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Abstract

In practice, sequential processes often have gradual changes in their process distributions

over time. This is related to the drift detection problem in statistical process control. In

the literature, there have been some existing discussions on this problem. But, most existing

methods are designed based on the assumption that the related drift is linear or have another

specific pattern. In reality, however, such specified patterns may not be valid. In this paper, we

suggest an adaptive CUSUM chart to handle the drift detection problem with a flexible drift

pattern. The new method integrates the general framework to construct a CUSUM chart based

on the generalized likelihood ratio statistic and estimation of a shift size by the exponentially

weighted least square regression procedure. Simulation studies show that the proposed method

is effective in various cases considered. The new method is also illustrated using an example

about the exchange rates between Indian Rupees and US Dollars. 1

Key Words: Adaptive CUSUM chart; Drift detection; Exponentially weighted least square;

Likelihood ratio; Linear drift; Statistical process control.

1 Introduction

In environmental science, scientists found that the gradual loss of water resource in certain regions

(e.g., the Salton Sea region in California) was damaging the local environment and ecosystems for

human beings, animals and plants (Shuford et al. 2002, 2004, Tiffany et al. 2007). In financial

1The data used in the paper are available from the authors upon reasonable request.
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markets, exchange rates between two currencies would change gradually after the gradual adjust-

ment of certain financial policies like interest rates (Zeileis et al. 2010). In such applications, the

distribution of the related response variable would have a drift after a certain time point, and it is

important to detect such a drift as soon as possible so that some interventions can be implemented

in a timely manner. This paper suggests a new and effective method for drift detection.

In the SPC literature, most control charts are developed for detecting shifts in the distribution

of a sequential process (Qiu 2014). There are also some existing discussions on detecting a mean

drift for a sequential process (e.g., Gan 1992, Shu et al. 2008, Su et al. 2011, Zhou et al. 2010,

Zou et al. 2009). For instance, Gan (1992) discussed the performance of the conventional CUSUM

chart designed for detecting mean shifts when the process under monitoring actually had a linear

mean drift. Shu et al. (2008) suggested a weighted CUSUM chart for detecting patterned mean

shifts, including a linear drift. Su et al. (2011) discussed detection of a linear mean drift by using

an adaptive EWMA chart. Zhou et al. (2010) suggested a control chart for monitoring a process

with patterned mean or variance changes based on the generalized likelihood ratio statistic. Zou

et al. (2009) compared several different control charts for detecting linear drifts, including the

conventional CUSUM and EWMA charts, the generalized EWMA chart by Han and Tsung (2004),

and two control charts based on the generalized likelihood ratio statistic under the linear drift and

step shift alternatives. While these research effort is important, the existing methods described

above for drift detection still have much room for improvement because of the complexity of the

drift detection problem due to the facts that drifts can have many different patterns in practice,

the existing methods were developed for detecting one or more specific patterns, and their specified

drift patterns may not describe real drifts well in practice.

In this paper, we propose a new method for drift detection. The new method uses the general

framework to construct a CUSUM chart based on the generalized likelihood ratio statistic, after

the drift size at the current observation time is estimated by an exponentially weighted least square

regression procedure. Because the weights in the weighted least square regression procedure decay
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exponentially fast for past observations, the proposed CUSUM chart is robust to the actual drift

pattern. Numerical studies show that this method performs favorably when compared with some

representative existing methods.

The remainder of the paper is organized as follows. In Section 2, the proposed new method

is described in details. Its numerical performance is evaluated in Section 3 by some simulation

examples. Then, the method is demonstrated using an example about the exchange rates between

Indian Rupees and US Dollars in Section 4. Several remarks conclude the paper in Section 5.

2 Proposed CUSUM Chart

Let the process observation at time n be denoted as Xn, for n ≥ 1. When the process is in-control

(IC) at n, assume that Xn ∼ N(µ0, σ
2
0), where µ0 and σ20 are the IC mean and variance. If the

process is out of control (OC) at time n, then it is assumed that Xn ∼ N(µ0 + δnσ0, σ
2
0), where

δnσ0 is the mean shift size. Let en = (Xn − µ0)/σ0 be the standardized value of Xn, for n ≥ 1.

Then, its IC and OC pdf functions are respectively

f0(en) =
1√
2π

exp(−e2n/2), f1(en) =
1√
2π

exp[−(en − δn)2/2],

and the corresponding log likelihood ratio is

log(f1(en)/f0(en)) = δn(en − δn/2).

To detect such a mean shift, the conventional CUSUM charting statistic (cf., Qiu 2014, Section

4.2.4) is

Cn = max{0, Cn−1 + δn(en − δn/2)}, for n ≥ 1,

where C0 = 0. From the above expression, it can be seen that the charting statistic Cn depends

on δn which is often unknown in practice. To overcome this difficulty, we suggest estimating δn by

the following exponentially weighted least square regression procedure:

min
α,β∈R

n∑
i=1

(ei − α− βi)2(1− λ)n−i, (1)
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where λ ∈ [0, 1) is a weighting parameter. In (1), a line has been fitted to {ei, 0 ≤ i ≤ n} by

a weighted least square regression procedure, and the weight (1 − λ)n−i at time i exponentially

decays when i moves away from n. So, only observations whose observation times are close to n

would receive relatively large weights in this procedure.

Let the solutions to α and β in (1) be denoted respectively as α̂ and β̂. Then, a reasonable

estimate of δn is

δ̂n = α̂+ β̂n.

After δn is replaced by δ̂n in the expression of Cn, our suggested adaptive CUSUM chart for

detecting a mean drift is

Ĉn = max
[
0, Ĉn−1 + δ̂n(en − δ̂n/2)

]
, for n ≥ 1, (2)

where Ĉ0 = 0. The chart gives a signal if

Ĉn > h, (3)

where h > 0 is a control limit. In the remaining part of the paper, this CUSUM chart is called

CUSUM-D chart, where “D” represents “drift”.

From the construction of the CUSUM-D chart described above, it can be seen that the chart

is constructed based on the log likelihood ratio statistic under the flexible OC framework that a

time-varying shift of size δnσ0 occurs at time n. This OC framework contains all drift patterns,

including the linear, quadratic and other types of drifts as special cases. To estimate δn by (1), the

exponential weights (1−λ)n−i used in (1) are meaningfully non-zero only at a few time points close

to n. Thus, the estimate δ̂n is actually local to n. For the reasons explained above, the CUSUM-D

chart should be robust to the mean drift pattern, which will be confirmed by a simulation example

in the next section.

In the CUSUM-D chart (2)-(3), there are two parameters λ and h to determine in advance. As

in a conventional CUSUM or EWMA chart, the value of λ can be specified in advance, and then
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the control limit h can be determined easily by simulation to achieve a given ARL0 level. Selection

of λ will be studied numerically in the next section. To evaluate the performance of the CUSUM-D

chart, we can use the IC average run length, denoted as ARL0, and the OC average run length,

denoted as ARL1, as discussed in Qiu (2014).

3 Simulation Study

The simulation study is organized in two parts. First, selection of the parameter λ used in (1) is

studied carefully in a special case for detecting linear drifts in Subsection 3.1. Then, the IC and

OC performance of the chart is studied in Subsection 3.2, in comparison with several representative

existing methods.

3.1 Selection of λ used in (1).

We study the impact of λ on the performance of the CUSUM-D chart when detecting linear drifts

in this part. Results in such cases can provide some guidelines for selecting λ in other cases. First,

it should be pointed out that selection of λ may depend on the shift time τ and the drift slope

γ. Consider cases when ARL0 = 200, the IC process distribution is N(0, 1), and the OC process

distribution is N(γ(n − τ), 1), for n > τ . In the above setup, γ is allowed to change its value

among {0.01 ∗ i, i = 1, · · · , 30}, and τ is allowed to change among {20, 30, 40, 50, 60, 70}. For each

combination of the γ and τ values, we search for the λ value so that the CUSUM-D chart has the

smallest ARL1 value, and the corresponding optimal λ value is denoted as λopt. In each case, the

ARL1 value is computed based on 10,000 replicated simulations. The results of the searched λopt

values are shown in Figure 1. In the figure, the solid curve denotes λopt = 2γ−3γ2, which is obtained

by the least square estimation when fitting a quadratic curve to the results shown in the last plot

when τ = 70. From the figure, we can have the following conclusions. First, when τ increases, the

results will stabilize, and can be described well by the function λopt = 2γ−3γ2. This confirms that
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the CUSUM-D chart will enter the steady-state when the current observation time n increases, and

the relationship between λopt and γ can be described well by the quadratic function λopt = 2γ−3γ2.

Therefore, λ should be chosen larger when γ is larger, which is intuitively reasonable because the

exponentially weighted least square regression procedure (1) should assign less weights to previous

observations whose observation times are far away from the current time n for detecting a steeper

mean drift. Second, when τ is small (e.g., τ = 40), λ should be chosen according to the relationship

λopt = 2γ − 3γ2 for detecting relatively steep mean drifts (e.g., γ > 0.1), and 0 for detecting mean

drifts that are quite flat, which is also intuitively reasonable.

Figure 1: In each plot, small circles denote the optimal values of λ (i.e., λopt), and the solid quadratic

line denotes λopt = 2γ − 3γ2.

3.2 Comparison with several existing methods

In this part, we evaluate the numerical performance of our proposed control chart CUSUM-D, in

comparison with several representative existing charts. The first existing chart is the conventional

CUSUM chart, denoted as CUSUM (Page 1954). Readers are reminded that this conventional

CUSUM chart is designed for detecting step mean shifts, and optimal under the assumptions that

process observations at different time points are independent and identically normally distributed.

The second existing chart is the GLR-L chart discussed in Zou et al. (2011), designed for detecting

a linear mean drift using the classical likelihood ratio formulation for detecting a change-point. The

third existing control chart considered is the ELM control chart proposed by Zhou et al. (2010).
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This chart integrates the EWMA charting statistic with the generalized likelihood ratio statistic

for monitoring a process with patterned mean or variance changes.

IC Performance. We first investigate the IC performance of the four charts. In the con-

ventional CUSUM chart, the allowance constant k is chosen to be the commonly used value of

0.25. The weighting parameter is chosen to be 0.2 for the ELM chart and the CUSUM-D chart.

The GLR-L chart is based on change-point detection, and does not have any parameter to choose.

The assumed ARL0 value is chosen to be 200 for all four charts and their actual ARL0 values are

computed by simulation as follows. First, we generate an IC dataset of size M from the N(0, 1)

distribution. Then, the control limit is searched based on 5,000 bootstrap samples of the IC dataset

until the assumed ARL0 value (i.e., 200) is reached. Then, the chart is applied to the sequential

observations generated from the IC model, and an IC run length value can be computed. This

sequential monitoring process is repeated for 5,000 times, and the average of the 5,000 IC run

length values is calculated as the actual ARL0 value of the chart. We repeat the above process

for 100 times. The average of the 100 ARL0 values is used as the computed actual ARL0 value

of the chart. We consider cases when the IC sample size M = 200, 500, 1, 000, 2, 000 and 5, 000.

The computed actual ARL0 values of the four charts and their standard errors are presented in

Table 1. From the table, it can be seen that i) the charts ELM and CUSUM-D have a reliable IC

performance in all cases considered, ii) the computed actual ARL0 value of the chart CUSUM is

beyond 5% of the nominal ARL0 value of 200 when M = 200 and within 5% of the nominal ARL0

value when M ≥ 500, and iii) the chart GLR-L has an unreliable IC performance when M = 200

and becomes reliable when M ≥ 500. This example confirms that all four charts have a reliable IC

performance when M ≥ 500, and the charts ELM and CUSUM-D have a reliable IC performance

even when M = 200.

OC Performance. To evaluate the OC performance of the four charts described above,

we consider cases when τ = 50, and Xn ∼ N(γ1(n − τ), 1) (i.e., linear mean drift) or Xn ∼

N(γ2(n−τ)2, 1) (i.e., quadratic mean drift), for n ≥ τ , after the process becomes OC. Other setups
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Table 1: Actual ARL0 values and their standard errors (in parentheses) of the four charts CUSUM,

GLR-L, ELM and CUSUM-D in cases when the IC sample size M = 200, 500, 1, 000, 2, 000, or

5, 000.

M CUSUM GLR-L ELM CUSUM-D

200 216.36(11.73) 128.27(6.55) 203.22(12.21) 205.87(11.51)

500 205.40(1.03) 191.67(9.41) 200.23(6.81) 201.48(6.95)

1,000 206.23(5.89) 197.74(5.96) 204.13(5.66) 203.48(5.65)

2,000 201.85(3.74) 197.49(3.77) 200.53(3.85) 200.58(3.93)

5,000 203.33(2.34) 199.91(2.59) 202.58(2.38) 202.12(2.42)

are the same as those in the example of Figure 1 above. For each chart, its nominal ARL0 value

is fixed at 200, and its control limit is chosen based on 10,000 IC process observations generated

from the N(0, 1) distribution. To make the comparison among different charts fair, for detecting

a given mean drift, the procedure parameters of each chart are chosen such that its ARL1 value

reaches the minimum. Namely, the optimal performance of the charts is compared here, which is

recommended in the literature (cf., Qiu et al. 2020). In each case, the optimal ARL1 value of a

chart is computed based on 10,000 replicated simulations. The computed ARL1 values of the four

charts for detecting some linear mean drifts are presented in Table 2, and the corresponding results

for detecting some quadratic mean drifts are presented in Table 3. From the tables, we can have

the following conclusions. First, the proposed new chart CUSUM-D performs the best in all cases

considered for detecting linear mean drifts, compared to the three competing methods. It is better

than the conventional CUSUM chart because the latter is optimal for detecting step shifts only,

and the former is designed for detecting mean drifts that is considered in this example. Second, it

can be seen that the chart CUSUM-D is also the best among all four charts for detecting quadratic

mean drifts. Thus, its performance is indeed quite robust to the mean drift patterns. Third, by

checking the results of the other three charts, it can be seen that the charts GLR-L and ELM do
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not perform well, especially when the mean drifts are relatively small. This conclusion is actually

consistent with the results in Zhou et al. (2010) and Zou et al. (2011) which confirmed that the

charts GLR-L and ELM performed well only when the mean drifts were large. This example shows

that CUSUM-D is indeed effective for detecting mean drifts and quite robust to the mean drift

patterns.

Table 2: Optimal ARL1 values with standard errors (in parenthesis) of the four control charts for

detecting some linear mean drifts when τ = 50 and ARL0 = 200. Number in bold in each row

denotes the smallest ARL1 value in that row.

γ1 CUSUM GLR-L ELM CUSUM-D

0.001 98.93(0.72) 138.39(1.41) 104.79(0.99) 81.65(3.63)

0.005 52.30(0.38) 70.05(0.66) 53.61(0.48) 43.57(2.34)

0.01 37.65(0.31) 48.54(0.48) 38.11(0.35) 32.74(2.00)

0.05 16.11(0.22) 18.92(0.27) 16.22(0.20) 15.38(1.48)

0.1 10.87(0.21) 12.39(0.23) 10.92(0.18) 10.67(0.36)

Table 3: Optimal ARL1 values with standard errors (in parenthesis) of the four control charts for

detecting some quadratic mean drifts when τ = 50 and ARL0 = 200. Number in bold in each row

denotes the smallest ARL1 value in that row.

γ2 CUSUM GLR-L ELM CUSUM-D

0.0001 54.26(0.40) 63.90(0.58) 54.69(0.46) 45.73(2.39)

0.0005 32.82(0.30) 37.38(0.38) 32.89(0.30) 29.48(1.89)

0.001 26.06(0.26) 29.28(0.33) 26.12(0.26) 24.03(1.73)

0.005 14.88(0.23) 16.10(0.25) 14.90(0.20) 14.44(1.45)

0.01 11.61(0.21) 12.42(0.23) 11.65(0.19) 11.44(0.35)
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4 An Application

In this section, we apply the proposed control chart CUSUM-D and the three alternative charts

CUSUM, GLR-L and ELM to a real-data example about the daily exchange rates between Indian

Rupee and US Dollar between Nov 01, 2010 and December 30, 2011. There are a total of 292

exchange rates during this time period, and they are shown in the left panel of Figure 2. From

the plot, it can be seen that the first 200 observations are quite stable, compared with the last 92

observations, where the two groups of observations are separated by the vertical dashed line. So,

the first 200 observations are used as IC data, and the remaining ones are used for online process

monitoring.

From Section 2, the current version of the proposed CUSUM-D chart is constructed based

on the assumptions that the process distribution is normal and the process observations at dif-

ferent time points are independent of each other. To check these assumptions, the R functions

shapiro.test() and Box.test() are used for testing for the normality and autocorrelation of the

IC data, respectively. The p-values of these two tests are 0.039 and < 0.001. Thus, the distribution

of the IC data is significantly different from normal, and there is a significant serial data correlation

in the IC data. To decorrelate the data, the serial data correlation structure is first estimated from

the IC data, and then the recursive data decorrelation procedure discussed in Qiu et al. (2020) is

used to decorrelate all observed data. To transform the decorrelated data so that the distribution

of the transformed data becomes normal, we consider using the Johnson’s transformation families

(Johnson 1949, Slifker and Shapiro 1980) via the R function jtrans(). After data decorrelation and

normalization, the R functions shapiro.test() and Box.test() are applied to the IC data again,

and the p-values of these two tests are 0.936 and 0.887, respectively. Thus, the serial data correla-

tion has been mostly deleted by the data decorrelation procedure, and the normality assumption

is valid now after using the Johnson’s transformation. The decorrelated and normalized data are

shown in the right panel of Figure 2.
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Figure 2: Left panel shows the original observations of the exchange rates between Indian Rupee

and US Dollar during Nov 01, 2010 and December 30, 2011. Right panel shows the decorrelated

and normalized data. The vertical dashed line in each plot separates the IC data and the data for

online process monitoring, and the horizontal dashed line denotes the IC mean.

Next, we apply the proposed CUSUM-D chart to this data, together with the alternative charts

CUSUM, GLR-L and ELM. In CUSUM-D, we set λ = 0 based on the simulation results shown in

Figure 1 and the expectation that a mean drift can occur anytime soon after the online process

monitoring starts. In the conventional CUSUM chart, the allowance constant k is chosen to be the

commonly used value of 0.25. For the ELM control chart, the weighting parameter λe is chosen

to be 0.2, as suggested in Zhou et al. (2010). The related charts are shown in Figure 3. The

CUSUM, GLR-L, ELM and CUSUM-D charts give their first signals on 09/07/2011, 09/09/2011,

09/08/2011 and 09/06/2011, respectively. So, the CUSUM-D chart gives the earliest signal in this

example. The detected upward drift should be related to the S&P downgrade of the credit rating of

the United States from AAA to AA+ on August 5, 2011. This example shows that the CUSUM-D

chart is quite effective in detecting such mean drifts.
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Figure 3: The four control charts when they are used for monitoring the decorrelated and normalized

exchange rates between the Indian Rupee and US Dollar during 08/18/2011 and 10/28/2011.

5 Concluding Remarks

We have described a new control chart for detecting process mean drifts. The new method is

constructed based on the generalized likelihood ratio statistic and the exponentially weighted least

square estimation of a mean shift size. Numerical studies have confirmed that it is effective in

detecting mean drifts in different cases considered. While our proposed chart CUSUM-D has been

shown to perform the best, compared to its three peers, in the numerical studies presented in

Section 3, we would like to remind the readers that this chart is designed for detecting mean drifts

with unknown drift patterns. For detecting mean shifts, for example, the conventional CUSUM
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chart or its modified versions should be considered. The current version of the proposed method

is designed for cases when the process distribution is normal and process observations at different

time points are independent of each other. In cases when the normality assumption is invalid,

a nonparametric version of the proposed method might be possible by using data categorization

or other approaches for constructing nonparametric control charts (e.g., Qiu and Li 2011). In

cases when the observed data are serially correlated, a time series model or a data decorrelation

procedure by moment estimation of the serial data correlation might be used to remove the serial

data correlation (e.g., Apley and Tsung 2002, Qiu et al. 2020) first, and then the proposed method

can be used afterwards. Also, the steady-state relationship between λopt and γ for detecting linear

drifts is obtained in Section 3.1 by numerical studies only. Theoretical justification of that result

is needed. All these problems will be studied carefully in our future research.
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