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Abstract: To monitor the Earth’s surface, the satellite of the NASA Landsat program provides us1

image sequences of any region on the Earth constantly over time. These image sequences give us2

a unique resource to study the Earth surface, changes of the Earth resource over time, and their3

implications in agriculture, geology, forestry, and more. Besides natural sciences, image sequences4

are also commonly used in functional magnetic resonance imaging (fMRI) of medical studies for5

understanding the functioning of brains and other organs. In practice, observed images almost6

always contain noise and other contaminations. For a reliable subsequent image analysis, it is7

important to remove such contaminations in advance. This paper focuses on image sequence8

denoising, which has not been well discussed in the literature yet. To this end, an edge-preserving9

image denoising procedure is suggested. The suggested method is based on a jump-preserving10

local smoothing procedure, in which the bandwidths are chosen such that the possible spatio-11

temporal correlation in the observed image intensities is accommodated properly. Both theoretical12

arguments and numerical studies show that it works well in various cases considered.13

Keywords: Bandwidth selection; Correlation; Edge-preserving image denoising; Image sequence;14

Jump regression analysis; Local smoothing; Nonparametric regression; Spatio-temporal data15

1. Introduction16

The Landsat project of the US Geological Survey (USGS) and NASA has launched 817

satellites since 1972 to continuously provide scientifically valuable images of the Earth’s18

surface. These images can be freely accessed by researchers around the world (cf.,19

Zanter 2016). This rich archive of the Landsat images has become a major resource20

for scientific research about the Earth’s surface and resources in different scientific21

disciplines, including forest science, climate science, agriculture, ecology, fire science,22

and many more. As a demonstration, Figure 1 shows two images of the Las Vegas23

area in Nevada taken in 1984 and 2007, respectively. These two images clearly show24

the increasing urban sprawl of Las Vegas during the 23-year period, and consequently25

the environment in that region has changed dramatically. The current satellite (i.e., the26

Landsat 8) can deliver an image of a given region roughly every 16 days. So, we have27

an image sequence of that region collected sequentially over time stored in the Landsat28

database, and that sequence is increasing all the time. Image sequences are commonly29

used in many other applications, including functional magnetic resonance imaging30

(fMRI) in neuroscience and quality control in manufacturing industries (Qiu 2018). In31

practice, observed images usually contain noise and other contaminations (Gonzalez32

and Woods 2018). For reliable subsequent image analyses, such contaminations should33

be removed in advance. In the image processing literature, to remove noise from an34

observed image is referred to as image denoising. This paper focuses on image denoising35

for analyzing observed image sequences.36

In the literature, there has been extensive discussion on image denoising (Qiu 2007).37

Many early methods in the computer science literature are based on the Markov random38

field (MRF) framework, in which observed image intensities of an image are assumed to39

have the Markov property that the observed intensity at a given pixel depends only on40

Version September 23, 2021 submitted to Entropy https://www.mdpi.com/journal/entropy

https://www.mdpi.com
https://doi.org/10.3390/e1010000
https://doi.org/10.3390/e1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy


Version September 23, 2021 submitted to Entropy 2 of 25

Figure 1. Two Landsat images of Las Vegas area taken in 1984 (left panel) and 2007 (right panel).

the observed intensities in a neighborhood of the given pixel (Geman and Geman 1984).41

Then, if the true image is assumed to have a prior distribution which is also an MRF,42

its posterior distribution would be an MRF too and consequently the true image can be43

estimated by the maximum a posteriori (MAP) estimator (e.g., Besag 1986, Fessler et al.44

2000, Geman and Geman 1984). Other popular image denoising methods include those45

based on diffusion equations (e.g., Perona and Malik 1990, Weickert 1998), total variation46

(Beck and Teboulle 2009, Rudin et al. 1992, Yuan et al. 2012), wavelet transformations47

(e.g., Chang et al. 2000, Mrázek et al. 2003), jump regression analysis (e.g., Gijbels et48

al. 2006, Qiu 1998, 2009, Qiu and Mukherjee 2012), adaptive weights smoothing (e.g.,49

Polzehl and Spokoiny 2000), spatial adaption (e.g., Kervrann and Boulanger 2006) and50

more.51

Although there are already many existing methods for image denoising, almost all52

of them are for handling individual observed images. So far, we have not found much53

discussion on denoising of image sequences which is the focus of the current paper.54

[strength of our method] For a given image sequence, it often describes a gradual change over55

time of the underlying process. For instance, the sequence of images of the Las Vegas56

area acquired by the Landsat satellite (cf., Figure 1) describes the gradual change of the57

Earth surface in that area over time. As mentioned above, two consecutive images in the58

sequence acquired by the current Landsat satellite are only about 16-day apart. So, their59

difference should be very small. But, the images could be substantially different after a60

long period of time, as shown in Figure 1. In such applications, it should be reasonable to61

assume that edge locations in different images either do not change or change gradually62

over time. To handle such image sequences, the neighboring images should be useful63

when denoising the image at a given time point, or information in neighboring images64

should be shared during image denoising. By noticing such features of image sequences, we65

propose an edge-preserving image denoising procedure for analyzing image sequences66

in this paper. [strength of our method] Our proposed method is based on the jump regression67

analysis (JRA) that is for regression modeling when the underlying regression function68

has jumps or other singularities (Qiu 2005). It is a local smoothing procedure, and the69

possible spatio-temporal correlation in the observed image data has been accommodated70

properly in its construction. [some novelties of the proposed method, besides its information sharing71

feature mentioned above] Both theoretical arguments and numerical studies show that this72

method works well in various different cases.73

The remaining parts of the article are organized as follows. The proposed method74

is described in detail in Section 2. Its statistical properties and numerical studies about75

its performance in different finite-sample cases are presented in Section 3. Several76

concluding remarks are provided in Section 4. Some technical details are given in77

Appendices.78
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2. Materials and Methods79

This section describes our proposed method in two parts. A JRA model for de-80

scribing an image sequence and the model estimation are discussed in Subsection 2.1.81

Selection of several parameters used in model estimation is discussed in Subsection 2.2.82

2.1. JRA model and its estimation83

To describe an image sequence, let us consider the following JRA model:

Zijk = f (xi, yj; tk) + εijk, i = 1, 2, . . . , nx, j = 1, 2, . . . , ny, k = 1, 2, . . . , nt, (1)

where Zijk is the observed image intensity level at the (i, j)th pixel (xi, yj) and at the kth84

time point tk, f (xi, yj; tk) is the true image intensity level, and εijk is the pointwise random85

noise with mean 0 and variance σ2. In model (1), spatio-temporal data correlation is86

allowed, namely, {εijk} could be correlated over i, j and k. For image data, the pixel87

locations are usually regularly spaced. Without loss of generality, it is assumed that they88

are equally spaced in the design space Ω = [0, 1]× [0, 1], namely, (xi, yj) = (i/nx, j/ny),89

for all i and j, where nx and ny are the numbers of rows and columns, respectively. The90

observation times {tk, k = 1, 2, . . . , nt} are also assumed to be equally spaced in the time91

interval [0, 1]. The true image intensity function f (x, y; t), for (x, y) ∈ Ω, is continuous92

in the design space Ω at each t ∈ [0, 1], except on the edges where it has jumps.93

To estimate the unknown image intensity function f (x, y; t) in model (1), we con-
sider using a local smoothing method, instead of a global smoothing method (e.g.,
smoothing spline method), because of a large amount of data involved in the current
problem. Also, it has been well discussed in the JRA literature that conventional smooth-
ing methods (e.g., conventional local kernel smoothing methods) would not work well
for estimating models like (1) where the true image intensity function f (x, y; t) has jumps
at the edges, because the jumps would be blurred by such conventional methods (cf.,
Qiu 2005). In this paper, we suggest a jump-preserving local smoothing method for
estimating (1), described in detail below. For a given point (x, y; t) ∈ Ω× [0, 1], define a
local neighborhood

O(x, y; t) ={
(

x
′
, y
′
; t
′)

:
(

x
′
, y
′
; t
′) ∈ Ω× [0, 1],√

(x′ − x)2

h2
x

+
(y′ − y)2

h2
y

≤ 1, |t′ − t|/ht ≤ 1},

where hx, hy and ht are the bandwidths in the x−, y−, and t−axis, respectively. In
O(x, y; t), we first consider the following local linear kernel (LLK) smoothing procedure
(Fan and Gijbels 1996):

min
a,b,c,d

nx

∑
i=1

ny

∑
j=1

nt

∑
k=1

{
Zijk −

[
a + b(xi − x) + c(yj − y) + d(tk − t)

]}2

K
(

xi − x
hx

,
yj − y

hy

)
K
(

tk − t
ht

)
,

(2)

where K(v) is a density kernel function with the support {v : |v| ≤ 1}. The solutions
to (a, b, c, d) of the minimization problem (2) are denoted as â(x, y; t), b̂(x, y; t), ĉ(x, y; t),
and d̂(x, y; t), respectively. It can be checked that they have the following expressions:

â(x, y; t)
b̂(x, y; t)
ĉ(x, y; t)
d̂(x, y; t)

 =


m000 m100 m010 m001
m100 m200 m110 m101
m010 m110 m020 m011
m001 m101 m011 m002


−1

∑ijk ZijkKijk

∑ijk(xi − x)ZijkKijk

∑ijk(yj − y)ZijkKijk

∑ijk(tk − t)ZijkKijk

, (3)
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where ∑ijk denotes ∑nx
i=1 ∑

ny
j=1 ∑nt

k=1, Kijk denotes K( xi−x
hx

,
yj−y

hy
)K( tk−t

ht
), and mrsl = ∑ijk(xi−94

x)r(yj − y)s(tk − t)lKijk, for r, s, l = 0, 1, 2. The LLK estimator of f (x, y; t) is defined95

to be â(x, y; t). The estimated gradient direction of f (x, y; t) at (x, y; t) is Ĝ(x, y; t) =96

(b̂(x, y; t), ĉ(x, y; t), d̂(x, y; t))′ which indicates the direction in which the estimated plane97

in O(x, y; t) by the LLK procedure (2) increases the fastest. If there is an edge surface in98

O(x, y; t), then Ĝ(x, y; t) would be (approximately) orthogonal to that surface.99

In cases when there are no edges in the neighborhood O(x, y; t), â(x, y; t) would be
a good estimate of f (x, y; t). Otherwise, it cannot be a good estimate because â(x, y; t) is
a weighted average of all observed image intensities in O(x, y; t), the jumps in the image
intensity surface would be smoothed out in the weighted average, and the estimate
â(x, y; t) would be biased for estimating f (x, y; t). To overcome that limitation, we
consider the following one-sided smoothing idea. Let O(x, y; t) be divided into two
parts O(1)(x, y; t) and O(2)(x, y; t) by a plane that passes (x, y; t) and is perpendicular
to Ĝ(x, y; t). See Firgure 2 for a demonstration. Then, in cases when there is an edge

Figure 2. The neighborhood O(x, y; t) is divided into two parts by a plane that passes (x, y; t) and
is perpendicular to the estimated gradient direction Ĝ(x, y; t).

surface in O(x, y; t), that plane would be (approximately) parallel to the edge surface.
Consequently, at least one of O(1)(x, y; t) and O(2)(x, y; t) would be (mostly) located
on a single side of the edge surface in such cases. Now, let us consider the following
one-sided LLK smoothing procedure: for l = 1, 2,

min
a,b,c,d

∑
(xi ,yj ;tk)∈O(l)(x,y;t)

{
Zijk −

[
a + b(xi − x) + c(yj − y) + d(tk − t)

]}2

K
(

xi − x
hx

,
yj − y

hy

)
K
(

tk − t
ht

)
.

(4)

The solutions of (4) to (a, b, c, d) are denoted as (â(l)(x, y; t), b̂(l)(x, y; t), ĉ(l)(x, y; t), d̂(l)(x, y; t)),100

for l = 1, 2. Intuitively, when there are no edges in O(x, y; t), â(x, y; t), â(1)(x, y; t) and101

â(2)(x, y; t) are all consistent estimates of f (x, y; t) under some regular conditions. In102

such cases, â(x, y; t) would be preferred since it averages more observations and conse-103

quently it would have a smaller variance. When there are edges in O(x, y; t), â(x, y; t)104

would not be a good estimate of f (x, y; t) as explained above, but one of â(1)(x, y; t) and105

â(2)(x, y; t) should estimate f (x, y; t) well. Therefore, in all cases, at least one of the three106

estimators â(x, y; t), â(1)(x, y; t) and â(2)(x, y; t) should estimate f (x, y; t) well.107

Next, we need to choose a good estimator from â(x, y; t), â(1)(x, y; t) and â(2)(x, y; t)
based on the observed data, which is not straightforward, partly because we don’t know
in advance whether there are edges in the neighborhood O(x, y; t) and whether the edges
are mostly contained in O(1)(x, y; t) or O(2)(x, y; t) if the answer to the first question is
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positive. To overcome this difficulty, let us consider the following weighted residual
mean squares (WRMS) of the fitted local plane by the LLK procedure (2):

e(x, y; t) =
{

∑
ijk
[Zijk − â(x, y; t)− b̂(x, y; t)(xi − x)− ĉ(x, y; t)(yj − y)−

d̂(x, y; t)(tk − t)]2Kijk

}
/ ∑

ijk
Kijk.

(5)

The above WRMS measures how well the fitted local plane describes the observed data
in O(x, y; t). If there are edges in O(x, y; t), this quantity would be relatively large, due
mainly to the jumps in the image intensity surface. Otherwise, it would be relatively
small. So, the quantity e(x, y; t) contains useful information about the existence of edges
in O(x, y; t). Similarly, we can define WRMS values for the two one-sided local planes
fitted in O(1)(x, y; t) and O(2)(x, y; t). They are denoted as e(1)(x, y; t) and e(2)(x, y; t).
Based on these WRMS values, we define our edge-preserving estimator of f (x, y; t) to be

f̂ (x, y; t) = â(x, y; t)I(D(x, y; t) ≤ u)

+ â(1)(x, y; t)I(D(x, y; t) > u)I(e(1)(x, y; t) < e(2)(x, y; t))

+ â(2)(x, y; t)I(D(x, y; t) > u)I(e(1)(x, y; t) > e(2)(x, y; t))

+
â(1)(x, y; t) + â(2)(x, y; t)

2
I(D(x, y; t) > u)I(e(1)(x, y; t) = e(2)(x, y; t)),

(6)

where D(x, y; t) = max(e(x, y; t)− e(1)(x, y; t), e(x, y; t)− e(2)(x, y; t)), I(·) is the indica-108

tor function, and u > 0 is a threshold parameter. By (6), it is obvious that f̂ (x, y; t) is109

defined to be one of â(x, y; t), â(1)(x, y; t) and â(2)(x, y; t). The quantity â(x, y; t), which is110

obtained from the entire neighborhood O(x, y; t), is chosen if the observed data indicate111

no edges in O(x, y; t), supported by the event D(x, y; t) ≤ u. Otherwise, one of the two112

one-sided quantities â(1)(x, y; t) and â(2)(x, y; t) with a smaller WRMS value is chosen.113

Although theoretically the event (e(1)(x, y; t) = e(2)(x, y; t)) would have probability zero114

to happen, the last term on the right-hand-side of (6) is still included for completeness of115

the definition of f̂ (x, y; t) and for the consideration that e(1)(x, y; t) and e(2)(x, y; t) could116

be considered the same in certain algorithms when their values are close.117

2.2. Parameter selection118

In our proposed method described in Subsection 2.1, there are four parameters
hx, hy, ht and u that need to be chosen properly in advance. For that purpose, it is
natural to consider the cross validation (CV) procedure, especially in the current research
problem where the observed data are quite large in size. However, it has been well
demonstrated in the literature that the conventional CV procedure would not work
well in cases when the observed data are autocorrelated, because it cannot effectively
distinguish the data correlation structure from the mean structure (cf., Altman 1990,
Opsomer et al. 2001). In the current problem, spatio-temperal data correlation is possible
in almost all applications. Thus, the conventional CV procedure is not feasible in such
cases. In the univariate regression setup, Brabanter et al. (2011) suggested a modified
CV procedure for choosing smoothing parameters in cases with correlated data. This
procedure is generalized here for choosing the parameters hx, hy, ht and u used in the
proposed method, which is described below. Let the modified CV score for choosing hx,
hy, ht and u be defined as

CV(hx, hy, ht, u) =
1

nxnynt
∑
ijk

[
f̂−(ijk)(xi, yj; tk)− Z(xi, yj; tk)

]2
, (7)
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where f̂−(ijk)(xi, yj; tk) is the leave-one-out estimate of f (xi, yj; tk) by (2)-(6) after the
observation Zijk is removed from the estimation process and after the kernel function is
replaced by the so-called ε-optimal bimodal kernel function Kε(v) defined to be

Kε(v) =
4

4− 3ε− ε3 ×
{

3
4 (1− v2)I(|v| ≤ 1), if |v| ≥ ε,
3(1−ε2)

4ε |v|, if |v| < ε,
(8)

where 0 < ε < 1 is a parameter. Based on a large simulation study, Brabanter et al.119

(2011) suggested choosing ε to be 0.1, which is adopted in this paper. Then, by the120

above modified CV procedure (7)-(8), the parameters hx, hy, ht and u can be chosen by121

minimizing the modified CV score CV(hx, hy, ht, u).122

3. Results123

3.1. Statistical Properties124

In this part, we discuss some statistical properties of the proposed edge-preserving125

image sequence denoising method (2)-(6). First, we have the following proposition.126

Proposition 1. Assume that i) the kernel function K(v) used in (2) is a Lipschitz-1127

continuous density function, and ii) the noise terms {εijk, i = 1, 2, . . . , nx, j = 1, 2, . . . , ny, k =128

1, 2, . . . , nt} in model (1) form a strong mixing stochastic process with the following strong129

mixing coefficients:130

α(d) = sup
(ijk),(i′ j′ k′ )

sup
A,B

{
|P(A ∩ B)− P(A)P(B)|, A ∈ σ(εijk), B ∈ σ(εi′ j′ k′ ),

max{|i− i
′ |, |j− j

′ |, |k− k
′ |} > d

}
,

which have the property that α(d) ≤ c1σ2ρc2d, where c1, c2 > 0 and 0 < ρ < 1 are constants,
and iii) E(ε6

111) < ∞. Let N = nxnynt, H = hxhyht, nmin = min(nx, ny, nt), and hmin =
min(hx, hy, ht). Then, for any (x, y; t) ∈ Ωh = [hx, 1− hx]× [hy, 1− hy]× [ht, 1− ht], we
have ∣∣∣∣ 1

NH ∑
ijk

K
(

xi − x
hx

,
yi − y

hy

)
K
(

ti − t
ht

)
− 1
∣∣∣∣ = O

(
1

nminhmin

)
,

E

[∣∣∣∣ 1
NH ∑

ijk
εijkK

(
xi − x

hx
,

yi − y
hy

)
K
(

ti − t
ht

)∣∣∣∣2
]
= O

(
1

NH

)
,

E

[∣∣∣∣ 1
NH ∑

ijk
(ε2

ijk − σ2)K
(

xi − x
hx

,
yi − y

hy

)
K
(

ti − t
ht

)∣∣∣∣2
]
= O

(
1

NH

)
.

131

Based on the results in Proposition 1, we can derive the following properties of the132

LLK estimates defined in (3).133

Theorem 1. Besides the conditions in Proposition 1, we further assume that the true image
intensity function f (x, y; t) has continuous first order partial derivatives with respect to x, y
and t in the design space Ω except at the edge curves. Then, for any (x, y; t) ∈ Ωh \ Jh, we have


â(x, y; t)
b̂(x, y; t)
ĉ(x, y; t)
d̂(x, y; t)

 =


f (x, y; t)
f
′
x(x, y; t)

f
′
y(x, y; t)

f
′
t (x, y; t)

+


O(h2

x + h2
y + h2

t )

O(
h2

x+h2
y+h2

t
hx

)

O(
h2

x+h2
y+h2

t
hy

)

O(
h2

x+h2
y+h2

t
ht

)

+


Op(

1√
NH

)

Op(
1

hx
√

NH
)

Op(
1

hy
√

NH
)

Op(
1

ht
√

NH
)

.
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for any (x, y, t) ∈ Jh \ Sh, we have


â(x, y; t)
b̂(x, y; t)
ĉ(x, y; t)
d̂(x, y; t)

 =


f−(xτ , yτ ; tτ) + dτξ

(2)
000

dτ
ξ200hx

ξ
(2)
100

dτ
ξ020hy

ξ
(2)
010

dτ
ξ002ht

ξ
(2)
001

+



O(
√

h2
x + h2

y + h2
t )

O(

√
h2

x+h2
y+h2

t
hx

)

O(

√
h2

x+h2
y+h2

t
hy

)

O(

√
h2

x+h2
y+h2

t
ht

)


+


Op(

1√
NH

)

Op(
1

hx
√

NH
)

Op(
1

hy
√

NH
)

Op(
1

ht
√

NH
)

 (9)

where ξrsl =
∫

Ω×[0,1] urvswlK(u, v)K(w) dudvdw, ξ
(2)
rsl =

∫
Q(2) urvswlK(u, v)K(w) dudvdw,134

for r, s, l = 0, 1, 2, J is the closure of the set of all jump points of f (x, y; t), Jh = {(x, y; t) :135

(x, y; t) ∈ Ωh,
√
(x− x∗)2/h2

x + (y− y∗)2/h2
y ≤ 1, |t− t∗|/ht ≤ 1, for any (x∗, y∗, t∗) ∈136

J}, S is the set of singular points in J, including the crossing points of two or more edges,137

points on an edge surface at which the edge surface does not have a unique tangent surface,138

and points in J at which the jump sizes in f (x, y; t) are zero, Sh = {(x, y; t) : (x, y; t) ∈139

Ωh,
√
(x− x∗)2/h2

x + (y− y∗)2/h2
y ≤ 1, |t− t∗|/ht ≤ 1, for any (x∗, y∗, t∗) ∈ S}, (xτ , yτ ; tτ) ∈140

J \ S is the projection of (x, y; t) to J with the Euclidean distance between the two points being141

c
√

h2
x + h2

y + h2
t , for a constant 0 < c < 1, and f−(xτ , yτ ; tτ) is the smaller one of the two142

one-sided limits of f (x, y; t) at (xτ , yτ ; tτ). In cases when O(x, y; t) contains jumps, without143

loss of generality, it is assumed that O(x, y; t) is divided by the edge surface into two parts I1144

and I2 with a positive jump size dτ from I1 to I2 at (xτ , yτ ; tτ), and Q(1) and Q(2) are the two145

corresponding parts in the support of K(u, v)K(w).146

The next two theorems establish the consistency of the proposed edge-preserving147

image denoising procedure (2)-(6). First, we have the following theorem about the148

WRMS values defined in (5).149

Theorem 2. Assume that the conditions in Theorem 1 are satisfied, h2
x + h2

y + h2
t = o(1),

(h2
x + h2

y + h2
t )/hmin = o(1), 1/(NH) = o(1) and 1/(NHh2

min) = o(1). Then, we have the
following results: for any (x, y; t) ∈ Ωh\Jh,

e(x, y; t) = σ2 + op(1),

e(l)(x, y; t) = σ2 + op(1), for l = 1, 2;
(10)

for any (x, y; t) ∈ Jh\Sh,

e(x, y; t) = σ2 + dτC2
τ + op(1),

e(l)(x, y; t) = σ2 + dτ

[
C(l)

τ

]2
+ op(1), for l = 1, 2,

(11)

where150

Cτ =

( ∫ ∫ ∫
Q(1)

[
ξ
(2)
000 +

ξ
(2)
100

ξ200
u +

ξ
(2)
010

ξ020
v +

ξ
(2)
001

ξ002
w
]2

K(u, v)K(w)dudvdw +

∫ ∫ ∫
Q(2)

[
1− ξ

(2)
000 −

ξ
(2)
100

ξ200
u−

ξ
(2)
010

ξ020
v−

ξ
(2)
001

ξ002
w
]2

K(u, v)K(w)dudvdw
)1/2

.
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(a) (b)

Figure 3. (a) The true image intensity function f (x, y; t) at t = 0.01 (left) and t = 0.25 (right). (b)
The temporal profile f (0.25, 0.25; t) when t changes in [0, 1].

and151

C(l)
τ =

(
2
∫ ∫ ∫

Q(1l)

[
B0l +

B1l
ξ200

u +
B2l
ξ020

v +
B3l
ξ002

w
]2

K(u, v)K(w)dudvdw +

2
∫ ∫ ∫

Q(2l)

[
1− B0l −

B1l
ξ200

u− B2l
ξ020

v− B3l
ξ002

w
]2

K(u, v)K(w)dudvdw

)1/2

.

with the quantities Q(1l), Q(2l), B0l , B1l , B2l and B3l defined as follows. Let −→g = ( dτ
ξ200hx

ξ
(2)
100,152

dτ
ξ020hy

ξ
(2)
010, dτ

ξ002ht
ξ
(2)
001). Then, from (9), −→g is actually the asymptotic direction of the gradient153

vector Ĝ(x, y; t). Let Õ(l)(x, y; t), for l = 1, 2, be two halves of the neighborhood O(x, y; t)154

separated by a plane passing the point (x, y; t) in the direction perpendicular to −→g and Q̃(l) be155

the two corresponding parts in the support of K(u, v)K(w). Then, Q(1l) = Q(1) ∩ Q̃(l), Q(2l) =156

Q(2) ∩ Q̃(l), B0l =
∫ ∫ ∫

Q(2l) K(u, v)K(w)dudvdw, B1l =
∫ ∫ ∫

Q(2l) uK(u, v)K(w)dudvdw,157

B2l =
∫ ∫ ∫

Q(2l) vK(u, v)K(w)dudvdw, and B3l =
∫ ∫ ∫

Q(2l)158

wK(u, v)K(w)dudvdw, for l = 1, 2.159

Theorem 3. Under the conditions in Theorem 2 and the extra assumption that threshold
parameter u = uN → 0 as N → ∞, we have, for any (x, y; t) ∈ Ωh,

f̂ (x, y; t) = f (x, y; t) + op(1).

160

The proofs of these theoretical results are given in Appendices.161

3.2. Numerical Studies162

In this part, we study the numerical performance of our proposed method for
denoising an image sequence. First, we consider a simulation example in which the true
image intensity function in model (1) has the following expression:

f (x, y; t) =
{
−2(x− 0.5)2 − 2(y− 0.5)2 − 0.1 sin(2πt) + 1, if r(x, y; t) ≤ 0.252,
−2(x− 0.5)2 − 2(y− 0.5)2 − 0.1 sin(2πt), otherwise,

where r(x, y; t) = (x− 0.5)2 + (y− 0.5)2 + 0.01 sin(2πt), (x, y) ∈ Ω = [0, 1]× [0, 1], and
t ∈ [0, 1]. At a given value of t, f (x, y; t) has a circular edge curve r(x, y; t) = 0.252

with a constant jump size 1 in f (x, y; t) at the edges. The radius of the circular edge
curve,

√
0.252 − 0.01 sin(2πt), changes periodically over t ∈ [0, 1]. The image intensity

function f (x, y; t) at t = 0.01 and 0.25 and its temporal profile f (0.25, 0.25; t) are shown
in Figure 3. It can be seen that both the image intensity level at a given pixel and
the edge curve change gradually when t changes in [0, 1]. In model (1), the random
errors {εijk, i = 1, 2, . . . , nx, j = 1, 2, . . . , ny, k = 1, 2, . . . , nt} are generated by the function
spatialnoise() in the R-package neuRosim (cf., Welvaert et al. 2011). In that R function,
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there are two parameters ρ and σ to specify in advance, where ρ controls the data
autocorrelation in all three dimensions and σ is the common standard deviation of the
random errors. In all our examples, σ is fixed at 0.1, 0.2 or 0.3, and ρ is fixed at 0.1,
0.3 or 0.5, to study the possible impact of data noise level and data correlation on the
performance of the proposed method. Without loss of generality, we set nx = ny in all
examples. In the model estimation procedure (2)-(6), we set hx = hy, and the kernel
function K(v) is chosen to be the following truncated Gaussian density function:

K(v) =

{
exp(−v2/2)−exp(−0.5)

2π−3π exp(−0.5) , if |v| ≤ 1,
0, otherwise.

In cases when σ = 0.1, 0.2 or 0.3, nx = 64 or 128, nt = 50 or 100, ρ = 0.1, 0.3163

or 0.5, the MSE values of the estimator f̂ (x, y; t) defined in (6) are presented in Table164

1, along with the corresponding parameters hx, ht and u selected by the modified165

CV procedure (7)-(8). In each case considered, the MSE value is computed based on166

10 replicated simulations. For comparison purposes, the optimal MSE value of the167

estimator f̂ (x, y; t) when its parameters hx, ht and u are chosen such that the MSE168

value reaches the minimum in each case considered is also presented in the table, along169

with the corresponding parameter values. From the table, we can have the following170

conclusions. i) The MSE values are smaller when either nx or nt is larger, which confirms171

the consistency results discussed in Section 3. ii) When ρ is larger (i.e., the spatio-172

temporal data correlation is stronger), the MSE values are larger. So, data correlation173

does have an impact on the performance of the proposed method, which is intuitively174

reasonable. iii) By comparing the MSE and the optimal MSE values, we can see that175

the MSE values are usually larger than their optimal values, but their differences are176

not that big in almost all cases considered. This conclusion indicates that the modified177

CV procedure (7)-(8) for determining the values of the parameters (hx, ht, u) is quite178

effective. iv) The parameter values chosen by the modified CV procedure (7)-(8) are179

quite close to the optimal parameter values in most cases considered.180

Next, we compare our proposed method, denoted as NEW, with some alternative
methods described below. The first alternative method is the conventional LLK pro-
cedure (2), by which f (x, y; t) is estimated by â(x, y; t) defined in (3). Its bandwidths
are chosen by the conventional CV procedure, without considering any possible spa-
tio-temporal data correlation. As explained in Subsection 2.1, this estimator would blur
edges while removing noise. The second alternative method is to use â(x, y; t) for esti-
mating f (x, y; t), but its bandwidths are chosen by the modified CV procedure (7)-(8).
The above two alternative methods are denoted as LLK-C and LLK, respectively, where
LLK-C denotes the first conventional LLK procedure that does not accommodate data
correlation. The third alternative method is the one by Gijbel et al. (2006) which is for
edge-preserving image denoising of a single image. To apply this method to the current
problem, individual images collected at different time points can be denoised by it
separately. This method assumes that the observed image intensities at different pixels
are independent of each other, and thus its bandwidths can be chosen by the conven-
tional CV procedure. This method is denoted as GLQ. The fourth alternative method is
to use f̂ (x, y; t) in (6) to estimate f (x, y; t), but the parameters (hx, ht, u) are chosen by
the conventional CV procedure. This method is denoted as NEW-C. [Explanations of the

alternative methods in numerical comparison] By considering all these four alternative methods
(i.e., LLK-C, LLK, GLQ and NEW-C), we can check whether the current problem to
denoise an image sequence can be handled properly by the conventional LLK procedure
with or without using the modified CV procedure, by an existing edge-preserving image
denoising method designed for denoising a single image, or by the proposed method
without considering the possible spatio-temporal data correlation. To evaluate their
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Table 1: In each entry, MSE of f̂ (x, y; t) in (6) is presented in the first line with its standard
error (in parenthesis); the corresponding values of (hx, ht, u) chosen by the modified CV
procedure (7)-(8) is presented in the second line; the optimal MSE is presented in the
third line with its standard error (in parenthesis); the optimal values of (hxy, ht, u) are
presented in the fourth line. MSE in the table has been multiplied by 103 and standard
error has been multiplied by 105.

nt=50 nt=100
σ ρ nx=64 nx=128 nx=64 nx=128

0.1 0.1 0.65(0.80) 0.30(0.25) 0.48(0.43) 0.26(0.10)
(0.03,0.10,0.05) (0.03,0.08,0.025) (0.03,0.10,0.05) (0.02,0.07,0.05)

0.32(0.46) 0.20(0.14) 0.37(0.36) 0.19(0.08)
(0.04,0.07,0.025) (0.03,0.05,0.025) (0.03,0.08,0.025) (0.02,0.05,0.025)

0.3 0.60(0.45) 0.33(0.16) 0.59(0.39) 0.33(0.15)
(0.04,0.10,0.05) (0.03,0.07,0.025) (0.03,0.10,0.05) (0.02,0.07,0.025)

0.49(0.35) 0.30(0.16) 0.50(0.37) 0.29(0.22)
(0.04,0.08,0.025) (0.03,0.06,0.025) (0.03,0.08,0.025) (0.03,0.04,0.025)

0.5 1.25(1.24) 0.80(0.22) 0.81(0.55) 0.64(0.21)
(0.03,0.10,0.05) (0.02,0.07,0.025) (0.03,0.10,0.05) (0.02,0.04,0.025)

0.77(0.65) 0.49(0.24) 0.74(0.46) 0.45(0.25)
(0.04,0.09,0.025) (0.03,0.06,0.025) (0.03,0.09,0.025) (0.03,0.04,0.025)

0.2 0.1 1.14(1.13) 0.68(0.38) 1.02(0.74) 0.56(0.26)
(0.04,0.10,0.025) (0.03,0.08,0.025) (0.04,0.10,0.025) (0.03,0.07,0.025)

1.11(0.86) 0.66(0.33) 0.93(0.71) 0.54(0.31)
(0.04,0.09,0.025) (0.03,0.07,0.025) (0.04,0.08,0.025) (0.03,0.05,0.025)

0.3 1.69(0.91) 1.03(0.54) 1.32(1.08) 0.78(0.41)
(0.04,0.10,0.025) (0.03,0.08,0.025) (0.04,0.10,0.025) (0.03,0.07,0.025)

1.69(1.24) 1.03(0.54) 1.29(1.12) 0.78(0.41)
(0.04,0.11,0.025) (0.03,0.08,0.025) (0.04,0.09,0.025) (0.03,0.07,0.025)

0.5 3.25(1.74) 2.88(0.78) 1.95(1.85) 2.61(0.58)
(0.04,0.07,0.025) (0.02,0.07,0.025) (0.04,0.09,0.025) (0.02,0.04,0.025)

2.59(2.23) 1.54(1.32) 1.91(1.78) 1.21(0.43)
(0.05,0.10,0.025) (0.04,0.09,0.025) (0.04,0.11,0.025) (0.03,0.08,0.025)

0.3 0.1 2.32(1.91) 1.26(1.03) 1.59(0.81) 0.92(0.34)
(0.05,0.13,0.025) (0.04,0.09,0.025) (0.04,0.11,0.025) (0.03,0.08,0.025)

2.28(2.58) 1.26(1.03) 1.59(0.65) 0.92(0.34)
(0.05,0.11,0.025) (0.04,0.09,0.025) (0.04,0.10,0.025) (0.03,0.08,0.025)

0.3 3.15(2.28) 1.72(1.37) 2.26(1.53) 1.36(0.50)
(0.05,0.13,0.025) (0.04,0.09,0.025) (0.04,0.11,0.025) (0.03,0.08,0.025)

3.14(2.45) 1.71(1.52) 2.21(1.31) 1.33(0.41)
(0.05,0.14,0.025) (0.04,0.10,0.025) (0.04,0.13,0.025) (0.04,0.09,0.025)

0.5 6.78(3.46) 6.81(2.00) 4.18(2.72) 6.33(1.43)
(0.04,0.09,0.05) (0.02,0.07,0.05) (0.04,0.10,0.025) (0.02,0.04,0.05)

4.46(4.94) 2.48(2.38) 3.18(3.42) 1.88(0.56)
(0.06,0.16,0.025) (0.05,0.11,0.025) (0.05,0.14,0.025) (0.04,0.10,0.025)
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performance, in addition to the regular MSE criterion, we also consider the following
edge-preservation (EP) criterion originally discussed in Hall and Qiu (2007):

EP( f̂ ) = |JS( f̂ )− JS( f )|/JS( f ),

where

JS( f ) =
1

(nx − 2)(ny − 2)(nt − 2)

nx−1

∑
i=2

ny−1

∑
j=2

nt−1

∑
k=2

(
[ f (xi+1, yj; tk)− f (xi−1, yj; tk)]

2+

[ f (xi, yj+1; tk)− f (xi, yj−1; tk)]
2 + [ f (xi, yj; tk+1)− f (xi, yj; tk−1)]

2
)1/2

,

and JS( f̂ ) is defined similarly. According to Hall and Qiu (2007), JS(f) is a reasonable181

measure of the cumulative jump magnitude of f at the edge locations. So, EP( f̂ ) provides182

a measure of the percentage of the cumulative jump magnitude of f that has been lost183

during data smoothing by using the estimator f̂ . By this explanation, the smaller its184

value, the better. In cases when σ = 0.1, 0.2 or 0.3, nx = 128, nt = 100, and ρ = 0.1, 0.3185

or 0.5, the MSE and EP values of the related methods are presented in Table 2. From the186

table, it can be seen that the proposed method NEW has the smallest MSE values with187

quite large margins among all five methods in all cases considered, except the case when188

σ = 0.1 and ρ = 0.1 where NEW-C has a lightly smaller MSE value than that of NEW due189

to the weak data correlation in that case. Also, NEW has much smaller EP values in all190

cases considered, compared to the four competing methods. This example confirms that191

it is nessary to consider edge-preserving procedures when denoising image sequences192

and the possible spatio-temporal data correlation should be taken into account during193

the denoising process. It also confirms the benefit to share useful information among194

neighboring images when denoising an image sequence.195

Table 2: In each entry, the first line is the MSE value with its standard error (in parenthe-
sis), and the second line is the EP value. MSE values in the table are in the unit of 103

and the standard error values are in the unit of 105.

σ ρ LLK-C LLK GLQ NEW-C NEW
0.1 0.1 2.06(0.08) 2.10(0.06) 0.60(0.18) 0.24(0.11) 0.26(0.10)

73.68% 18.43% 28.24% 12.32% 7.48%
0.3 3.04(0.14) 2.28(0.09) 0.95(0.18) 2.93(0.40) 0.33(0.15)

124.48% 34.40% 43.69% 131.28% 10.58%
0.5 3.89(0.24) 3.23(0.21) 1.42(0.42) 3.77(0.48) 0.64(0.21)

141.47% 95.86% 57.40% 148.17% 28.86%
0.2 0.1 4.16(0.25) 2.93(0.15) 1.51(0.38) 0.86(0.25) 0.56(0.26)

142.65% 51.78% 54.40% 39.01% 9.14%
0.3 9.39(0.52) 3.67(0.25) 2.87(0.51) 9.60(0.78) 0.78(0.41)

291.31% 82.84% 94.59% 295.72% 15.08%
0.5 12.80(0.94) 11.21(0.86) 7.75(1.32) 13.12(1.16) 2.61(0.58)

326.38% 289.71% 203.86% 334.62% 84.24%
0.3 0.1 7.88(0.57) 3.94(0.26) 3.17(0.86) 1.01(0.37) 0.92(0.34)

235.43% 82.24% 73.18% 23.36% 15.41%
0.3 19.97(1.15) 5.56(0.50) 12.36(0.63) 19.97(1.16) 1.36(0.50)

461.12% 133.33% 261.31% 461.13% 25.78%
0.5 27.64(2.09) 23.75(1.92) 15.75(1.71) 28.04(2.29) 6.33(1.43)

514.22% 458.82% 292.50% 518.16% 144.58%

In the cases when σ = 0.2 and ρ = 0.1, 0.3 or 0.5, Figure 4 shows the observed196

images at t = 0.5 in the first column, and the denoised images by the methods LLK-C,197

LLK, GLQ, NEW-C and NEW in columns 2-6. From the figure, it can be seen that the198

denoised images by NEW are the best in removing noise and preserving edges. As a199

comparison, the denoised images by LLK-C, and NEW-C are quite noisy because their200
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selected bandwidths by the conventional CV procedure are relatively small due to the201

fact the conventional CV procedure cannot distinguish the data correlation from the202

mean structure, as discussed in Subsection 2.2. The denoised images by LLK are quite203

blurry because it does not take the edges into account when denoising the images. The204

denoised images by GLQ is quite blurry as well since GLQ denoises individual images at205

different time points separately and the serial data correlation is ignored in that method.206

Figure 4. First column shows the observed images at t = 0.5 when σ = 0.2 and ρ = 0.1 (1st row),
0.3 (2nd row), and 0.5 (3rd row). Second to sixth columns show the denoised images by LLK-C,
LLK, GLQ, NEW-C and NEW, respectively.

Next, we apply the proposed method NEW and the four alternative methods LLK-207

C, LLK, GLQ and NEW-C to a sequence of cell images that records the vasculogenesis208

process. The sequence has 100 images, and each image has 128× 128 pixels. A detailed209

description of the data can be found in Svoboda et al. (2016). The 1st, 50th and 100th210

images of the sequence are shown in Figure 5. In the image denoising literature, to test

Figure 5. The 1st, 50th and 100th cell images of the image sequence for describing a vasculogenesis
process.

211

the noise removal ability of a image denoising method, it is a common practice to add212

random noise at a certain level to the test images and then apply the image denoising213

method to the noisy test images (cf., Gijbels et al. 2006). To follow this convention, spatio-214

temporally correlated noise is first generated using the R-package neuRosim and then215

added to the sequence of 100 cell images described above. When generating the noise,216

σ is chosen to be 0.1, 0.2 or 0.3 and ρ is chosen to be 0.1, 0.3 or 0.5, as in the simulation217

examples presented above. The MSE and EP values of the five image denoising methods218

based on 10 replicated simulations are presented in Table 3. From the table, it can be219

seen that NEW still has smaller MSE and EP values in this example, compared to the220

four competing methods, except in a small number of cases when σ and ρ are relatively221

small.222

The 50th observed test image after the spatio-temporally correlated noise with223

ρ = 0.1, 0.3 or 0.5 being added is shown in the first column of Figure 6. The denoised224

images by the five methods LLK-C, LLK, GLQ, NEW-C and NEW are shown in columns225
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Table 3: Results for denoising a sequence of 100 cell images. In each entry, the first line
is the MSE value and its standard error (in parenthesis), and the second line is the EP
value. MSE values in the table are in the unit of 103 and the standard errors are in the
unit of 105.

σ ρ LLK-C LLK GLQ NEW-C NEW
0.1 0.1 1.69(0.11) 0.97(0.08) 1.67(0.12) 1.69(0.12) 1.35(0.12)

63.30% 5.53% 18.88% 63.31% 18.52%
0.3 2.36(0.16) 1.43(0.14) 1.94(0.18) 2.36(0.16) 1.51(0.19)

77.54% 31.64% 25.72% 77.55% 7.28%
0.5 3.21(0.25) 2.82(0.24) 2.28(0.29) 3.21(0.25) 1.92(0.31)

88.68% 75.95% 30.68% 88.68% 10.11%
0.2 0.1 3.22(17.00) 1.47(5.54) 3.93(0.29) 3.22(17.00) 1.67(0.25)

85.64% 13.57% 76.53% 85.64% 16.28%
0.3 8.71(0.56) 2.34(0.35) 5.00(0.43) 8.71(0.56) 2.17(0.45)

189.74% 42.07% 91.44% 189.75% 4.88%
0.5 12.12(0.94) 10.35(0.88) 6.41(0.86) 12.14(0.96) 4.48(0.90)

213.90% 187.93% 102.68% 214.07% 59.86%
0.3 0.1 3.16(0.50) 2.01(0.28) 5.47(0.53) 3.16(0.50) 1.93(0.40)

47.15% 22.46% 54.20% 47.15% 10.91%
0.3 19.30(1.23) 4.29(0.71) 10.11(0.85) 19.30(1.23) 2.82(0.77)

308.32% 79.75% 161.91% 308.32% 14.37%
0.5 26.96(2.09) 22.88(1.95) 13.36(1.82) 27.00(2.13) 8.75(1.85)

345.91% 306.28% 180.35% 346.14% 113.48%

2-6 of the figure. It can be seen that similar conclusions to those from Figure 4 can be226

made here, and the denoised images by NEW look reasonably well in removing noise227

and preserving edges.228

Figure 6. First column shows the 50th observed cell image after the spatio-temporally correlated
noise with ρ = 0.1 (1st row), 0.3 (2nd row) or 0.5 (3rd row) being added. Second to sixth columns
show the denoised images by LLK-C, LLK, GLQ, NEW-C and NEW, respectively.

4. DiscussionConclusion229

In the previous sections of this paper, we have described our proposed edge-230

preserving image denoising method for handling image sequences. Some major features231

of the proposed method include i) helpful information in neighboring images is shared232

during image denoising, ii) edge structures in the observed images can be preserved233

when removing noise, and iii) possible sptio-temporal data correlation can be accommo-234

dated in the related local smoothing procedure. [Novelties of the proposed method] Theoretical235

arguments given in Section 3 and numerical studies presented in Section 4 show that the236

proposed method works well in various cases considered. There are still some issues237

about the proposed method for future research. For instance, the current method assumes238
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that the true image intensity function f (x, y; t) is a continuous function of x, y and t,239

except on the edge curves/surfaces (cf., the conditions of Theorems 1-3 in Section 3). This240

assumption implies that the two true images f (x, y; t1) and f (x, y; t2) at the two different241

time points t1 and t2 should be similar when t1 and t2 are close. In many applications,242

this condition should be satisfied. But, in some applications (e.g., the Landsat images),243

there could be a systematic shift from f (x, y; t1) to f (x, y; t2), due to a move in relative244

position between the camera and the image object, even when t1 and t2 are close. For245

such applications, geometric alignment among images acquired at different time points246

might be needed before applying the proposed method for image denoising. This is247

related to image registration that has been discussed extensively in the image processing248

literature (e.g., Zitova and Flusser 2003). [A main reason why Landsat images have not been used249

for testing the proposed method in this paper] In the proposed local smoothing procedure (2)-(6),250

each of the bandwidths (hx, hy, ht) is chosen by the modified CV procedure (7)-(8) to be251

the same in the entire design space Ω× [0, 1]. Intuitively, relatively small bandwidths252

are preferred at places where the image intensity surface f (x, y; t) has large curvature253

and relatively large bandwidths are preferred at places where the curvature of f (x, y; t)254

is small. Thus, in some applications where the curvature of f (x, y; t) could change quite255

dramatically in the design space, variable bandwidths might be helpful. All such issues256

will be studied carefully in our future research.257

Author Contributions: methodology, Qiu, P.; formal analysis, Yi, F.; writing—original draft258

preparation, Yi, F.; writing—review and editing, Qiu, P; funding acquisition, Qiu, P; supervision,259

Qiu, P. All authors have read and agreed to the published version of the manuscript.260

Acknowledgments: We thank the four referees for many constructive comments and suggestions261

about the paper which greatly improved its quality. This research is supported in part by the NSF262

grant DMS-1914639.263

Conflicts of Interest: The authors declare no conflicts of interest.264

265

References266

1. Altman, N.S. Kernel smoothing of data with correlated errors. Journal of the American267

Statistical Association 1990, 85, 749–759.268

2. Beck, A.; Teboulle, M. Fast gradient-based algorithms for constrained total variation image269

denoising and deblurring problems. IEEE Transactions on Image Processing 2009, 18, 2419–2434.270

3. Besag, J. Spatial interaction and the statistical analysis of lattice systems (with discussions).271

Journal of the Royal Statistical Society (Series B) 1974, 36, 192–236.272

4. Brabanter, K.D.; Brabanter, J.D; Suykens, J.A.K.; Moor, B.D. Kernel regression in the presence273

of correlated errors. Journal of Machine Learning Research 2011, 12, 1955–1976.274

5. Chang, G.S.; Yu, B.; Vetterli, M. Spatially adaptive wavelet thresholding with context model-275

ing for image denoising. IEEE Transactions on Image Processing 2000, 9, 1522–1531.276

6. Fan, J.; Gijbels, I. Local Polynomial Modelling and Its Applications; New York: Chapman and277

Hall, 1996.278

7. Fessler, J.A.; Erdogan, H.; Wu, W.B. Exact distribution of edgepreserving MAP estimators279

for linear signal models with Gaussian measurement noise. IEEE Transactions on Image280

Processing3 2000, 9, 1049–1055.281

8. Geman, S.; Geman, D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration282

of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984, 6, 721–741.283

9. Gijbels, I.; Lambert, A.; Qiu, P. Edge-preserving image denoising and estimation of dis-284

continuous surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 2006, 28,285

1075–1087.286

10. Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: New York, USA, 2018.287

11. Hall, P.; Qiu, P. Blind deconvolution and deblurring in image analysis. Statistica Sinica 2007,288

17, 1483–1509.289

12. Kervrann, C.; Boulanger, J. Optimal Spatial Adaptation for Patch-Based Image Denoising.290

IEEE Transactions on Image Processing 2006, 15, 2866–2878.291



Version September 23, 2021 submitted to Entropy 15 of 25

13. Mrázek, P.; Weickert, J.; Steidl, G. Correspondences between wavelet shrinkage and nonlinear292

diffusion. In Proceedings of Scale Space Methods in Computer Vision, Isle of Skye, UK, 10-12293

June 2003; Griffin, L.D., Lillholm, M., Eds..294

14. Opsomer, J.; Wang, Y.; Yang, Y. Nonparametric regression with correlated errors. Statistical295

Science 2001, 16, 134–153.296

15. Perona, P.; Malik, J. Scale space and edge detection using anisotropic diffusion. IEEE297

Transactions on Pattern Analysis and Machine Intelligence 1990, 12, 629–639.298

16. Polzehl, J.;Spokoiny, V.G. Adaptive weights smoothing with applications to image restoration.299

Journal of the Royal Statistical Society (Series B) 2000, 62, 335–354.300

17. Qiu, P. Discontinuous regression surfaces fitting. The Annals of Statistics 1998, 26, 2218–2245.301

18. Qiu, P. Image Processing and Jump Regression Analysis; John Wiley & Sons: New York, USA,302

2005.303

19. Qiu, P. Jump surface estimation, edge detection, and image restoration. Journal of the American304

Statistical Association 2007, 102, 745–756.305

20. Qiu, P. Jump-preserving surface reconstruction from noisy data. Annals of the Institute of306

Statistical Mathematics 2009, 61, 715–751.307

21. Qiu, P. Jump regression, image processing and quality control (with discussions). Quality308

Engineering 2018, 30, 137–153.309

22. Qiu, P.; Mukherjee, P.S. Edge structure preserving 3-D image denoising by local surface310

approximation. IEEE Transactions on Pattern Analysis and Machine Intelligence 2012, 34, 1457–311

1468.312

23. Rudin, L.; Osher, S.; Fatemi, E. Jump regression, Nonlinear total variation based noise313

removal algorithms. Physica D, vol 1992, 60, 259–268.314
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Appendix A326

Appendix A.1 Proof of Proposition 1327

Define Bh(x, y, t) = {(x
′
, y
′
; t
′
) :
√
(|x′ − x|/hx)2 + (|y′ − y|/hy)2 ≤ 1, |t − t

′ | ≤328

ht, (x
′
, y
′
; t
′
) ∈ [0, 1]× [0, 1]× [0, 1]}, ∆ijk = [xi−1, xi]× [yj−1, yj]× [tk−1, tk], x0 = y0 =329

t0 = 0. Then it can be seen that330 ∣∣∣∣ 1
NH ∑

ijk
K
(

xi − x
hx

,
yi − y

hy

)
K
(

tk − t
ht
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− 1
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(
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)
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K
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ht

)
dudvdw−

1
H ∑

ijk

∫ ∫ ∫
Bh(x,y,t)∩∆ijk

K
(

u− x
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K
(

w− t
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H ∑

ijk

∫ ∫ ∫
Bh(x,y,t)c∩∆ijk

K
(

xi − x
hx

,
yi − y

hy

)
K
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1
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1
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where C ≥ 0 is the Lipschitz constant that satisfies the condition |K(u) − K(u
′
)| ≤331

C|u− u
′ |. So, the first result in Proposition 1 is valid.332
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To prove the second result, it can be checked that333

E
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Similarly, it can be checked that334

E
∣∣∣∣ 1

NH ∑
ijk
(ε2

ijk − σ2)K
(

xi − x
hx

,
yi − y

hy

)
K
(

ti − x
ht

)∣∣∣∣2
= Var(

1
NH ∑

ijk
ε2

ijkK
(

xi − x
hx

,
yi − y

hy

)
K
(

tk − x
ht

)
)

=
1

N2H2 ∑
ijk

∑
i′ j′ k′

K
(

xi − x
hx

,
yi − y

hy

)
K
(

tk − x
ht

)

K
( xi′ − x

hx
,

yi′ − y
hy

)
K
( tk′ − x

ht

)
Cov(ε2

ijk, ε2
i′ j′ k′

)

≤ 1
N2H2 ∑

ijk
∑

i′ j′ k′
K
(

xi − x
hx

,
yi − y

hy

)
K
(

tk − x
ht

)

K
( xi′ − x

hx
,

yi′ − y
hy

)
K
( tk′ − x

ht

)
12(c1σ2ρc2 max{|i−i

′ |,|j−j
′ |,|k−k

′ |})1/4E(ε4
111)

≤ 1
N2H2 ∑

ijk
K
(

xi − x
hx

,
yi − y

hy

)
K
(

tk − x
ht

)
12(c1σ224

∫ ∞

0
τ2ρτdτ)1/3(E(ε6

111))
2/3

= O(
1

NH
).

The first inequality in the above expression is based on the result in Davydov (1968). So,335

the third result is valid.336
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Appendix A.2 Proof of Theorem 1337

We first consider the case when (x, y; t) ∈ Ωh \ Jh. By the Taylor’s expansion, we
have

Zijk = f (xi, yj; tk) + εijk

= f (x, y; t) + (xi − x) f
′
x(x, y; t) + (yj − y) f

′
y(x, y; t) + (tk − t) f

′
t (x, y; t)+

O(h2
x + h2

y + h2
t ) + εijk.

So, it can be checked that
∑ijk ZijkKijk

∑ijk(xi − x)ZijkKijk

∑ijk(yj − y)ZijkKijk
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From Expression (3), we have
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By some simple algebraic manipulations, we have
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Now, we consider the case when (x, y; t) ∈ Jh \ Sh. If (xi, yj; tk) ∈ I1, then we have338

Zijk = f (xi, yj; tk) + εijk

= f−(xτ , yτ ; tτ) + O(
√

h2
x + h2

y + h2
t ) + εijk,

and if (xi, yj; tk) ∈ I2, we have339

Zijk = f (xi, yj; tk) + εijk

= f−(xτ , yτ ; tτ) + dτ + O(
√
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By some similar arguments to those in the case considered above, we have340
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Appendix A.3 Proof of Theorem 2341

We prove the second equations in (10) and (11) here. The first equations can be
proved similarly. For simplicity, we write â(l)(x, y; t), b̂(l)(x, y; t), ĉ(l)(x, y; t), d̂(l)(x, y; t),
O(l)(x, y; t) and Õ(l)(x, y; t) as â(l), b̂(l), ĉ(l), d̂(l), O(l) and Õ(l)respectively from now.
First, by Proposition 1, it is easy to show that
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Let us first consider the case when (x, y; t) ∈ Ωh \ Jh. In such a case, it can be342

checked that343
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/ ∑

(xi ,yj ;tk)∈O(l)

Kijk

=

{
∑

(xi ,yj ;tk)∈O(l)

ε2
ijkKijk

}
/ ∑

(xi ,yj ;tk)∈O(l)

Kijk +

{
2 ∑
(xi ,yj ;tk)∈O(l)

εijk[ f (xi, yj; tk)− â(l) − b̂(l)(xi − x)−

ĉ(l)(yj − y)− d̂(l)(tk − t)]Kijk

}
/ ∑

(xi ,yj ;tk)∈O(l)

Kijk +

{
∑

(xi ,yj ;tk)∈O(l)

[ f (xi, yj; tk)− â(l) − b̂(l)(xi − x)−

ĉ(l)(yj − y)− d̂(l)(tk − t)]2Kijk

}
/ ∑

(xi ,yj ;tk)∈O(l)

Kijk

=: A(l)
1 (x, y; t) + A(l)

2 (x, y; t) + A(l)
3 (x, y; t).

Similar to (A2), we have
A(l)

1 (x, y; t) = σ2 + op(1). (A3)

By the Taylor’s expansion of f (xi, yj; tk) at point (x, y; t), results in Theorem 1, and344

similar arguments for (A1), we have345

A(l)
2 (x, y; t) ≤ 2| f (x, y; t)− â(l)|

∣∣∣∣∑(xi ,yj ;tk)∈O(l) εijkKijk

∑(xi ,yj ;tk)∈O(l) Kijk

∣∣∣∣+ (A4)

2hx| f
′
x(x, y; t)− b̂(l)|

∣∣∣∣∑(xi ,yj ;tk)∈O(l) εijk
xi−x

hx
Kijk

∑(xi ,yj ;tk)∈O(l) Kijk

∣∣∣∣+
2hy| f

′
y(x, y; t)− ĉ(l)|

∣∣∣∣∑(xi ,yj ;tk)∈O(l)(x,y;t) εijk
yj−y

hy
Kijk

∑(xi ,yj ;tk)∈O(l) Kijk

∣∣∣∣+
2ht| f

′
t (x, y; t)− d̂(l)|

∣∣∣∣∑(xi ,yj ;tk)∈O(l) εijk
tk−t

ht
Kijk

∑(xi ,yj ;tk)∈O(l) Kijk

∣∣∣∣
= op(1).

Similarly, we have

A(l)
3 (x, y; t) = op(1). (A5)

By combining (A3)-(A5), we have

e(l)(x, y; t) = σ2 + op(1).

Now, let us consider the case when (x, y; t) ∈ Jh \ Sh. Similar to the above case, let
us write

e(l)(x, y; t) = A(l)
1 (x, y; t) + A(l)

2 (x, y; t) + A(l)
3 (x, y; t).
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Here, we still have
A(l)

1 (x, y; t) = σ2 + op(1). (A6)

For A(l)
2 (x, y; t), we have346

A(l)
2 (x, y; t) =

{
2 ∑
(xi ,yj ;tk)∈I1∩O(l)

εijk[ f (xi, yj; tk)− â(l) − b̂(l)(xi − x)−

ĉ(l)(yj − y)− d̂(l)(tk − t)]Kijk

}
/ ∑

(xi ,yj ;tk)∈O(l)

Kijk +

{
2 ∑
(xi ,yj ;tk)∈I2∩O(l)

εijk[ f (xi, yj; tk)− â(l) − b̂(l)(xi − x)−

ĉ(l)(yj − y)− d̂(l)(tk − t)]Kijk

}
/ ∑

(xi ,yj ;tk)∈O(l)

Kijk

=: A(l)
21 (x, y; t) + A(l)

22 (x, y; t).

By the results in Theorem 1, we have347

A(l)
21 (x, y; t) =

2 ∑(xi ,yj ;tk)∈I1∩O(l) εijk
[

f (xi, yj; tk)− f−(xτ , yτ ; tτ)
]
Kijk

∑(xi ,yj ;tk)∈O(l) Kijk
−

(D1 + op(1))∑(xi ,yj ;tk)∈I1∩O(l) εijkKijk

∑(xi ,yj ;tk)∈O(l) Kijk
−

(D2 + op(1))∑(xi ,yj ;tk)∈I1∩O(l) εijk
xi−x

hx
Kijk

∑(xi ,yj ;tk)∈O(l) Kijk
−

(D3 + op(1))∑(xi ,yj ;tk)∈I1∩O(l) εijk
yj−y

hy
Kijk

∑(xi ,yj ;tk)∈O(l) Kijk
−

(D4 + op(1))∑(xi ,yj ;tk)∈I1∩O(l) εijk
tk−t

ht
Kijk

∑(xi ,yj ;tk)∈O(l) Kijk
,

where D1, D2, D3 and D4 are constants. By similar arguments for (A1), we can conclude
that

A(l)
21 = op(1).

Similarly, we have
A(l)

22 = op(1).

So,
A(l)

2 = op(1). (A7)

By similar arguments to those about Proposition 1, we have∣∣∣∣ 1
NH ∑

(xi ,yj ;tk)∈O(l)

Kijk −
1
2

∣∣∣∣ = o(1).
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For a function φ(x, y; t) satisfying the condition that supx2+y2+t2≤1 |φ(x, y; t)| ≤ bφ < ∞,348

we can have349 ∣∣∣∣ 1
NH ∑

(xi ,yj ;tk)∈I1 ⋂O(l)

φ(
xi − x

hx
,

yj − y
hy

;
tk − t

ht
)Kijk −

1
NH ∑

(xi ,yj ;tk)∈I1 ⋂ Õ(l)

φ(
xi − x

hx
,

yj − y
hy

;
tk − t

ht
)Kijk

∣∣∣∣
≤ bφ||K||

1
NH ∑

(xi ,yj ;tk)∈O(l)∆Õ(l)

1

= o(1),
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where O(l)∆Õ(l) = (O(l) ⋃ Õ(l)) \ (O(l) ⋂ Õ(l)). The last equation above is a direct350

conclusion of (9). By the above results, we have351

A(l)
3 (x, y; t) =

2
NH ∑

(xi ,yj ;tk)∈O(l)

[
f (xi, yj; tk)− â(l) − b̂(l)(xi − x)− (A8)

ĉ(l)(yj − y)− d̂(l)(tk − t)
]2

Kijk

=
2

NH ∑
(xi ,yj ;tk)∈O(l)

[
f (xi, yj; tk)− f−(xτ , yτ ; tτ)− dτ B0l −

dτ B1l
ξ200

xi − x
hx

−

dτ B2l
ξ020

yj − y
hy

− dτ B3l
ξ002

tk − t
ht

]2

Kijk + op(1)

=
2

NH

(
∑

(xi ,yj ;tk)∈I1∩O(l)

+ ∑
(xi ,yj ;tk)∈I2∩O(l)

)
[

f (xi, yj; tk)− f−(xτ , yτ ; tτ)− dτ B0l −
dτ B1l
ξ200

xi − x
hx

−

dτ B2l
ξ020

yj − y
hy

− dτ B3l
ξ002

tk − t
ht

]2

Kijk + op(1)

=
2

NH

(
∑

(xi ,yj ;tk)∈I1∩Õ(l)

+ ∑
(xi ,yj ;tk)∈I2∩Õ(l)

)
[

f (xi, yj; tk)− f−(xτ , yτ ; tτ)− dτ B0l −
dτ B1l
ξ200

xi − x
hx

−

dτ B2l
ξ020

yj − y
hy

− dτ B3l
ξ002

tk − t
ht

]2

Kijk + op(1)

=
2

NH ∑
(xi ,yj ;tk)∈I1∩Õ(l)

[
− dτ B0l −

dτ B1l
ξ200

xi − x
hx

−

dτ B2l
ξ020

yj − y
hy

− dτ B3l
ξ002

tk − t
ht

]2

Kijk +

2
NH ∑

(xi ,yj ;tk)∈I2∩Õ(l)

[
dτ − dτ B0l −

dτ B1l
ξ200

xi − x
hx

−

dτ B2l
ξ020

yj − y
hy

− dτ B3l
ξ002

tk − t
ht

]2

Kijk + op(1)

= 2d2
τ

∫ ∫ ∫
Q(1l)

[
B0l +

B1l
ξ200

u +
B2l
ξ020

v +
B3l
ξ002

w
]2

K(u, v)K(w)dudvdw +

2d2
τ

∫ ∫ ∫
Q(2l)

[
1− B0l −

B1l
ξ200

u− B2l
ξ020

v− B3l
ξ002

w
]2

K(u, v)K(w)dudvdw

+op(1)

= d2
τ(C

(l)
τ )2 + op(1),
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where352

C(l)
τ =

(
2
∫ ∫ ∫

Q(1l)

[
B0l +

B1l
ξ200

u +
B2l
ξ020

v +
B3l
ξ002

w
]2

K(u, v)K(w)dudvdw +

2
∫ ∫ ∫

Q(2l)

[
1− B0l −

B1l
ξ200

u− B2l
ξ020

v− B3l
ξ002

w
]2

K(u, v)K(w)dudvdw

)1/2

.

Then by equation (A6)-(A8), we have

e(l)(x, y; t) = σ2 + d2
τ(C

(l)
τ )2 + op(1).

Similarly, we can prove that

e(x, y; t) = σ2 + d2
τ(Cτ)

2 + op(1),

where353

Cτ =

( ∫ ∫ ∫
Q(1)

[
ξ
(2)
000 +

ξ
(2)
100

ξ200
u +

ξ
(2)
010

ξ020
v +

ξ
(2)
001

ξ002
w
]2

K(u, v)K(w)dudvdw +

∫ ∫ ∫
Q(2)

[
1− ξ

(2)
000 −

ξ
(2)
100

ξ200
u−

ξ
(2)
010

ξ020
v−

ξ
(2)
001

ξ002
w
]2

K(u, v)K(w)dudvdw
)1/2

.
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The main difference between this case and the previous case in the proof is in the354

derivation of the result of (19). For e(x, y; t), the corresponding result is355

A3(x, y; t) =
1

NH ∑
(xi ,yj ;tk)

[
f (xi, yj; tk)− â(x, y; t)− b̂(x, y; t)(xi − x)−

ĉ(x, y; t)(yj − y)− d̂(x, y; t)(tk − t)
]2

Kijk

=
1

NH ∑
(xi ,yj ;tk)

[
f (xi, yj; tk)− f−(xτ , yτ ; tτ)− dτξ

(2)
000 −

dτξ
(2)
100

ξ200

xi − x
hx

−

dτξ
(2)
010

ξ020

yj − y
hy

−
dτξ

(2)
001

ξ002

tk − t
ht

]2

Kijk + op(1)

=
1

NH

(
∑

(xi ,yj ;tk)∈I1

+ ∑
(xi ,yj ;tk)∈I2

)
[

f (xi, yj; tk)− f−(xτ , yτ ; tτ)− dτξ
(2)
000 −

dτξ
(2)
100

ξ200

xi − x
hx

−

dτξ
(2)
010

ξ020

yj − y
hy

−
dτξ

(2)
001

ξ002

tk − t
ht

]2

Kijk + op(1)

=
1

NH ∑
(xi ,yj ;tk)∈I1

[
− dτξ

(2)
000 −

dτξ
(2)
100

ξ200

xi − x
hx

−

dτξ
(2)
010

ξ020

yj − y
hy

−
dτξ

(2)
001

ξ002

tk − t
ht

]2

Kijk +

1
NH ∑

(xi ,yj ;tk)∈I2

[
dτ − dτξ

(2)
000 −

dτξ
(2)
100

ξ200

xi − x
hx

−

dτξ
(2)
010

ξ020

yj − y
hy

−
dτξ

(2)
001

ξ002

tk − t
ht

]2

Kijk + op(1)

= d2
τ

∫ ∫ ∫
Q(1)

[
ξ
(2)
000 +

ξ
(2)
100

ξ200
u +

ξ
(2)
010

ξ020
v +

ξ
(2)
001

ξ002
w
]2

K(u, v)K(w)dudvdw +

d2
τ

∫ ∫ ∫
Q(2)

[
1− ξ

(2)
000 −

ξ
(2)
100

ξ200
u−

ξ
(2)
010

ξ020
v−

ξ
(2)
001

ξ002
w
]2

K(u, v)K(w)dudvdw

+op(1)

= d2
τ(Cτ)

2 + op(1).

Appendix A.4 Proof of Theorem 3356

For the case when (x, y; t) ∈ Ωh \ Jh, the estimator f̂ (x, y; t) is one of â(x, y; t),357

â(1)(x, y; t), â(2)(x, y; t) and (â(1)(x, y; t) + â(2)(x, y; t))/2, all of which are consistent358

estimators of f (x, y; t). So, we have the result in the theorem.359

For the case when (x, y; t) ∈ Jh \ Sh, it is easy to see that we have either i) e(x, y; t) =360

σ2 + d2
τ(Cτ)2 + op(1), e(1)(x, y; t) = σ2 + op(1), and e(2)(x, y; t) = σ2 + d2

τ(C
(2)
τ )2 +361

op(1), or ii) e(x, y; t) = σ2 + d2
τ(Cτ)2 + op(1), e(1)(x, y; t) = σ2 + d2

τ(C
(1)
τ )2 + op(1), and362

e(2)(x, y; t) = σ2 + op(1). In both cases, we have D(x, y; t) = d2
τ(Cτ)2 + op(1). Therefore,363

asymptotically D(x, y; t) > u. Since e(1)(x, y; t) < e(2)(x, y; t) in i), the estimator f̂ (x, y; t)364

is â(1)(x, y; t) in this case, which is a consistent estimator of f (x, y; t). A similar result365

follows in the case ii).366
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