correlation is often difficult to describe by a parametric spatial time series model. Therefore,

the conventional CUSUM and EWMA charts would not be appropriate to use in the current

problem. The more recent control charts described above for monitoring correlated and/or non-

Gaussian data or for monitoring dynamic processes are not appropriate here either because of the

reasons given below. First, the parametric time series models assumed in the control charts for

monitoring correlated data usually cannot be generalized easily for describing the spatial or spatio-

temporal data correlation in the current problem. These control charts cannot handle dynamic

processes with flexible data correlation structure either. Second, the existing nonparametric control

charts are designed mainly for monitoring traditional univariate or multivariate processes whose IC

distributions remain unchanged over time. They cannot be used for applications with temporally

correlated spatial data and time-varying IC distributions. Third, the existing DySS methods are for

monitoring processes with a single or multiple performance variables (cf., Li and Qiu 2016, 2017).

They cannot handle the current infectious disease surveillance problem with spatial data.

In this paper, we aim to develop an effective and flexible sequential online monitoring system

for infectious disease surveillance and for early detection of disease outbreaks. This method can

accommodate the complicated structure of the observed infectious disease data adequately. More

specifically, it does not impose any parametric forms on the disease incidence distribution and on

the spatio-temporal pattern of the disease incidence trajectory. It can effectively accommodate the

spatio-temporal correlation in the observed data and the dynamic nature of the disease incidence

rates. It should be pointed out that most spatio-temporal modeling approaches discussed in the

statistical literature are for analyzing spatio-temporal data obtained in a given time interval (e.g.,

Yang and Qiu 2018, 2019). They are developed for solving the offline modeling problems, in which

all observations have been obtained completely at the time when data analysis is performed and no

new observations can be added to the existing dataset after data analysis starts. See the related

discussion given in Section 2.1 below for a more detailed discussion. Thus, these methods are
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NOT for sequential monitoring of spatio-temporal data (or, the online spatio-temporal monitoring

problem), in which new data keep coming over time. As a comparison, the online spatio-temporal

monitoring problem is the focus of the current paper.

Our proposed method will be described in detail in Section 2. Its performance will be evaluated

numerically in Section 3. The proposed method is applied to the Florida ILI incidence data in

Section 4. Several remarks conclude the article in Section 5.

2 Sequential Monitoring Of Disease Incidence Rates

Our proposed method for online monitoring of disease incidence rates is described in this

section. It consists of two steps: (i) estimation of a baseline model for describing the regular

longitudinal pattern (i.e., seasonality and other data variations over time) of the disease incidence

rates when no disease outbreaks are present, and (ii) online monitoring of the observed disease

incidence rates and delivery of a signal when a significant shift in the longitudinal pattern of the

observed disease incidence rates from the estimated regular longitudinal pattern is detected. These

two steps are described in details below.

2.1 Estimation of a baseline model

In the literature, there is much discussion about retrospective modeling of spatio-temporal

data obtained within a given spatial region and a given time interval. For instance, some authors

suggested estimating the true mean function of the spatio-temporal data using the penalized splines

under the generalized additive model or mixed-effects model framework (e.g., Chouldechova and

Hastie 2015, Heuvelink and Griffith 2010). Some other existing methods require certain parametric

model assumptions (e.g., Diggle 2014). Kafadar (1996) suggested analyzing spatial data using the

conventional local constant kernel smoothing procedures. Recent discussions about estimation of

the spatio-temporal covariance structure can be found in Shand and Li (2017) and Yang and Qiu

(2019). Some overviews on this topic can be found in Banerjee et al. (2004), Cressie and Wikle

(2011), Diggle (2014), Gneiting and Guttorp (2010), Gonzalez et al. (2016), Lindström et al.

(2015), and Schabenberger and Gotway (2005). Recently, Yang and Qiu (2018) suggested a flexible

approach for spatio-temporal data modeling, which was shown more effective than some alternative
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approaches in various different cases. This approach is adopted here and briefly described below.

Let Ω and [0, T ] be a two-dimensional region and a basic time interval in which the observed

incidence rates of a specific disease need to be modeled. In practice, the basic time interval [0, T ]

usually spans for a whole year from January 1 to December 31, and the disease incidence rate data

are collected daily from one year to the next. Denote s = (sx, sy)
′ ∈ Ω as a specific location in

the region Ω, where sx and sy are the x and y coordinates of s (e.g., longitude and latitude). For

any s ∈ Ω and t ∈ [0, T ], let N(t, s; dt,O(s)) be the number of new disease cases observed in a

small region O(s) around s and in the time interval [t, t + dt], and M(t, O(s)) be the population

size of the region O(s) at time t. Then, y(t, s) = N(t, s; dt,O(s))/[M(t, O(s))dt] is defined to be

the disease incidence rate. This definition is commonly used in the epidemiology literature. See,

for instance, Last (2001). In cases when no disease outbreaks are present, the observed incidence

rates are assumed to follow the model

y(ti, sij) = λ(ti, sij) + ε(ti, sij), for j = 1, 2, . . . ,mi, i = 1, 2, . . . , n, (1)

where ti ∈ [0, T ] is the ith time point, sij ∈ Ω is the jth location at time ti, λ(ti, sij) is the mean

of y(ti, sij), ε(ti, sij) is a zero-mean random error, mi is the number of observation locations at ti,

and n is the number of observation time points. The correlation structure in the observed data can

be described by the covariance function

Cov[y(t, s), y(t′, s′)] = E
[
ε(t, s)ε(t′, s′)

]
= V (t, s; t′, s′), for (t, s), (t′, s′) ∈ [0, T ]× Ω. (2)

In models (1) and (2), we have not imposed any parametric forms on λ(t, s), V (t, s; t′, s′), and

the error distribution. The only requirements are that (i) λ(t, s) is a continuous function, and (ii)

V (t, s; t′, s′) exists. Thus, these models are flexible.

To estimate the mean function λ(t, s) in model (1), a natural idea is to use the local kernel

estimators. Popular local kernel estimation methods include the Nadaraya-Watson (NW) estimator,

the local linear kernel estimator and the local polynomial kernel estimators (cf., Sections 2.3 and

2.4, Qiu 2005). In applications, the most popular local kernel estimator is the local linear kernel

estimator, due to its good theoretical and numerical properties, including the so-called automatic

boundary carpentry and design adaptation (cf., Section 2.4, Qiu 2005). Compared to the 2nd or

higher-order local polynomial kernel estimators, the local linear kernel estimator is more robust to

design sparsity (cf., Choi et al. 2000). For these reasons, the following local linear kernel smoothing
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procedure is used here:

argmin
β∈R4

∑n
i=1

∑mi
j=1 {y(ti, sij)− [β0 + β1(ti − t) + β2(sx,ij − sx) + β3(sy,ij − sy)]}2 × (3)

K1

(
ti − t
ht

)
K2

(
dE(sij , s)

hs

)
,

where s = (sx, sy)
′, sij = (sx,ij , sy,ij)

′, K1 and K2 are two univariate kernel functions, ht, hs >

0 are two bandwidths, dE(·, ·) is the Euclidean distance, and β = (β0, β1, β2, β3)
′. Let Y =

(y(t1, s11), . . . , y(t1, s1m1), . . . , y(tn, snmn))T be the observation vector, and X = (X11, . . . ,X1m1 ,. . . ,

Xnmn)T be the design matrix with Xij = (1, ti − t, (sij − s)T )T , for j = 1, . . . ,mi and i = 1, . . . , n.

Then, the local linear kernel estimator of λ(t, s), denoted as λ̂(t, s), is defined to be the solution of

(3) to β0, which has the expression

λ̂(t, s) = e′1
(
X′WX

)−1
X′WY, (4)

where e1 = (1, 0, 0, 0)′, W = diag{w0(1, 1), . . . , w0(1,m1), . . . , w0(n,mn)}, w0(i, j) = K1((ti −

t)/ht)K2(dE(sij , s)/hs), and diag{v} denotes a diagonal matrix with its diagonal elements given

by the vector v. Usually, the two kernel functions used in (3) are chosen to have finite supports.

Therefore, the estimator λ̂(t, s) in (4) is actually a weighted average of observations in a neighbor-

hood of (t, s), where the size of the neighborhood is controlled by the bandwidths and the weights

are controlled by the kernel functions. Under some regularity conditions, Yang and Qiu (2018)

have shown that λ̂(t, s) is statistically consistent.

As in the kernel smoothing literature (cf., Chapter 2, Qiu 2005), the two kernel functions are

chosen to be the Epanechnikov kernel function in this paper, due to its good theoretical properties.

Namely, K1(u) = K2(u) = [3(1−u2)/4]I(|u| ≤ 1). Regarding selection of the bandwidths ht and hs,

it has been well discussed in the literature that the conventional cross-validation (CV) procedure

would not perform well, because the CV procedure cannot properly distinguish the data correlation

structure from the data mean function in such cases (e.g., Altman 1990, Opsomer et al. 2001). By

the modified CV (MCV) procedure suggested in Brabanter et al. (2011) for handling correlated

data in the univariate regression setup, ht and hs can be chosen by minimizing the following MCV

score:

MCV(ht, hs) =
1

n

n∑
i=1

 1

mi

mi∑
j=1

[
λ̂−(ij)(ti, sij)− y(ti, sij)

]2 , (5)

where λ̂−(ij)(ti, sij) is the leave-one-out estimate of λ(ti, sij) by (3) when the observation y(ti, sij)
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is left out in the computation and when the two kernel functions are both chosen to be

K̃ε(u) =
4

4− 3ε− ε3

 3
4(1− u2)I(|u| ≤ 1), if |u| ≥ ε;
3(1−ε2)

4ε |u|, if |u| < ε,
(6)

and ε ∈ (0, 1) is a constant. By using (6), observations around (ti, sij) are down-weighted when

computing λ̂−(ij)(ti, sij) to reduce the impact of data correlation on bandwidth selection. Regarding

ε, Brabanter et al. suggested choosing it to be 0.1, based on a large simulation study. This

suggestion is adopted here.

So far, we have discussed estimation of the mean function λ(t, s) in this part. Next, we pro-

vide some discussion about the estimation of the variance/covariance function. In the literature,

there is some existing research on this topic. See, for instance, Choi et al. (2013), Genton (2007),

and Gneiting (2002). However, methods proposed in these papers require some restrictive assump-

tions, such as the ones that the covariance structure of the spatio-temporal data is stationary and

separable in space and time, which are often invalid in practice. Recently, Shand and Li (2017)

suggested a method for modelling nonstationary covariance function, with the assumption that the

nonstationary process is a projection of a stationary process in a higher-dimension. This method

can accommodate nonstationarity in both space and time. But, the estimation relies on correctly

specifying a parametric covariance model. To overcome these limitations, Yang and Qiu (2019) sug-

gested a flexible method to model the spatio-temporal covariance structure using the local kernel

smoothing approach, which is adopted in this paper and briefly described below.

Let w1(i, j, k, l) = K1 ((ti − t)/ht)K1 ((tk − t′)/ht)K2 ((dE(sij , s))/hs)K2 ((dE(skl, s
′))/hs), and

w2(i, j) = K1 ((ti − t)/ht)K2 (dE(sij , s)/hs), for 1 ≤ j ≤ mi, 1 ≤ l ≤ mk, 1 ≤ i, k ≤ n, and

(t, s), (t′, s′) ∈ [0, T ] × Ω. Then, after λ̂(ti, sij) is calculated by (4), V (t, s; t′, s′) can be estimated

by the following moment estimate:

V̂ (t, s; t′, s′) =

∑n
i=1

∑mi
j=1

∑n
k=1

∑mk
l=1 ε̂(ti, sij)ε̂(tk, skl)w1(i, j, k, l)∑n

i=1

∑mi
j=1

∑n
k=1

∑mk
l=1w1(i, j, k, l)

, when (t, s) 6= (t′, s′), (7)

where ε̂(ti, sij) = y(ti, sij) − λ̂(ti, sij) are the residuals, for j = 1, 2, ...,mi, i = 1, 2, ..., n. In cases

when (t, s) = (t′, s′), the variance function σ2(t, s) = V (t, s; t, s) can be estimated by

σ̂2(t, s) =

∑n
i=1

∑mi
j=1 ε̂

2(ti, sij)w2(i, j)∑n
i=1

∑mi
j=1w2(i, j)

. (8)
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2.2 Online monitoring of the spatio-temporal data

As discussed in Section 1, the DySS methods discussed in Li and Qiu (2016, 2017) are for

monitoring processes with a single or multiple performance variables. They are not designed for

monitoring spatial processes with spatio-temporally correlated data. Also, there are no effective

online monitoring schemes in the literature for handling processes with time-varying IC distribution

and spatio-temporally correlated data. This paper aims to fill this gap and propose an effective

online monitoring scheme for analyzing spatio-temporal disease incidence rates, which is described

in details below.

After λ(t, s) and V (t, s; t′, s′) are estimated by (4), (7) and (8), their estimators can be used for

describing the regular longitudinal pattern of the disease incidence rates in cases when no disease

outbreaks are present. Then, they can be used for online prospective monitoring of the disease

incidence rates. Assume that the incidence rates to monitor are observed at locations {s∗ij , j =

1, 2, . . . ,m∗i } and times t∗i , for i = 1, 2, . . .. When no disease outbreaks are present, the observed

incidence rates are assumed to follow the model (1) in the sense that y(t∗i , s
∗
ij) = λ(t∗i , s

∗
ij)+ε(t

∗
i , s
∗
ij),

for j = 1, 2, . . . ,m∗i and i = 1, 2, . . ., and the mean function λ(t, s) is periodic in time with the

period T . Namely, λ(t∗i , s
∗
ij) = λ(t∗∗i , s

∗
ij), where t∗i = t∗∗i + `T for all i, t∗∗i ∈ [0, T ], and ` ≥ 1

is an integer. For instance, if the complete cycle of seasonality in the disease incidence rates is a

whole year, which is the case for most infectious diseases, then T = 1 (year), {t∗i } are observation

times in the first and following years, and λ(t, s) is periodic in different years to reflect the yearly

seasonality. In some applications, the period T may be unknown and thus needs to estimated from

the IC data. In the statistical literature, there have been some discussions on estimation of the

period T . See, for instance, Sun et al. (2012) and Vogt and Linton (2014). Estimation of T is out

of the scope of the current paper, and will be discussed in our future research.

Conventional control charts in the literature for process monitoring are designed for cases

when process observations are independent and identically distributed. In the current problem,

however, all these assumptions could be violated. Therefore, before online process monitoring,

we suggest sequentially decorrelating the observations first to improve the process monitoring ef-

ficiency, as discussed in Li and Qiu (2016, 2017). However, the data decorrelation procedures

considered in Li and Qiu (2016, 2017) cannot be applied to the current problem directly, because

the observed data at a given time point is a scalar number or a vector in the problems consid-
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ered there while they are spatially distributed in the region Ω here. So, the data decorrelation

problem in the current setup is more challenging, and it is discussed in detail below. For each i,

let y(t∗i ) = (y(t∗i , s
∗
i1), y(t∗i , s

∗
i2), . . . , y(t∗i , s

∗
im∗

i
))′, λ(t∗i ) = (λ(t∗∗i , s

∗
i1), λ(t∗∗i , s

∗
i2), . . . , λ(t∗∗i , s

∗
im∗

i
))′,

and ε(t∗i ) = y(t∗i ) − λ(t∗i ). Assume that t∗i is the current time point in process monitoring, and

we have decorrelated the data at all previous time points t∗i−1, t
∗
i−2, . . . , t

∗
1. The decorrelated

data in the past are denoted as e(t∗1), e(t∗2), . . . , e(t∗i−1), and their standardized versions are de-

noted as ẽ(t∗1), ẽ(t∗2), . . . , ẽ(t∗i−1). After the observation y(t∗i ) at the current time point is ob-

tained, we want to make it uncorrelated with them and its components uncorrelated with each

other, which can be accomplished by the algorithm described below. Let the covariance matrix

of εi = (ε′i−1, ε(t
∗
i )
′)′ be denoted as Σii =

(
Σi−1,i−1 Vi−1,i

V ′i−1,i Vii

)
, where ε1 = ε(t∗1), Σi−1,i−1 =

Cov(εi−1), Vi−1,i = Cov(εi−1, ε(t
∗
i )) and Vii = Cov(ε(t∗i )). By the Cholesky decomposition, we

have ΦiΣiiΦ
′
i = Di, where Φi =

(
Φi−1 0

−V ′i−1,iΣ
−1
i−1,i−1 Im∗

i

)
, Di =diag{V11,V22·1, ...,Vii·i−1} and

Vii·i−1 = Vii − V ′i−1,iΣ
−1
i−1,i−1Vi−1,i. Then, we define e(t∗i ) = ε(t∗i ) − V ′i−1,iΣ

−1
i−1,i−1εi−1. It can be

checked that Cov(ei) = Di, where ei =
(
e′i−1, e(t∗i )

′)′ = Φiεi. Thus, e(t∗i ) is uncorrelated with

e(t∗1), e(t∗2), . . . , e(t∗i−1). Define the standardized version of e(t∗i ) by

ẽ(t∗i ) = V
− 1

2
ii·i−1e(t∗i ) = V

− 1
2

ii·i−1

(
ε(t∗i )− V ′i−1,iΣ−1i−1,i−1εi−1

)
. (9)

Then, ẽ(t∗1), ẽ(t∗2), . . . , ẽ(t∗i ) would be mutually uncorrelated with covariance matrices Im∗
1
, Im∗

2
, . . .,

Im∗
i
, respectively. Thus, the decorrelated data are both spatially and temporally uncorrelated. In

practice, the quantities ε(t∗i ), εi−1, Vii·i−1, Vi−1,i and Σi−1,i−1 on the right-hand-side of (9) are all

unobservable. They can be replaced by their estimates, using the estimated mean and covariance

functions λ̂(t, s) and V̂ (t, s; t′, s′) defined in (4) and (7)-(8), respectively. The resulting decorrelated

data are denoted as ̂̃e(t∗1),
̂̃e(t∗2), . . . ,

̂̃e(t∗i ). They should be asymptotically uncorrelated.

Remark 1 In the above sequential decorrelation procedure, for each i, we need to calculate Σ−1ii .

This can be achieved by the following recursive formula:

Σ−1ii =

Σ−1i−1,i−1 + Σ−1i−1,i−1Vi−1,iV
−1
ii·i−1V

′
i−1,iΣ

−1
i−1,i−1 −Σ−1i−1,i−1Vi−1,iV

−1
ii·i−1

−V −1ii·i−1V
′
i−1,iΣ

−1
i−1,i−1 V −1ii·i−1

 .

Remark 2 When i increases, the computation and storage for the inverse matrix Σ−1ii could be

demanding because its dimension increases with i. The recursive formula in Remark 1 partially

11



overcomes this difficulty. An alternative strategy is described below. First, we notice that

e(t∗i ) = ε(t∗i )−
i−1∑
j=1

Bi,jV
−1
jj·j−1e(t∗j−1),

where V11·0 = V11 and Bi,j = Cov(ε(t∗i ), e(t∗j )). In practice, it is often reasonable to assume that

the correlation between ε(t∗i ) and ε(t∗j ) becomes weaker when the two time points t∗i and t∗j are

farther apart. Thus, it is often reasonable to assume that Bi,j = 0 when t∗i − t∗j > τ , where τ > 0

is a threshold value. This will reduce the computation and data storage greatly without sacrificing

much effectiveness of the proposed online process monitoring method.

After data decorrelation, the original observations {y(t∗i ), i = 1, 2, . . .} have been transformed to

the asymptotically uncorrelated ones {̂̃e(t∗i ), i = 1, 2, . . .}. Because each ̂̃e(t∗i ) is a linear combination

of the original observations (cf., (9) after ε(t∗i ) is replaced by y(t∗i )− λ̂(t∗i ) and other quantities are

replaced by their corresponding estimates as well), its distribution would be close to N(0, Im∗
i
) if

y(t∗i ) is correlated with a substantial number of previous spatial observations. Consequently, the

distribution of ̂̃e(t∗i )
′̂̃e(t∗i ) would be close to χ2

m∗
i
. Then, we suggest the following CUSUM chart to

sequentially detect the upward shifts in the disease incidence rates:

C+
i = max

(
0, C+

i−1 +
̂̃e(t∗i )

′̂̃e(t∗i )−m∗i√
2m∗i

− k

)
, for i ≥ 1, (10)

where C+
0 = 0, k > 0 is an allowance constant, and [̂̃e(t∗i )

′̂̃e(t∗i ) −m∗i ]/
√

2m∗i is the standardized

version of ̂̃e(t∗i )
′̂̃e(t∗i ). The chart gives a signal of an upward mean shift in the disease incidence

rates when

C+
i > γ, (11)

where γ > 0 is a control limit. The charting statistic C+
i has made use of all history data by using

the cumulative information in the observed data. It is reset to 0 each time when the cumulative sum

C+
i−1 +

[̂̃e(t∗i )
′̂̃e(t∗i ) −m∗i

]
/
√

2m∗i is smaller than k. This re-starting mechanism makes it possess

some good theoretical properties (cf., Moustakides 1986).

To evaluate the performance of the proposed CUSUM chart (10)-(11), in the literature we

usually use the IC average run length (ARL), denoted as ARL0, which is the average number of

time points from the beginning of process monitoring to the signal time under the condition that

the process is IC, and the out-of-control (OC) ARL, denoted as ARL1, which is the the average

number of time points from the process shift time to the signal time after the process becomes OC.
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Usually, the ARL0 value is specified at a given level, and the chart performs better if its ARL1

value is smaller when detecting a shift of a given size.

In the CUSUM chart (10)-(11), there are two parameters k and γ to choose. Usually, k

is specified beforehand, and then γ is chosen to achieve a given ARL0 level. It has been well

demonstrated that a large k value is good for detecting large shifts, and a small k value is good for

detecting small shifts (cf., Chapter 4, Qiu 2014). Commonly used k values include 0.1, 0.2, 0.3, 0.5

and 1.0. If the distribution of ̂̃e(t∗i ) is exactly N(0, Im∗
i
), for each i, then the control limit γ can

be easily computed numerically. However, when i is small or when y(t∗i ) is correlated with a small

number of previous spatial observations, the true distribution of ̂̃e(t∗i ) could be quite different from

N(0, Im∗
i
). To make the proposed chart more robust to the normality of ̂̃e(t∗i ), we suggest using

the block bootstrap procedure (cf., Lahiri 2003) for determining γ, which is described below.

For the IC dataset {y(ti, sij), j = 1, 2, . . . ,mi, i = 1, 2, . . . , n}, let us divide it into two parts:

{y(t
(1)
i , s

(1)
ij ), j = 1, 2, . . . ,m

(1)
i , i = 1, 2, . . . , n1} and {y(t

(2)
i , s

(2)
ij ), j = 1, 2, . . . ,m

(2)
i , i = 1, 2, . . . , n2},

where n1 +n2 = n. The first part is used for obtaining the estimates of λ(t, s) and V (t, s; t′, s′), as

described in Subsection 2.1, and the second part is used for determining γ as follows.

(1) Compute the decorrelated data {̂̃e(t
(2)
i ), i = 1, 2, ..., n2} from the original data {y(t

(2)
i , s

(2)
ij ), j =

1, 2, . . . ,m
(2)
i , i = 1, 2, . . . , n2}, as discussed above.

(2) Randomly choose a sequence of integers from {1, 2, ..., n2 − b} with replacement, where b is a

pre-specified block size. The selected integers are denoted as {i1, i2, . . .}. For a given control

limit γ, calculate the run length (RL) by RL0(γ) = min{i ≥ 1, C+
i > γ}, where C+

i is calculated

by (10) after the decorrelated data {̂̃e(t∗i ), i = 1, 2, . . .} are replaced by the bootstrap sample

{̂̃e(t
(2)
i1

), ̂̃e(t
(2)
i1+1), . . . ,

̂̃e(t
(2)
i1+b

), ̂̃e(t
(2)
i2

), ̂̃e(t
(2)
i2+1), . . . ,

̂̃e(t
(2)
i2+b

), . . .}. This process is then repeated

for B times, and the average of the B values of RL0(γ) is denoted as ARL0(γ).

(3) Search for the γ value by the bi-section or other alternative numerical procedures (cf., Capizzi

and Masarotto 2016) such that ARL0(γ) equals the pre-specified value of ARL0.

The entire proposed method for online spatio-temporal data monitoring can be summarized

below.

Summary of the Proposed Spatio-Temporal Data Monitoring Procedure
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• Split the IC dataset {y(ti, sij), j = 1, 2, . . . ,mi, i = 1, 2, . . . , n} into two parts: {y(t
(1)
i , s

(1)
ij ), j =

1, 2, . . . ,m
(1)
i , i = 1, 2, . . . , n1} and {y(t

(2)
i , s

(2)
ij ), j = 1, 2, . . . ,m

(2)
i , i = 1, 2, . . . , n2}.

• Estimate λ(t, s), V (t, s; t′, s′) and σ2(t, s) from the first part of the IC dataset {y(t
(1)
i , s

(1)
ij ), j =

1, 2, . . . ,m
(1)
i , i = 1, 2, . . . , n1} by (4), (7) and (8).

• Determine the control limit γ used in (11) from the second part of the IC dataset {y(t
(2)
i , s

(2)
ij ), j =

1, 2, . . . ,m
(2)
i , i = 1, 2, . . . , n2}. To this end, the IC data {y(t

(2)
i , s

(2)
ij ), j = 1, 2, . . . ,m

(2)
i , i =

1, 2, . . . , n2} need to be decorrelated first (cf., (9)), and then γ is determined by the block

bootstrap procedure from the decorrelated data, as discussed above.

• For online monitoring of the process observations {y(t∗i , s
∗
ij), j = 1, 2, . . . ,m∗i , i = 1, 2, . . .},

the process observations need to be decorrelated first, and the decorrelated observations are

denoted as {̂̃e(t∗i ), j = 1, 2, . . . ,m∗i , i = 1, 2, . . .}.

• Apply the proposed chart (10)-(11) to the decorrelated observations {̂̃e(t∗i ), j = 1, 2, . . . ,m∗i , i =

1, 2, . . .}. It gives a signal when (11) is true.

3 Simulation Studies

In this section, we evaluate the numerical performance of our proposed method described in

the previous section by reporting some simulation results. In the simulation studies, the true IC

mean function λ(t, s) is assumed to be

λ(t, s) = 0.02 + 0.01e−(sx+sy) + 0.01 cos(t),

where s = (sx, sy)
′ as in expression (3). The basic time interval is assumed to be [0, 1], and the

spatial domain is assumed to be Ω = [0, 1]× [0, 1]. When t = 0.25 or 0.75, λ(t, s) is shown by the

two plots in the first column of Figure 2. For simplicity, it is assumed that the observation times

{ti, i = 1, 2, . . . , n} are equally spaced in [0, 1], and the spatial locations {sij , j = 1, 2, . . . ,m} keep

unchanged over time and they are equally spaced in Ω as well. The random errors {ε(ti, sij)} in the

model (1) are generated by using the R function spatialnoise() in the package neuRosim, where

the parameter ρ that controls both the spatial and temporal data correlation is chosen to be 0.1

(representing a case with a relatively weak data correlation), 0.3, or 0.5 (representing a case with a
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relatively strong data correlation), and the variance parameter σ2 is chosen to be 0.012. By using

this R function, all random errors {ε(ti, sij)} are normally distributed.
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Figure 2: IC mean function λ(t, s) (1st column) and three OC mean functions (2nd, 3rd and 4th

columns) when t = 0.25 (1st row) and t = 0.75 (2nd row).

Performance of the proposed chart (10)-(11). We first study the IC performance of the

proposed method in cases when the IC mean function λ(t, s) and the IC covariance function

V (t, s; t′, s′) are both assumed unknown. In such cases, they should be estimated from an IC

dataset first. Here, the IC data are generated at n1 time points in [0, 1] and m equally spaced

positions in the region [0, 1] × [0, 1], as discussed above. Then, the control limit γ of the CUSUM

chart (10)-(11) is searched from another independently generated IC dataset of the same size by

the block bootstrap procedure with B = 10, 000 and b = 5, as discussed at the end of Section 2.

Thus, we choose n2 = n1 here for simplicity. In the simulation studies below, (m,n1) is chosen to

be (64, 200) or (100, 300) to investigate the effect of the IC sample size on the performance of the

proposed chart. For the chart, its ARL0 value is chosen to be 25 or 50, and its allowance constant k

is chosen to be 0.1, 0.3, or 0.5. Then, the chart is applied to the sequential observations generated

from the IC model, and an IC run length value can be computed. This sequential monitoring

process is repeated for 500 times, and the average of the 500 IC run length values is computed to

estimate the actual ARL0 value of our proposed method. Because this ARL0 value depends on
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the initial IC dataset used for estimating λ(t, s) and V (t, s; t′, s′) and for determining the control

limit γ, we repeat the entire simulation, from estimation of λ(t, s) and V (t, s; t′, s′), determination

of γ, to computation of ARL0, for 100 times to reduce the randomness of the results. The average

of the 100 ARL0 values is used as the simulated actual ARL0 value of the method. The results in

different cases, together with the corresponding standard errors, are presented in Table 1. From the

table, we can have the following conclusions. (i) The simulated actual ARL0 values are close to the

nominal ARL0 values in all cases considered, implying that the proposed method is reliable to use

in practice. (ii) The simulated actual ARL0 values are closest to the nominal ARL0 values in cases

when ρ = 0.1, compared to cases when ρ = 0.3 or 0.5, which is intuitively reasonable. (iii) When

(m,n1) are larger, the difference between the simulated actual ARL0 value and the corresponding

nominal ARL0 value gets smaller and the related standard error becomes smaller, which indicates

that the control chart (10)-(11) constructed based on a larger IC dataset would have a more reliable

IC performance.

Table 1: Simulated actual ARL0 values and their standard errors (in parentheses) of the proposed

CUSUM chart (10)-(11) in different cases.

ρ = 0.1 ρ = 0.3 ρ = 0.5

(m,n1) k ARL0=25 ARL0 = 50 ARL0=25 ARL0 = 50 ARL0=25 ARL0 = 50

(64,200) 0.1 24.46(0.81) 48.75(2.03) 23.83(0.72) 47.95(1.90) 23.26(0.69) 47.28(1.85)

0.3 24.48(0.87) 49.21(2.22) 23.96(0.81) 48.52(2.00) 23.66(0.80) 47.38(2.07)

0.5 24.70(0.87) 49.41(2.23) 24.04(0.90) 48.92(2.23) 23.78(0.79) 47.54(2.28)

(100,300) 0.1 24.81(0.42) 49.29(1.05) 24.11(0.41) 48.19(1.05) 23.54(0.47) 47.83(1.11)

0.3 24.92(0.47) 49.38(1.19) 24.33(0.43) 48.89(1.07) 23.92(0.47) 48.02(1.08)

0.5 24.97(0.49) 49.43(1.21) 24.45(0.42) 49.12(1.08) 24.09(0.51) 48.34(1.08)

Next, we study the OC performance of the proposed method. To this end, the following three

different types of shift functions are considered and each type has four different shift magnitudes:

(i) δ1(t, s) = 0.0025ν, for ν = 1, 2, 3, 4;

(ii) δ2(t, s) = 0.0025 + 0.01tν, for ν = 1, 2, 3, 4;
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(iii) δ3(t, s) = 0.0025 + 0.01t+ 0.001(s2x + s2y)ν, for ν = 1, 2, 3, 4.

So, after the shift, the OC mean function becomes 0.02 + 0.01e−(sx+sy) + 0.01 cos(t) + δl(t, s), for

l = 1, 2, or 3, which are shown in the 2nd, 3rd and 4th columns of Figure 2, when ν = 1 and

t = 0.25 (1st row) or 0.75 (2nd row). To compute the ARL1 value of the chart, the CUSUM

chart (10)-(11) is first applied to the sequential observations generated from model (1) with one

of the above three shifts, and the related run length value is recorded. Then, the above step is

repeated for 500 times to compute the ARL1 value. Finally, the entire simulation, from estimation

of λ(t, s) and V (t, s; t′, s′), determination of γ, to computation of ARL1, is repeated for 100 times

to compute the averaged value of the 100 ARL1 values. The results when ARL0 = 50, together

with the corresponding standard errors, are presented in Table 2. From the table, it can be seen

that i) the proposed method has a good shift detection power, and the method with a larger k

performs better for detecting relatively large shifts, as expected, and ii) the control chart based on

a larger IC dataset has a better shift detection performance.

Comparison with alternative methods. Next, we compare our proposed method, denoted

as NEW, with four representative existing control charts: (i) the distribution-free multivariate

EWMA chart by Chen et al. (2016), denoted as DFEWMA, (ii) the multivariate CUSUM chart

proposed by Crosier (1988), denoted as MCUSUM, (iii) the multivariate EWMA chart (MEWMA)

originally discussed by Lowry et al. (1992), and (iv) the Shewhart chart based on the Hotelling’s

T 2 statistic that was discussed in Tracy et al. (1992), denoted as T 2. When using these four

conventional charts, the spatial data at each observation time are treated as a multivariate obser-

vation, which is appropriate because the spatial locations in the simulation studies considered in

this section are unchanged over time. These charts all assume that the IC distribution is unchanged

over time. Besides, it is assumed that the multivariate observations are normally distributed in the

charts MCUSUM, MEWMA and T 2. These assumptions are often violated in practice, as discussed

in Section 1, although the related control charts are routinely used in different applications. To

compare the five related control charts, we set their actual ARL0 values at 50, and the results when

ARL0 = 25 would result in similar conclusions. For the DFEWMA chart, its window size parame-

ter w needs to be properly specified beforehand. By the suggestion in Chen et al. (2016), it can be

chosen as the smallest integer that satisfies (1−wp)w ≤ 0.05, where wp is the weighting parameter

of the DFEWMA chart. This strategy is used throughout this paper. In the charts MCUSUM,

MEWMA and T 2, the mean and covariance matrix of the IC distribution are estimated from the
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Table 2: Calculated ARL1 values and their standard errors (in parentheses) of the proposed pro-

cedure for detecting different shifts when ARL0 = 50, (m,n1) = (64, 200) or (100, 300), ρ = 0.1,

0.3 or 0.5, and k = 0.1, 0.3 or 0.5. In each row, bold numbers denote cases with the smallest ARL1

values when comparing different k values with a fixed value of ρ.

ρ = 0.1 ρ = 0.3 ρ = 0.5

Type ν k = 0.1 k = 0.3 k = 0.5 k = 0.1 k = 0.3 k = 0.5 k = 0.1 k = 0.3 k = 0.5

(m,n1) = (64, 200)

δ1(t, s) 1 17.68(0.59) 18.20(0.66) 18.77(0.75) 19.40(0.62) 19.82(0.69) 20.78(0.78) 23.40(0.87) 23.23(0.93) 23.94(1.04)

2 4.85(0.10) 4.23(0.10) 4.03(0.12) 5.77(0.16) 5.22(0.16) 5.04(0.16) 8.35(0.33) 7.83(0.33) 7.74(0.34)

3 2.27(0.04) 1.86(0.03) 1.66(0.02) 2.63(0.06) 2.21(0.04) 1.98(0.04) 3.64(0.10) 3.19(0.09) 2.96(0.09)

4 1.40(0.02) 1.17(0.01) 1.09(0.01) 1.59(0.03) 1.33(0.01) 1.21(0.01) 2.09(0.04) 1.78(0.03) 1.61(0.03)

δ2(t, s) 1 12.92(0.30) 12.61(0.33) 12.84(0.38) 14.18(0.36) 13.87(0.37) 14.10(0.39) 17.03(0.49) 16.58(0.51) 16.72(0.55)

2 10.82(0.20) 10.34(0.22) 10.28(0.25) 11.80(0.27) 11.34(0.26) 11.35(0.27) 14.07(0.35) 13.52(0.37) 13.54(0.39)

3 9.51(0.16) 8.98(0.17) 8.86(0.19) 10.33(0.22) 9.83(0.21) 9.74(0.21) 12.26(0.29) 11.69(0.30) 11.63(0.31)

4 8.60(0.13) 8.03(0.14) 7.87(0.16) 9.32(0.18) 8.79(0.17) 8.64(0.17) 10.98(0.26) 10.42(0.26) 10.28(0.26)

δ3(t, s) 1 8.95(0.21) 8.40(0.23) 8.38(0.28) 10.10(0.26) 9.65(0.28) 9.62(0.29) 12.94(0.41) 12.37(0.42) 12.42(0.45)

2 6.14(0.13) 5.50(0.13) 5.35(0.12) 7.12(0.18) 6.56(0.18) 6.42(0.19) 9.62(0.33) 9.05(0.33) 8.99(0.34)

3 4.38(0.08) 3.79(0.08) 3.54(0.08) 5.10(0.12) 4.54(0.11) 4.32(0.11) 7.05(0.23) 6.50(0.23) 6.32(0.23)

4 3.28(0.06) 2.78(0.05) 2.51(0.05) 3.80(0.08) 3.30(0.07) 3.05(0.07) 5.23(0.16) 4.71(0.15) 4.50(0.15)

(m,n1) = (100, 300)

δ1(t, s) 1 13.87(0.28) 13.98(0.32) 14.57(0.36) 15.15(0.38) 14.88(0.40) 15.44(0.44) 18.97(0.62) 18.66(0.63) 19.16(0.65)

2 3.75(0.04) 3.17(0.04) 2.90(0.04) 4.29(0.06) 3.70(0.06) 3.45(0.06) 5.92(0.17) 5.36(0.16) 5.16(0.18)

3 1.84(0.01) 1.49(0.01) 1.32(0.01) 2.08(0.02) 1.70(0.02) 1.51(0.01) 2.73(0.04) 2.33(0.04) 2.10(0.04)

4 1.13(0.00) 1.02(0.00) 1.01(0.00) 1.27(0.01) 1.09(0.00) 1.05(0.00) 1.62(0.02) 1.36(0.01) 1.23(0.01)

δ2(t, s) 1 11.42(0.18) 11.06(0.19) 11.23(0.22) 12.42(0.23) 11.81(0.23) 11.95(0.25) 15.19(0.39) 14.75(0.40) 14.86(0.42)

2 10.03(0.13) 9.12(0.14) 9.15(0.16) 10.84(0.17) 10.21(0.17) 10.20(0.18) 13.11(0.29) 12.58(0.29) 12.55(0.30)

3 8.66(0.11) 7.71(0.11) 7.75(0.12) 9.57(0.14) 8.64(0.14) 8.42(0.15) 11.71(0.23) 11.14(0.23) 11.05(0.24)

4 7.38(0.09) 7.06(0.09) 7.00(0.11) 8.69(0.12) 7.86(0.12) 7.71(0.13) 10.70(0.19) 10.14(0.19) 9.99(0.19)

δ3(t, s) 1 7.47(0.10) 6.87(0.11) 6.79(0.12) 8.34(0.15) 7.69(0.15) 7.60(0.16) 10.85(0.29) 10.24(0.29) 10.12(0.30)

2 5.03(0.06) 4.41(0.06) 4.20(0.06) 5.72(0.08) 5.05(0.08) 4.85(0.09) 7.61(0.19) 7.03(0.18) 6.83(0.19)

3 3.60(0.04) 3.05(0.03) 2.78(0.03) 4.11(0.05) 3.53(0.04) 3.28(0.05) 5.47(0.12) 4.93(0.11) 4.68(0.12)

4 2.71(0.02) 2.24(0.02) 2.00(0.02) 3.09(0.03) 2.59(0.03) 2.34(0.03) 4.09(0.07) 3.60(0.07) 3.34(0.07)
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IC data. To make the comparison as fair as possible, the allowance constant k in the CUSUM

charts MCUSUM and NEW and the weighting parameter in the EWMA charts DFEWMA and

MEWMA are chosen such that their ARL1 values reach the minimum when detecting a given shift

(i.e., their optimal performance is compared here). The results are presented in Figure 3. From

the figure, it can be seen that (i) our proposed method outperforms all four existing methods in all

cases considered, and (ii) in most cases our method outperforms them in quite large margins.

Why is data decorrelation needed? In the proposed CUSUM chart (10)-(11), the original

process observations {y(t∗i ), i = 1, 2, . . .} need to be decorrelated (cf., (9)) before the chart is

actually applied. That is because the conventional CUSUM chart has a good performance only

when process observations are serially independent (cf., Chapter 4, Qiu 2014). As explained before

Expression (10), the decorrelated data would be asymptotically normally distributed and thus

asymptotically independent under some regularity conditions. Therefore, data decorrelation should

be able to improve the performance of the proposed chart NEW. To confirm this, we present an

example to compare NEW with the version that is applied to the standardized process observations

{ε̃(t∗i )} directly, where ε̃(t∗i ) = (ε̃(t∗i , s
∗
i1), ε̃(t

∗
i , s
∗
i2), . . . , ε̃(t

∗
i , s
∗
im∗

i
))′, and ε̃(t∗i , s

∗
ij) = (y(t∗i , s

∗
ij) −

λ̂(t∗i , s
∗
ij))/σ̂(t∗i , s

∗
ij), for j = 1, 2, . . . ,m∗i and i = 1, 2, . . .. The latter chart is denoted as NEWWOD,

representing NEW without data decorrelation. More specifically, NEWWOD is same as NEW,

except that the decorrelated data {̂̃e(t∗i )} used in (10) need to be replaced by {ε̃(t∗i )}. In the

example of Figure 3, let us consider cases when (m,n1) = (64, 200), ARL0 = 50, ρ = 0.1, 0.3, or

0.5, and the shift function is δ3(t, s). In such cases, the calculated optimal ARL1 values of NEW and

NEWWOD are presented in Figure 4. From the figure, it is clear that (i) the performance of NEW

and NEWWOD is similar in cases when the data correlation is small (i.e., cases when ρ = 0.1),

and (ii) NEW has a better performance than NEWWOD in cases when the data correlation gets

larger (i.e., cases when ρ = 0.3 or 0.5). Thus, data decorrelation indeed improves the performance

of NEW.

4 Application to the Florida Influenza-Like Illness Dataset

In this section, we apply our proposed method to the Florida Influenza-Like Illness (ILI) dataset

described in Section 1. In this dataset, numbers of new ILI patients in all 67 counties (i.e. mi = 67

for all i in model (1)) were reported daily from 2012 to 2015. Then, the ILI incidence rate on a
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Figure 3: Calculated optimal ARL1 values of the five control charts for different (m,n1) and ρ

values when the nominal ARL0 is fixed at 50. In each plot, the y-axis denotes the calculated

optimal ARL1 values in natural log scale.
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Figure 4: Calculated optimal ARL1 values of NEW and NEWWOD in cases when (m,n1) =

(64, 200), ARL0 = 50, ρ = 0.1, 0.3, or 0.5, and the shift function is δ3(t, s). In each plot, the y-axis

denotes the calculated optimal ARL1 values in natural log scale.

specific day for each county can be calculated as the ratio of the number of ILI patients on that

day and the county population number that can be obtained from the Florida Office of Economic

and Demographic Research (http://edr.state.fl.us/Content/population-demographics/data/). The

calculated ILI incidence rates in four representative counties Collier, Nassau, Pinellas and Santa

Rosa are shown in Figure 5. From the plots of the figure, it can be seen that the incidence rates

have seasonal patterns with winter peaks and summer troughs, and that it seems reasonable to

assume that the pattern of the incidence rates is periodic from one year to the next. We also

checked the spatial pattern of the data (cf., Figure 1), and found that there were some obvious

spatial clusters of the disease incidence rates. The seasonality and spatial pattern of the data can

be accommodated by our proposed method. Therefore, our method should be appropriate to use

in this application.

From the data, it seems that there were no major disease outbreaks during the years 2012 and

2013. Therefore, that part of the data is used as the IC data in this example for setting up the pro-

posed method. For the IC data, the Durbin-Watson test for checking the temporal data correlation

in the four representative counties Collier, Nassau, Pinellas and Santa Rosa gives the p-values of

2.2× 10−16, 0.018, 2.2× 10−16, and 2.2× 10−16, respectively, which imply significant temporal data

correlation in the four counties. The Moran’s I test for checking spatial correlation for the data

on 06/01/2012 and 12/01/2012 (cf., Figure 1) gives the p-values of 0.471 and 0.004, respectively.

So, the spatial correlation on 12/01/2012 (a winter time) is significant, although it is insignificant

on 06/01/2012 (a summer time). The IC data are then divided into two parts, as discussed in

Section 2. The IC data in year 2013 are used for estimating the mean and covariance function of
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Figure 5: Observed ILI incidence rates in four representative counties of Florida: Collier (plot (a)),

Nassau (plot (b)), Pinellas (plot (c)), and Santa Rosa (plot (d)).

the baseline model (cf., Section 2.1), and the IC data in year 2012 are used for determining the

control limit γ of the CUSUM chart (10)-(11) by the block bootstrap procedure with B = 10, 000

and b = 5 (cf., Section 2.2). So, n1 and n2 are 365 and 366, respectively, in this example. In the

chart, we choose k = 0.1 and ARL0 = 200, which are commonly used in the SPC literature. Then,

the chart starts to sequentially monitor the disease incidence rates on January 1, 2014. This chart

is presented in Figure 6(a). From the plot, the chart gives the first signal of shift on October 16,

2014. As a comparison, the four alternative charts DFEMWA, MCUSUM, MEWMA and T 2 are

shown in Figure 6(b)-(e), respectively, where the weighting parameters or the allowance constants

of the first three charts are all chosen to be 0.1 and the ARL0 values of the four charts are all

chosen to be 200. For the chart DFEWMA, its time-varying control limits are determined by the

permutation procedure suggested in Chen et al. (2016). For the charts MCUSUM, MEWMA and

T 2, their control limits are chosen under the assumptions that the spatial data at different time

points follow a same multivariate normal distribution and they are temporally independent. Be-

cause these assumptions are obviously invalid, it has been well demonstrated in the literature that

the performance of the related charts would be unreliable (cf., Qiu 2018). From the plots (b)-(e),

we can see that (i) both DFEWMA and MEWMA give signals almost every day, (ii) MCUSUM

gives the first signal in the middle of November which is about one month later than the first

signal by NEW, and (iii) T 2 gives brief signals in the late January and middle October 2014 and
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more convincing signals after mid-November 2014. We tried several other values of k for NEW

and MCUSUM and several other values of the weighting parameter for DFEWMA and MEWMA.

The results are similar. For instance, the CUSUM charts NEW and MCUSUM with k = 0.5 and

the EWMA charts DFEWMA and MEWMA with the weighting parameter being 0.5 are presented

in Figure 7. Because the chart T 2 does not have such parameters, it is omitted here. From the

figure, we can see that NEW and MCUSUM give their first signals on October 14 and November

10 of 2014, respectively, while DFEWMA and MEWMA give signals many times starting in early

January. Because some model assumptions (e.g., the IC process distribution does not change over

time) of the charts DFEMWA, MCUSUM, MEWMA and T 2 are obviously violated in this example,

their results may not be reliable.
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Figure 6: Five control charts for monitoring the ILI incidence rate data in cases when their weighting

parameters or allowance constants are chosen to be 0.1: NEW (plot (a)), DFEWMA (plot (b)),

MCUSUM (plot (c)), MEWMA (plot (d)), and T 2 (plot (e)). The dashed horizontal line in each

plot denotes the control limit.

To check whether the signal from our method NEW is valid, the observed disease incidence

rates in the entire Florida state during September 1 and December 31 in years 2012, 2013 and 2014

are shown in Figure 8. It can be seen that the disease incidence rates are quite similar in the month

of September among the three years, and the rates in 2014 start to deviate upward from those in

2012 and 2013 beginning in October. This plot shows that a real disease outbreak occurs in the

first half of October in 2014. Our method NEW detects such an outbreak shortly after it occurs.
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Figure 7: Four control charts for monitoring the ILI incidence rate data in cases when their weight-

ing parameters or allowance constants are chosen to be 0.5: NEW (plot (a)), DFEWMA (plot (b)),

MCUSUM (plot (c)), and MEWMA (plot (d)). The dashed horizontal line in each plot denotes the

control limit.

To further investigate this, we present the maps of the residuals, defined as ε̂(t∗i ) = y(t∗i )− λ̂(t∗∗i ),

on October 16th of the years 2012, 2013, and 2014 in the three maps of Figure 9, where λ̂(t∗∗i ) is

the estimated values of λ(t∗∗i ) from the IC data and t∗∗i is the time in [0, T ] that corresponds to t∗i

(cf., the related discussion in Section 2). It can be seen that the residual map for the year 2014

has stronger colors, implying that the residual values are larger in that year, compared to years

2012 and 2013. As an example, the Jackson county on the northern border has a strong color in

year 2014, and its color is light in the previous two years. The observed disease incidence rates

of this county during years 2012-2015 are shown in Figure 10, where the vertical line denotes the

signal time of NEW. It can be seen that the incidence rates start to increase a bit earlier than the

signal time and our method NEW successfully detects the increasing trend before the major disease

outbreak in December 2014.

5 Concluding Remarks

We have described a sequential monitoring method for spatio-temporal disease surveillance

and early detection, which was motivated by the Florida Influenza-Like Illness data. This method
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Figure 8: Disease incidence rates of the entire Florida state during September 1 and December 31

in years 2012, 2013 and 2014.
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Figure 9: Maps of the residuals on October 16th of the years 2012 (left), 2013 (middle) and 2014

(right).

can accommodate time-varying IC distribution of the disease incidence rates. It does not impose

any parametric assumptions on the disease incidence rate distribution, the disease incidence rate

trajectory over both space and time, and the spatio-temporal data correlation. Both simulation

studies and the application to the Florida Influenza-Like Illness data show that this method provides

a reliable tool for disease surveillance applications. To use our proposed method, it is required to

have an IC dataset available beforehand, from which a baseline model is estimated to describe the

longitudinal pattern of the disease incidence rates in cases when no disease outbreaks are present.

In practice, such IC data are only available for some diseases about which we have a reasonably

good knowledge, such as the influenza and some other respiratory diseases. For some other diseases,

especially those relatively new, it is often challenging to know whether disease outbreaks are present

or not in a given period of time. It is also challenging to collect a suitable amount of IC data in such
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Figure 10: Observed disease incidence rates of the Jackson county in years 2012-2015. The vertical

line indicates the signal time of our method NEW.

cases. This issue is related to the so-called phase-I SPC problem (cf., Chapter 3, Qiu 2014). But,

conventional phase-I SPC charts cannot be applied to the current problem because they require the

assumptions that the IC distribution of the disease incidence rates remains unchanged over time

and observations are independent of each other, which are obviously invalid here. These limitations

might be possible to overcome, using similar ideas to those discussed in Section 2. Another possible

method to handle the challenges mentioned above is to use the so-called self-starting control charts

(Hawkins 1987). The major idea of such charts is to keep expanding the IC data by combining the

current IC data with the new observations after they are confirmed to be IC. Again, the conventional

self-starting control charts cannot be applied to the current problem directly, and many issues need

to be addressed properly. In addition, after the signal obtained from the proposed monitoring

procedure, it is important to know when and where the detected disease outbreak occurs. This is

related to the post-signal diagnosis discussed in the SPC literature (cf., Li et al. 2017, Xian et al.

2019), and has not been discussed in the current paper yet. All these topics require much future

research effort.
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