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Abstract

Juvenile idiopathic arthritis (JIA) is a chronic disease. During its “high disease activity

(HDA)” stage, JIA can cause severe pain, and thus could seriously affect patients’ physical and

psychological health. Early detection of the HDA stage of JIA can reduce the damage of the

disease by treating it at an early stage and alleviating the painful experience of the patients.

So far, no effective cure of JIA has been found, and one major goal of disease management is

to improve patients’ quality of life. To this end, patients’ health-related quality of life scores

are routinely collected over time from JIA patients. In this paper, we demonstrate that a new

statistical methodology called dynamic screening system (DySS) is effective for early detection

of the HDA stage of JIA. By this approach, a patient’s health-related quality of life scores

are monitored sequentially, and a signal is given by DySS once the longitudinal pattern of the

scores is found to be significantly different from the pattern of patients with low disease activity.

Dimension reduction of the observed health-related quality of life scores and the corresponding

impact on the performance of DySS are also discussed.

Key Words: Juvenile idiopathic arthritis; Longitudinal data; Online monitoring; Quality of

life; Statistical process control; Model selection.

1 Introduction

Juvenile idiopathic arthritis (JIA) is a common chronic rheumatic disease among children and

adolescents (cf., Giancane et al. 2016). It can cause physical pain, disability, and even morbidity,
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and thus affects patients’ daily life and well-being in a significant way. Currently, the etiology of

JIA is still unknown, and no effective treatments have been found. Therefore, a main objective

of JIA disease management and treatment is to alleviate symptoms and improve patients’ overall

quality of life (cf., Consolaro et al. 2016).

In the past few years, numerous outcome measures have been proposed to assess JIA children’s

condition. First proposed in Consolaro et al. (2009), the juvenile arthritis disease activity score

(JADAS) is a composite score based on four sub-measures. In the literature, the validity of JADAS

has been clinically investigated by different researchers (cf., Mcerlane et al. 2013), and JADAS

was shown to be more effective than measures based solely on counting disease-active joints (cf.,

Wu et al. 2016). However, to obtain a JADAS score, patients need to visit clinics for their disease

status to be evaluated by physicians. Furthermore, calculation of JADAS also involves a blood

test, which would usually take a day or two for results. Thus, it is often inconvenient to obtain

the JADAS score in a routine basis. On the other hand, health-related quality of life (HRQOL)

scores have been found to be the most relevant patient-reported outcomes (PROs) for assessment

of patients’ suffering from chronic diseases, including JIA (cf., Mańczak et al. 2016). HRQOL

is a comprehensive and multi-dimensional concept that encompasses physical, mental, emotional,

and social elements associated with health (cf., WHOQOL Group, 1998). Among several other

instruments for evaluating HRQOL, pediatric quality of life inventory (PedsQL) is a commonly

used questionnaire-based model for evaluating quality of life of patients aging between 2 to 18 (cf.,

Varni et al. 2002a). PedsQL generic core scales (version 4.0) measure the overall quality-of-life

from four different dimensions suggested by the World Health Organization. PedsQL rheumatology

module (version 3.0) is another approach designed specifically to study the quality of life of JIA

children (cf., Varni et al. 2002b). Compared to clinical assessment by physicians, HRQOL can

measure certain factors that may be overlooked by physicians, such as medication side effects, fear

of injections, and missed school (cf., Weiss et al. 2013), and is easier to use for self-reporting and

self-monitoring purposes.

Among all JIA patients, those at the “high disease activity (HDA)” stage suffer significantly
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more from the disease. Thus, it is important to distinguish them from other patients early on. To

this end, a traditional approach is based on the JADAS scores. As discussed above, this approach

is often time consuming, costly, and inconvenient to patients, because it is based on clinic visits and

blood tests. In comparison, HRQOL scores are easier and more economic to collect. Therefore, a

natural research question is whether JIA patients at the HDA stage can be detected early based on

the observed HRQOL scores. Recent research in a new statistical area, called dynamic screening

system (DySS), makes it possible for us to answer this question (Qiu and Xiang 2014, 2015, Li and

Qiu 2016, 2017, Qiu et al. 2018). By a DySS approach, the longitudinal pattern of the HRQOL

scores for JIA patients at the “low disease activity (LDA)” stage can be first estimated properly

from a dataset containing observed HRQOL scores of JIA patients whose LDA status has been

confirmed by the traditional JADAS scores. This dataset is called an in-control (IC) dataset in this

paper and the estimated longitudinal pattern is called the regular longitudinal pattern, to make

the terminologies consistent with those in the statistical process control (SPC) literature (cf., Qiu

2014). Then, the observed HRQOL scores of a new JIA patient are monitored sequentially, and

their longitudinal pattern is compared to the regular longitudinal pattern over time. A signal will

be given once the cumulative difference between the two longitudinal patterns exceeds a threshold

value, and the specific JIA patient is declared to be at the HDA status after receiving the signal. In

this paper, we propose several modifications of some existing DySS methods for the JIA application,

and compare their performance using a real JIA data and some simulation studies.

The remaining parts of the article are organized as follows. Some existing DySS methods and

their modifications are first introduced briefly in Section 2. Then, a JIA dataset is analyzed by

these DySS methods in Section 3. Some simulation results are provided in Section 4 to further

evaluate their numerical performance. Finally, some remarks conclude the article in Section 5.

2 A Brief Description of the DySS Approach

The DySS approach consists of two major steps. First, the regular longitudinal pattern of the pre-

dictors (i.e., the HRQOL scores in the JIA problem) is estimated using longitudinal data modeling.
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Then, for a specific patient, the standardized difference between his/her longitudinal pattern of

the predictors and the estimated regular pattern is monitored sequentially by a control chart and

a signal will be given by the chart once the cumulative difference exceeds a threshold. These two

steps are described briefly below in two subsections.

2.1 Estimation of the regular longitudinal pattern of the predictors

Assume that the IC dataset contains observed longitudinal data of the q-dimensional vector of

predictors, y, and the observed data follow the model

yi(tij) = µ(tij) + εi(tij), for j = 1, 2, . . . ,mi, i = 1, 2, . . . , n, (1)

where tij ∈ [0, T ] is the jth observation time of the ith patient, µ(tij) = (µ1(tij), . . . , µq(tij))
′ is

the mean of yi(tij) = (yi,1(tij), . . . , yi,q(tij))
′, and εi(tij) is a vector of random noise. The data

observed from different patients are assumed to be independent, and the ones from a same patient

are assumed to be correlated with the correlation matrix function being Cov(εi(s), εi(t)) = Σ(s, t) =

(σk1k2(s, t))k1,k2=1,...,q, for s, t ∈ [0, T ]. The regular longitudinal pattern of yi(t) is then described

by µ(t) and Σ(s, t).

By the nonparametric estimation approach suggested in Xiang et al. (2013) for multivariate

longitudinal data modeling, µ(t) can be estimated by

µ̂(t) = β̂′(Iq×q ⊗ e1), (2)

where

β̂ =

[
n∑
i=1

(Iq×q ⊗Xi)
′Wi(Iq×q ⊗Xi)

]−1 [ n∑
i=1

(Iq×q ⊗Xi)
′WiYi

]
,

Iq×q is the q × q identity matrix, e1 = (1, 0, . . . , 0)′ is the q-dimensional unit vector, Wi =

diag{Kij , j = 1, . . . ,mi}, Kij = diag{K((tij − t)/hl)/hl, l = 1, . . . , q}, {hl} are properly cho-

sen bandwidths, K(u) = 3(1 − u2)I(|u| ≤ 1)/4 is the Epanechnikov kernel function, Xi are

the mi × 2 design matrices with the first column being (1, . . . , 1)′ and the second column be-

ing ((ti1 − t), . . . , (timi − t))′, and Yi = (yi,1(ti1), . . . , yi,1(timi), . . . , yi,q(ti1), . . . , yi,q(timi))
′. Let
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ε̂i(tij) = yi(tij)−µ̂(tij) = (ε̂ij,1, . . . , ε̂ij,q)
′ be the residuals. Then, the (k1, k2)-th element σk1,k2(s, t)

of Σ(s, t) can be estimated by the following kernel estimator

σ̂k1,k2(s, t) =

∑n
i=1

∑mi
j1=1

∑mi
j2=1 ε̂ij1,k1 ε̂ij2,k2K((tij1 − s)/gl1)K((tij2 − t)/gl2)∑n

i=1

∑mi
j1=1

∑mi
j2=1K((tij1 − s)/gl1)K((tij2 − t)/gl2)

, (3)

where {gl, l = 1, . . . , q} are bandwidths that could be chosen different from {hl, l = 1, . . . , q}.

Selection of the bandwidths has been discussed in detail in Qiu and Xiang (2015).

2.2 Online dynamic monitoring

There are several different versions of DySS for online monitoring of a new patient. Some major

ones are described below. The DySS procedure discussed in Qiu and Xiang (2014) is for univariate

cases when q = 1. In such cases, there is a single predictor y(t). Assume that y(t) is observed at

times t∗1, t
∗
2, . . . ∈ [0, T ] for a new patient under monitoring, where the observation times {t∗1, t∗2, . . .}

could be different from those in the IC data (cf., model (1)). Then, the standardized observations

are defined by

ej =
y(t∗j )− µ̂(t∗j )

σ̂(t∗j )
, for j = 1, 2, . . . , (4)

where µ̂(t∗j ) and σ̂(t∗j ) =
√

Σ̂(t∗j , t
∗
j ) are obtained from (2) and (3). To detect a downward mean

shift in y(t), we can use the following downward CUSUM charting statistic

C−j = min{0, C−j−1 + ej + k}, for j ≥ 1, (5)

where C−0 = 0, and k > 0 is an allowance constant. The chart gives a signal when C−j < ρC , for

some control limit ρC < 0. The corresponding upward and two-sided CUSUM charts can be defined

similarly. Because we are mainly interested in detecting low HRQOL scores in the JIA data, the

downward CUSUM chart is focused in this paper. From (4) and (5), it can be seen that the CUSUM

chart (5) uses the cumulative difference between the estimated regular longitudinal pattern of y(t)

described by µ̂(t∗j ) and σ̂(t∗j ) and the observed longitudinal pattern of the new patient, and gives a

signal when the cumulative difference exceeds the control limit ρC downward. From (5), it can also

be seen that the CUSUM chart has the re-starting mechanism that its charting statistic is reset to

0 each time when the cumulative difference by the current time t∗j suggests no downward shift in
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the mean of y(t), implied by the fact that C−j−1 + ej ≥ −k. This re-starting mechanism makes the

CUSUM chart possess some good theoretical properties (Moustakides 1986).

Instead of the CUSUM chart (5), some researchers prefer to use the exponentially weighted

moving average (EWMA) chart defined by

Ej = λej + (1− λ)Ej−1, for j ≥ 1, (6)

where E0 = 0, and λ ∈ (0, 1] is a weighting parameter. The chart gives a signal of downward mean

shift in y(t) at the time t∗j if Ej < ρE , where ρE < 0 is a control limit. Mathematically, the EWMA

chart (6) is easy to study because Ej is a weighted average of {e1, e2, . . . , ej}. In the literature, it

has been well demonstrated that it has a comparable performance to the CUSUM chart (5) if its

weighting parameter λ is chosen properly (cf., Section 5.2.3, Qiu 2014).

The charts (5) and (6) are deveoped mainly for cases when the observation distribution is

normal. When the observation distribution is non-normal, there are a number of nonparametric

control charts available in the literature. See a recent overview on this topic in Qiu (2018). Here, we

adapt the Wilcoxon rank-sum based nonparametric EWMA chart by Li et al. (2010) to the DySS

problem, which is described below. Let R = {eij : eij = [yi(tij) − µ̂(tij)]/σ̂(tij), j = 1, . . . ,mi, i =

1, . . . , n} be the set of standardized observations of the patients in the IC data, and nR =
∑n

i=1mi

be its cardinality. To detect a downward shift in y(t), we first calculate the rank of the standardized

observation ej of the patient under monitoring in the dataset R, by Wj =
∑

r∈R I(ej ≥ r) + 1. The

quantity Wj is also called the Wilcoxon rank-sum statistic of ej in comparison with R. Then, the

following EWMA charting statistic is considered:

Ẽj = λ(Wj − µ̃Wj )/σ̃Wj + (1− λ)Ẽj−1 for j ≥ 1, (7)

where Ẽ0 = 0, λ ∈ (0, 1] is a weighting parameter, µ̃Wj = (nR + 1)/2 is the IC mean of Wj , and

σ̃2Wj
= nR(nR + 2)/12 is its IC variance. The chart gives a signal at time t∗j if Ẽj < ρẼ , where ρẼ

is a control limit.

In multivariate cases when q > 1, Qiu and Xiang (2015) suggested using the following multi-
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variate EWMA chart:

Ej = λej + (1− λ)Ej−1, for j ≥ 1, (8)

where E0 = 0, ej is the standardized observation defined by

ej = Σ̂(t∗j , t
∗
j )
−1/2 [y(t∗j )− µ̂(t∗j )

]
, for j = 1, 2, . . . ,

and λ ∈ (0, 1] is a weighting parameter. The chart gives a signal at t∗j if

2− λ
λ

E′jEj > ρM , (9)

where ρM > 0 is a control limit. Like many other multivariate SPC charts, the chart (8)-(9)

is designed for detecting mean shifts in all directions. In the JIA example discussed in Section

1, however, we are mainly concerned about cases when one or more components of y(t) have

lower mean values, compared to the estimated regular longitudinal pattern obtained from the IC

data. For this reason, we can consider an alternative chart for detecting one-sided shifts. Let

ej = (ej,1, . . . , ej,q)
′, and

Ej,k = λej,k + (1− λ)Ej−1,k, for j ≥ 1, and k = 1, . . . , q, (10)

where E0,k = 0. Then, the chart gives a signal at t∗j if mink=1,...,q Ej,k < ρO, where ρO < 0 is

a pre-specified control limit. This chart (10) is different from the one by Woodall and Ncube

(1985) in that the former accounts for the between variable correlation by transforming the original

observations y(t) into the standardized observations e(t∗j ) = Σ̂(t∗j , t
∗
j )
−1/2(y(t∗j )− µ̂(t∗j )), which are

uncorrelated among the q components, while the latter does not.

To accommodate serial data correlation, Li and Qiu (2016,2017) proposed to decorrelate serial

observations by Cholesky decomposition before monitoring the standardized observations. The one

by Li and Qiu (2016) is on univariate cases, which is briefly described below. For multivariate cases,

see Li and Qiu (2017). In univariate cases when q = 1, let εj = (ε(t∗1), . . . , ε(t
∗
j ))
′ be the vector

of all random errors in model (1) by the current time point t∗j . Its estimated variance-covariance

matrix is denoted as Σ̂jj , where

Σ̂jj =

Σ̂j−1,j−1 σ̂j−1,j

σ̂′j−1,j σ̂jj

 , for j ≥ 2.
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Then, the standardized observations e1, . . . , ej are defined by
e1 = ε̂(t∗1)/d1

ej =
−σ̂′j−1,jΣ̂

−1
j−1,j−1ε̂j−1 + ε̂(t∗j )

dj
, for j ≥ 2,

where d1 =

√
Σ̂11, dj =

√
σ̂jj − σ̂′j−1,jΣ̂

−1
j−1,j−1σ̂j−1,j , for j ≥ 2, and ε̂j = (ε̂(t∗1), . . . , ε̂(t

∗
j ))
′ are the

residuals of the estimated model of (1). It has been confirmed in Li and Qiu (2016) that e1, . . . , ej are

asymptotically uncorrelated with a common mean of 0 and a common variance of 1. The CUSUM

chart (5) can then be applied to the decorrelated data e1, e2, . . .. Similarly, in multivariate cases

when q ≥ 2, the EWMA charts (8)-(9) and (10) can be applied to the decorrelated observations.

In the literature, Fricker (2007) suggested a one-sided multivariate CUSUM chart for disease

screening. That CUSUM chart was modified from the one by Crosier (1986), and it was designed

for cases when the IC mean was a constant over time. Next, we modify that one-sided CUSUM

chart in the framework of DySS for detecting downward shifts, and the modified chart will be

considered in the analysis of JIA data discussed in the next section. Let S0 = 0, and for j ≥ 1,
Sj = 0, if Cj ≤ k,

Sj = min
{

(Sj−1 + y(t∗j )− µ̂(t∗j ))(1− k/Cj),0
}
, otherwise,

(11)

where min is an element-wise operator (i.e., taking the minimum of the corresponding elements of

the vectors), Cj = [(Sj−1 + y(t∗j ) − µ̂(t∗j ))
′Σ̂(t∗j , t

∗
j )
−1(Sj−1 + y(t∗j ) − µ̂(t∗j ))]

1/2, k is an allowance

constant, and µ̂(t) and Σ̂(s, t) are the estimated IC mean vector and IC correlation matrix function

obtained from (2) and (3). The chart gives a signal if
[
S′jΣ̂(t∗j , t

∗
j )
−1Sj

]1/2
> ρF for a pre-specified

control limit ρF . Unlike the original one-sided multivariate CUSUM chart by Fricker (2007), this

chart (11) has taken into account the dynamic nature of the IC process distribution and the between-

variable correlation. At the same time, it keeps the one-sided nature of the chart in Fricker (2007)

that it is sensitive to the downward shift in each component of y(t∗j ) only.
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3 Application to a JIA data

3.1 The JIA data

The JIA data were obtained from a prospective cohort study of the Cincinnati Children’s Hospital

that included 530 young JIA patients of 2-16 years old. Those who would suffer severely from the

medical diagnoses of JIA disease conditions have been excluded from the study. Patients’ disease

conditions were evaluated using the JADAS approach that included the following four measures:

(i) physician’s global assessment of disease activity, (ii) parent global assessment of well-being,

(iii) erythrocyte sedimentation rate (ESR), and (iv) a count of joints with active disease up to a

maximum of ten joints. The version of JADAS used in the study is usually referred to as JADAS10

in the literature. All four measures in JADAS were scaled to the range of 0 to 10, with 0 being

the best and 10 being the worst. The JADAS score is defined to be the summation of the four

measures; thus, it ranges between 0 and 40.

Patients’ health-related quality of life (HRQOL) was evaluated over time using the PedsQL

generic core scales (version 4.0) and the PedsQL rheumatology module (version 3.0). The PedsQL

generic core scales are designed for measuring the core health dimensions outlined by the World

Health Organization, including the following four dimensions: physical functioning, emotional func-

tioning, social functioning, and school functioning (cf., Varni et al. 2002a). A total score is cal-

culated by averaging the four sub-scores. The PedsQL rheumatology module is a disease-specific

module that considers five disease-related dimensions, including pain and hurt, daily activities,

treatment, worry, and communication (cf., Varni et al. 2002a). A rheumatology total score is also

calculated by averaging the five sub-scores. All PedsQL scores range from 0 to 100, with higher

scores indicating better HRQOL.

Varni et al. (2002b) and Weiss et al. (2013) have observed association between PedsQL generic

core scales and rheumatology module. Varni et al. (2002b) also explored the possibility to use the

rheumatology module for detecting clinical condition changes over time. They believed that the

rheumatology module should be more sensitive to patients’ health conditions since it was developed
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for measuring the HRQOL dimensions that were specifically related to JIA. Seid et al. (2009) also

found some correlation between JIA disease activity and HRQOL, although they could not explain

a considerable remaining variation in HRQOL. Other related research in the literature includes

those in Weiss et al. (2013) and Seid et al. (2014) for exploring the possible relationship between

HRQOL and the JIA medical condition and certain nonmedical factors, such as self-efficacy, coping

with pain, barriers to adherence, social support, and parental distress. However, all these existing

research is retrospective, and there does not exist a single method for prospective online monitoring

of JIA patients’ medical condition from their HRQOL scores yet. We will show in the next part

that the recent statistical methodology DySS can serve that purpose well.

3.2 Detection of JIA high disease activity by DySS

In the JIA data, all 530 patients have been diagnosed to have JIA. Some patients’ JIA conditions

were more severe than those of the others. As discussed in Section 1, there are no existing medical

treatments that can cure JIA completely, and the current disease management and treatment is

mainly for alleviating the disease symptoms and improving patients’ quality of life. To this end,

it is important to know whether the disease condition of a JIA patient is in high disease activity

(HDA) stage or in low disease activity (LDA) stage, because the corresponding strategy for disease

management and treatment would be different for different disease conditions. Based on data of

“more than 9,000 patients with JIA from 118 pediatric rheumatology centres in 49 countries,”

Consolaro et al. (2017) suggested using the 75th percentile of the JADAS scores as a cut point

for defining the HDA and LDA disease conditions for two major JIA disease types oligoarthritis

and RF-negative polyarthritis. Namely, JIA patients with the top 25 percent of JADAS scores are

classified as being in HDA disease condition and the remaining 75 percent are classified as being in

LDA disease condition. This classification method has been commonly used in the literature. By

this method, the cut points of the JADAS scores for these two disease types are found to be 16.4 and

18.9, respectively. In this paper, we use the same approach to find the cut point of the combination

of all remaining JIA disease types, and the cut point is found to be 19.0. The remaining JIA

10



disease types are considered as a collection here because each individual type is quite rare. A JIA

patient is classified into the LDA group if s/he is never in the HDA status in the entire follow-up

period. Of all 530 JIA patients, 62 of them have missing JADAS scores. Thus, they are excluded

from our data analysis. Among the remaining 468 patients, by using the classification approach

described above, 342 are classified into the LDA group and 126 are classified into the HDA group.

To apply the DySS approaches discussed in Section 2, we need an IC dataset for estimating the

regular longitudinal pattern. To this end, we randomly select half JIA patients (i.e., 171 patients)

from all 342 patients in the LDA group, and the data of the selected 171 patients are used as the

IC data. The data of the remaining 171 patients in the LDA group and the 126 patients in the

HDA group are used as test data. In this section, patients in the LDA group are called IC patients,

and those in the HDA group are called out-of-control (OC) patients, to make the terminologies

consistent with those in the SPC literature (cf., Qiu 2014). Figure 1 shows the observed HRQOL

scores for both the IC and OC patients, along with their means ± standard errors (the blue and red

shaded regions in the plots). From the plots, it can be seen that the mean HRQOL scores of the

IC patients are higher than those of the OC patients, implying that the observed HRQOL scores

indeed carry useful information about the disease condition of the JIA patients.

Now, we apply the DySS procedures discussed in Section 2 to the JIA data. For a given DySS

procedure with a fixed control limit, its performance can be evaluated by the true positive rate

(TPR) and the false positive rate (FPR), where TPR is defined to be the proportion of OC patients

who receive signals from the related control chart, and FPR is defined to be the proportion of IC

patients who receive signals from the control chart. More specifically, let D = 0 denote an IC

patient, D = 1 denote an OC patient, S = 0 denote the patient who does not receive any signal

from the control chart, and S = 1 denote the patient who receives a signal. Then, for a given

control limit ρ, TPR(ρ) = P(S = 1|D = 1) and FPR(ρ) = P(S = 1|D = 0). When ρ changes, the

curve of the pair (FPR(ρ),TPR(ρ)) is called the receiver operating characteristic (ROC) curve in

the literature (e.g., Pepe 2010). The area under the curve (AUC) refers to the area under the ROC

curve that can be computed by AUC =
∫ 1
0 TPR(FPR−1(x)) dx. In medical diagnosis, ROC curve

is a popular tool for evaluating the performance of a diagnostic (or classification) method, or for
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Figure 1: Each plot shows the HRQOL scores of the IC and OC patients observed over time, where

blue dashed lines are for IC patient and red solid lines are for OC patients. The IC and OC means

and their standard errors are denoted by the blue and red shaded regions. Plots in the first row

are for the generic measures and their total (1st column), and those in the second row are for the

rheumatology measures and their total (1st column).

comparing two diagnostic methods. By this tool, the DySS method is better than random guessing

if its AUC is larger than 0.5, and it performs better if its AUC value is larger.

First, we consider the univariate CUSUM chart (5), the univariate EWMA chart (6), their

corresponding versions after serial data decorrelation, and the nonparametric EWMA chart (7).

These five charts are denoted as QX-CUSUM, QX-EWMA, LQ-CUSUM, LQ-EWMA, and NP-

EWMA, respectively. These charts are used for monitoring the JIA disease status from either

the generic total score or the rheumatology total score. In the two CUSUM charts, the allowance

constant is chosen to be 0.1, 0.2 and 0.5. The weighting parameter λ is also chosen to be 0.1, 0.2

and 0.5 in the three EWMA charts. For each chart, its AUC value is estimated using bootstrap,

described briefly below. Assume that there are n0 IC patients and n1 OC patients in the test data.

Then, we draw with replacement n0 patients from the IC patients and n1 patients from the OC

patients. The patients chosen constitute a bootstrap sample. Then, an estimate of AUC can be
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Table 1: Estimates of AUC values and the corresponding standard errors (in parentheses) of the

five charts QX-CUSUM, QX-EWMA, LQ-CUSUM, LQ-EWMA, and NP-EWMA when monitoring

the generic total scores and the rheumatology total scores of the JIA patients in the test data.

QX-EWMA QX-CUSUM LQ-EWMA LQ-CUSUM NP-EWMA

λ = k = 0.1 Generic 0.6114 (0.0013) 0.6289 (0.0012) 0.5811 (0.0015) 0.5776 (0.0012) 0.6073 (0.0013)

Rheumatology 0.6381 (0.0012) 0.6401 (0.0011) 0.6102 (0.0015) 0.5883 (0.0011) 0.6379 (0.0012)

λ = k = 0.2 Generic 0.6122 (0.0013) 0.6257 (0.0012) 0.5823 (0.0015) 0.5791 (0.0012) 0.6087 (0.0013)

Rheumatology 0.6401 (0.0012) 0.6383 (0.0011) 0.6084 (0.0015) 0.5861 (0.0011) 0.6388 (0.0012)

λ = k = 0.5 Generic 0.6170 (0.0013) 0.6226 (0.0012) 0.5872 (0.0015) 0.5837 (0.0011) 0.6145 (0.0013)

Rheumatology 0.6446 (0.0012) 0.6405 (0.0011) 0.6133 (0.0015) 0.6004 (0.0011) 0.6434 (0.0012)

computed from the bootstrap sample after the corresponding ROC curve is computed, as described

above. This process is repeated 1000 times, and 1000 estimated values of AUC can be obtained

accordingly. The average of the 1000 estimated values of AUC is used as the final estimate of

AUC, and the standard error of the final estimate can be computed as well. The results of the

five charts are presented in Table 1. From the table, it can be seen that the AUC values of all

five methods are larger than 0.5, implying that they all have certain ability in monitoring the JIA

disease status. Among the five methods, the charts QX-CUSUM, QX-EWMA and NP-EWMA

perform better than the charts LQ-EWMA and LQ-CUSUM, and NP-EWMA performs slightly

worse than QX-EWMA. The reasoning behind this phenomenon has been demonstrated in You and

Qiu (2018) that the data decorrelation involved in the charts LQ-EWMA and LQ-CUSUM would

attenuate a potential shift in the observed data and consequently reduce the effectiveness of the

charts. The ROC curves of the five charts QX-CUSUM, LQ-CUSUM, QXEWMA, LQ-EWMA and

NP-EWMA are shown in Figure 2. From the plots in the figure, it can be seen that QX-CUSUM,

QX-EWMA and NP-EWMA have an overall better performance than LQ-EWMA and LQ-CUSUM

in this example, although the difference between their ROC curves is quite small. This result is

consistent with those in Table 1.

Next, we consider using some multivariate DySS procedures discussed in Section 2, because the

original HRQOL data contain a total of 9 PedsQL measures, with 4 in the generic core scales and
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Figure 2: ROC curves of the charts QX-CUSUM, LQ-CUSUM, QX-EWMA, LQ-EWMA, and

NP-EWMA when λ = k = 0.1, 0.2 or 0.5 for monitoring the JIA disease status from the generic

total scores or the rheumatology total scores. The dotted diagonal lines denote the ROC curves of

random guessing.

5 in the rheumatology module. Before these procedures are applied to all observed data, we should

first consider removing some PedsQL measures that are minimally associated with the disease

condition of JIA patients. The main reason why we perform this variable selection analysis is that

it would not lose much useful information for monitoring the JIA disease condition by removing the

PedsQL measures that are minimally associated with the disease condition, and that it can reduce

variability in the observed data and make online monitoring of the observed data more effective.

For the purpose of variable selection, half of the 126 JIA patients with HDA disease condition

are randomly selected and combined with the 171 JIA patients with LDA disease condition in the
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IC data to form training data. Then, variable selection is performed using the training data. To

this end, let zi(tij) be a binary indicator, with zi(tij) = 1 denoting the ith patient in the training

data being in HDA disease condition at time tij , and zi(tij) = 0 otherwise. Then, we consider the

mixed-effect logistic regression model

logit
[

P(zi(tij) = 1)
]

= β0 + β′yi(tij) + αi,

where β0 is the intercept term, β is the q-dimensional regression coefficient, logit{x} = log{x/(1−

x)} is the logit link function, and αi ∼ N(0, τ2) is the random-effect term. Let l(β0,β, τ) be

the log likelihood function, and q0 be the number of non-zero elements in β. Then, the Akaike

information criterion (AIC) of the model is defined as −2l(β0,β, τ) + 2(q0 + 2), which is also the

default variable selection criterion in the R package lme4. By the backward elimination procedure

using AIC as the variable selection criterion, the results are shown in Table 2. From the table,

it can be seen that the final model selected by this variable selection procedure is obtained after

Step 6 with the minimum AIC value of 136.388. This final model contains three measures in the

PedsQL rheumatology module: “pain and hurt”, “daily activities”, and “treatment.” This result

is consistent with the findings in Varni et al. (2002b) that “pain and hurt” and “daily activities”

were consistent with the JIA disease symptoms as causal indicators of HRQOL, and that “pain and

hurt” was most responsive to JIA clinical changes.

To check whether the selected final model discussed above would provide the best prediction

of the JIA disease condition, we consider using different numbers of PedsQL measures in the

multivariate DySS methods. For a given number of PedsQL measures, the variables considered

will be based on the ordering provided by Table 2. For instance, if only two PedsQL measures are

considered, then we will use the variables “pain and hurt” and “daily activities.” If three PedsQL

measures are considered, then “pain and hurt”, “daily activities”, and “treatment” are chosen,

and so forth. This is reasonable because Table 2 presents the results of the backward elimination

variable selection procedure, the variables are deleted sequentially according to their association

with the response, and the variables less associated with the response would be deleted earlier. The

multivariate DySS methods considered here include the chart (8)-(9) (denoted as QX-2S), the chart
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Table 2: The removed HRQOL measure in each step of the backward elimination variable selection

procedure, along with the AIC value of the resulting model. The variables selected by the variable

selection procedure are marked by asterisks. The smallest AIC value is displayed in bold.

Step Removed variable AIC after removal

1 Social functioning sub-scale 143.682

2 Physical functioning sub-scale 142.029

3 Communication sub-scale 140.442

4 Worry sub-scale 139.201

5 Emotional functioning sub-scale 137.927

6 School functioning sub-scale 136.388

7 Treatment sub-scale* 137.650

8 Daily activities sub-scale* 144.103

9 Pain and hurt sub-scale* 174.393

(10) (denoted as QX-1S), their respective version based on data de-correlation by Li and Qiu (2017)

(denoted as LQ-2S and LQ-1S), the method by simultaneously monitoring individual variables using

the univariate EWMA chart (2) (denoted as SIMUL), the method by simultaneously monitoring

individual variables using the nonparametric EWMA chart (7) (denoted as NP-SIMUL), and the

one-sided multivariate CUSUM chart (11) (denoted as MCUSUM). In each of these charts, the

weighting parameter λ or the allowance constant k is chosen to be λ = k = 0.1, 0.2 and 0.5. The

results of their AUC values, computed by the bootstrap procedure with the bootstrap sample size of

1000, are presented in Table 3. From the table, we can have the following conclusions. First, LQ-2S

and LQ-1S are less effective than QX-2S and QX-1S, which is consistent with the results of Table 1

in univariate cases. Second, QX-1S is more effective than QX-2S. This is reasonable because QX-

1S is designed for detecting downward shifts only while QX-2S is designed for detecting arbitrary

shifts. In the current JIA example, OC patients have relatively low PedsQL measures, compared

to the IC patients, as shown in Figure 1. Third, it seems that SIMUL, NP-SIMUL and MCUSUM

perform well in this example, and MCUSUM is slightly better than the other two methods. Note

that SIMUL, NP-SIMUL and MCUSUM are designed for detecting downward shifts. SIMUL and

NP-SIMUL ignore the association among individual variables during sequential monitoring, while
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MCUSUM takes into account the association in its charting statistic, which explains why MCUSUM

is a bit more effective. Fourth, QX-1S, SIMUL, NP-SIMUL and MCUSUM perform the best when

the selected final model discussed in Table 2 is used (i.e., “dim=3” in Table 3). So, it seems that

it is helpful for detecting HDA in JIA by deleting certain PedsQL measures that are minimally

associated with the JIA disease conditions. Also, by comparing the results in Tables 1 and 3, it

can be seen that it is generally more effective to use multiple PedsQL measures to detect HDA in

JIA.

To further demonstrate the benefits of removing certain predictors when monitoring the JIA

disease status, Figure 3 shows the ROC curves of the four charts QX-1S, SIMUL, NP-SIMUL, and

MCUSUM, which have relatively good results in Table 3, in cases when they use all 9 PedsQL

measures and when they use the 3 PedsQL measures “pain and hurt”, “daily activities”, and

“treatment” in the final selected model only. It can be seen from the plots of Figure 3 that the

performance of the four charts is generally improved after the 6 PedsQL measures that are minimally

associated with the JIA disease status are removed from sequential monitoring.

4 Simulation Studies

In the previous section, the performance of different multivariate DySS methods are evaluated

using the JIA data. To further compare their performance, we present some simulation results

in this section. In the simulation study, q = 10 dimensions of patient-reported outcomes (e.g.,

HRQOL scores in the JIA example) are sequentially collected for n patients. The outcomes of the

ith patient, denoted as yi(t) = (yi,1(t), . . . , yi,q(t))
′, are assumed to follow the longitudinal model

yi(t) = µ(t) + εi(t), for t ∈ [0, T ], where µ(t) = (µ1(t), . . . , µq(t))
′, and µj(t) = log(1 + 0.001t) for

each j. The error term εi(t) is assumed to be εi(t) = υi + εi,0(t), where υi is a time-independent

random effect term that introduces both between-subject and within-subject correlation, and εi,0(t)

can be interpreted asis the pure measurement error. To be more specific, let υi follow a multivariate
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Table 3: Bootstrap estimates of AUC values and their standard errors (in parentheses) of different

multivariate DySS methods. Dim denotes the number of variables considered in the multivariate

DySS methods. Numbers in bold denote the largest numbers in individual columns.

Dim QX-2S LQ-2S QX-1S LQ-1S SIMUL NP-SIMUL MCUSUM

λ, k = 0.1

2 0.5968 (0.0017) 0.5438 (0.0013) 0.6310 (0.0017) 0.5755 (0.0014) 0.6403 (0.0017) 0.6308 (0.0016) 0.6411 (0.0016)

3 0.5912 (0.0018) 0.5425 (0.0013) 0.6346 (0.0015) 0.5597 (0.0017) 0.6487 (0.0015) 0.6338 (0.0015) 0.6543 (0.0014)

4 0.6135 (0.0018) 0.5513 (0.0015) 0.6234 (0.0017) 0.5674 (0.0016) 0.6299 (0.0016) 0.6202 (0.0016) 0.6403 (0.0015)

5 0.5984 (0.0021) 0.5458 (0.0021) 0.5761 (0.0021) 0.5547 (0.0018) 0.5919 (0.0017) 0.5938 (0.0017) 0.6081 (0.0017)

6 0.6031 (0.0020) 0.5918 (0.0022) 0.6050 (0.0018) 0.5608 (0.0020) 0.6081 (0.0017) 0.5931 (0.0017) 0.6198 (0.0018)

7 0.5777 (0.0015) 0.5456 (0.0025) 0.6142 (0.0017) 0.5370 (0.0020) 0.6121 (0.0017) 0.6006 (0.0017) 0.6288 (0.0017)

8 0.5814 (0.0015) 0.5279 (0.0022) 0.6053 (0.0016) 0.5205 (0.0017) 0.6103 (0.0017) 0.5974 (0.0017) 0.6256 (0.0016)

9 0.5828 (0.0017) 0.5354 (0.0021) 0.5864 (0.0018) 0.5290 (0.0013) 0.5973 (0.0017) 0.5961 (0.0016) 0.6071 (0.0020)

λ, k = 0.2

2 0.5947 (0.0017) 0.5413 (0.0014) 0.6338 (0.0017) 0.5769 (0.0014) 0.6432 (0.0016) 0.6306 (0.0017) 0.6419 (0.0016)

3 0.5859 (0.0017) 0.5435 (0.0013) 0.6348 (0.0015) 0.5609 (0.0017) 0.6514 (0.0015) 0.6352 (0.0015) 0.6538 (0.0014)

4 0.6091 (0.0017) 0.5505 (0.0016) 0.6238 (0.0017) 0.5700 (0.0017) 0.6335 (0.0016) 0.6221 (0.0017) 0.6417 (0.0015)

5 0.5922 (0.0023) 0.5491 (0.0019) 0.5742 (0.0023) 0.5522 (0.0018) 0.5967 (0.0017) 0.5947 (0.0017) 0.6079 (0.0018)

6 0.6035 (0.0020) 0.5887 (0.0022) 0.6057 (0.0019) 0.5613 (0.0020) 0.6115 (0.0018) 0.5943 (0.0017) 0.6176 (0.0019)

7 0.5777 (0.0015) 0.5437 (0.0025) 0.6178 (0.0016) 0.5372 (0.0020) 0.6136 (0.0017) 0.6016 (0.0017) 0.6257 (0.0018)

8 0.5858 (0.0015) 0.5277 (0.0022) 0.6073 (0.0016) 0.5208 (0.0017) 0.6107 (0.0018) 0.5986 (0.0017) 0.6241 (0.0016)

9 0.5870 (0.0016) 0.5354 (0.0021) 0.5878 (0.0018) 0.5294 (0.0013) 0.5987 (0.0017) 0.5947 (0.0016) 0.6064 (0.0020)

λ, k = 0.5

2 0.5856 (0.0017) 0.5460 (0.0014) 0.6325 (0.0016) 0.5842 (0.0015) 0.6394 (0.0016) 0.6314 (0.0018) 0.6379 (0.0016)

3 0.5920 (0.0016) 0.5562 (0.0014) 0.6348 (0.0015) 0.5681 (0.0018) 0.6534 (0.0015) 0.6451 (0.0015) 0.6539 (0.0014)

4 0.6094 (0.0019) 0.5558 (0.0016) 0.6211 (0.0019) 0.5707 (0.0017) 0.6405 (0.0015) 0.6322 (0.0015) 0.6439 (0.0015)

5 0.6190 (0.0017) 0.5571 (0.0016) 0.5758 (0.0026) 0.5606 (0.0014) 0.6086 (0.0017) 0.6081 (0.0016) 0.6113 (0.0018)

6 0.6220 (0.0017) 0.5870 (0.0021) 0.6025 (0.0023) 0.5622 (0.0018) 0.6209 (0.0017) 0.6083 (0.0017) 0.6170 (0.0020)

7 0.5772 (0.0016) 0.5416 (0.0023) 0.6165 (0.0017) 0.5340 (0.0020) 0.6219 (0.0016) 0.6146 (0.0016) 0.6266 (0.0018)

8 0.5824 (0.0015) 0.5288 (0.0021) 0.6051 (0.0017) 0.5205 (0.0016) 0.6171 (0.0018) 0.6112 (0.0016) 0.6238 (0.0017)

9 0.5757 (0.0016) 0.5359 (0.0019) 0.5831 (0.0019) 0.5304 (0.0012) 0.5997 (0.0018) 0.6027 (0.0016) 0.6055 (0.0020)
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Figure 3: ROC curves of the charts QX-1S, SIMUL, NP-SIMUL, and MCUSUM when λ = k = 0.1,

0.2 or 0.5 for monitoring the JIA disease status from all 9 PedsQL measures (dashed curves, Dim=9)

or from the 3 PedsQL measures “pain and hurt”, “daily activities”, and “treatment” (solid curves,

Dim=3) in the final selected model of the model selection procedure (cf., Table 2). The dotted

diagonal lines denote the ROC curves of random guessing, presented as references.
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and εi,0(t) be realizations of independent normal random vectors with mean 0 and covariance matrix

Iq×q. The disease activity scores are assumed to be associated with the first 3 patient-reported

outcome variables through the model

ξi(tij) = −yi,1(tij)− yi,2(tij)− yi,3(tij) + ε̃i(tij),

where ξi(tij) denotes the observed disease activity score of the ith patient at tij , and ε̃i(tij) is an

error term. Let γ be the cutoff value for defining disease activity status. Namely, a patient is said

to be in high disease activity if ξi(tij) ≥ γ, and in low disease activity otherwise. The observation

times are generated by ti,j − ti,j−1 = ∆i,j , for i = 1, . . . , n and j = 1, . . . ,mi, where ti,0 = 0, {∆i,j}

are generated independently from the Poisson distribution with the mean of 100. All observation

times are assumed to be in the design interval [0, 3000]. Here, 3000 is chosen because it is close to

the length of 3395 of the study period in the JIA data example. Similarly, the mean value 100 of

{∆i,j} is chosen to be close to the mean distance of 78.6 days between two consecutive observation

times in the JIA data example.

In the simulation study, the sample size n is chosen to be 100 or 200, the weighting parameter λ

of the EWMA charts is chosen to be 0.1, 0.2 or 0.5, the allowance constant k of the CUSUM charts

is chosen to be 0.1, 0.2 or 0.5, and the cutoff value γ for defining activity status is chosen to be the

50th or 75th percentiles of {ξi(tij)}. The variable selection procedure described in Section 3.2 is

used to delete certain outcome variables before online monitoring. All DySS methods considered

are used for monitoring 1,000 simulated new patients. All simulations are repeated for 100 times.

The AUC values of different methods are presented in Table 4. In the table, “Full” represents the

case where all the q patient-reported outcomes are monitored, while “Reduced” represents the case

where only the ones selected by the variable selection procedure are monitored. From the table, it
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can be seen that i) variable selection indeed improves the performance of DySS methods in terms of

AUC in all cases considered, ii) one-sided control charts out-perform their two-sided counterparts

in most cases considered, iii) QX-1S, SIMUL, NP-SIMUL and MCUSUM still demonstrate good

performance in most cases considered, and iv) MCUSUM is a little bit more efficient than the others

in terms of AUC. All these results are consistent with the those in the JIA example discussed in

Section 3.

5 Concluding Remarks

JIA in its HDA stage can seriously affect patients’ physical and psychological health. Because no

effective cure of JIA has been found, it is important to detect the HDA stage for a JIA patient early

so that proper disease management and treatment can be made in a timely fashion to alleviate

the disease symptoms and improve patients’ overall quality of life. To this end, the traditional

approach based on the JADAS scores is often time consuming, costly, and inconvenient to patients.

Instead, PedsQL measures are much more convenient to obtain. In the previous sections, we have

shown that the recent statistical methodology DySS is effective to detect the HDA disease status

for JIA patients by sequentially monitoring the PedsQL measures of a JIA patient. To improve

the performance of a DySS procedure, we suggested removing certain PedsQL measures that are

minimally associated with the JIA disease conditions by a variable selection procedure. Among

several different versions of DySS, QX-1S, SIMUL, NP-SIMUL and MCUSUM are recommended,

among which MCUSUM seems to have a little bit better performance. There still are some issues

that need to be addressed in our future research. For instance, in variable selection, we delete

a variable completely if the resulting model has a smaller AIC value. An alternative approach

is to use a weighted average of all variables with the ones less associated with the JIA disease

conditions receiving less weights. It is unknown to us whether this alternative approach would be

more effective. Also, the current paper evaluates the performance of a DySS procedure using the

false positive rate and the true positive rate in terms of the area under the ROC curve. Some

alternative performance measures (e.g., the trimmed area under the ROC curve) are possible. It is
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Table 4: AUC values and their standard errors (in parantheses) of different multivariate DySS

methods in the simulation study. “Full” represents the case where all the q patient-reported out-

comes are monitored, while “Reduced” represents the case where only the ones selected by the

variable selection procedure are monitored.

n k, λ Model QX-2S LQ-2S QX-1S LQ-1S SIMUL NP-EWMA MCUSUM

0.50 percentile

Full 0.708 (0.002) 0.568 (0.003) 0.790 (0.001) 0.608 (0.003) 0.815 (0.001) 0.807 (0.001) 0.854 (0.001)
0.1

Reduced 0.761 (0.003) 0.741 (0.004) 0.842 (0.002) 0.754 (0.005) 0.850 (0.001) 0.850 (0.001) 0.881 (0.001)

Full 0.706 (0.002) 0.567 (0.003) 0.796 (0.001) 0.600 (0.003) 0.821 (0.001) 0.814 (0.001) 0.854 (0.001)
0.2

Reduced 0.760 (0.003) 0.734 (0.003) 0.841 (0.001) 0.742 (0.004) 0.849 (0.001) 0.849 (0.001) 0.881 (0.001)

Full 0.697 (0.002) 0.562 (0.002) 0.795 (0.001) 0.594 (0.003) 0.821 (0.001) 0.819 (0.001) 0.854 (0.001)

100

0.5
Reduced 0.744 (0.003) 0.686 (0.003) 0.834 (0.001) 0.703 (0.004) 0.843 (0.001) 0.843 (0.001) 0.881 (0.001)

Full 0.710 (0.002) 0.563 (0.002) 0.791 (0.001) 0.616 (0.003) 0.816 (0.000) 0.807 (0.001) 0.854 (0.000)
0.1

Reduced 0.763 (0.003) 0.694 (0.003) 0.841 (0.002) 0.727 (0.003) 0.849 (0.001) 0.849 (0.001) 0.881 (0.001)

Full 0.709 (0.002) 0.563 (0.002) 0.797 (0.001) 0.609 (0.002) 0.822 (0.000) 0.814 (0.000) 0.854 (0.000)
0.2

Reduced 0.762 (0.003) 0.691 (0.003) 0.841 (0.001) 0.717 (0.003) 0.849 (0.001) 0.849 (0.001) 0.881 (0.001)

Full 0.700 (0.002) 0.553 (0.002) 0.797 (0.001) 0.597 (0.002) 0.822 (0.001) 0.819 (0.000) 0.854 (0.000)

200

0.5
Reduced 0.746 (0.002) 0.649 (0.002) 0.834 (0.001) 0.683 (0.003) 0.843 (0.001) 0.843 (0.001) 0.880 (0.001)

0.75 percentile

Full 0.705 (0.002) 0.544 (0.002) 0.805 (0.001) 0.576 (0.003) 0.837 (0.001) 0.833 (0.000) 0.874 (0.000)
0.1

Reduced 0.751 (0.003) 0.702 (0.003) 0.845 (0.001) 0.711 (0.004) 0.857 (0.001) 0.858 (0.001) 0.890 (0.001)

Full 0.698 (0.002) 0.543 (0.002) 0.805 (0.001) 0.558 (0.003) 0.838 (0.000) 0.837 (0.000) 0.874 (0.000)
0.2

Reduced 0.747 (0.003) 0.704 (0.003) 0.840 (0.001) 0.697 (0.004) 0.853 (0.001) 0.855 (0.001) 0.890 (0.001)

Full 0.690 (0.002) 0.544 (0.002) 0.796 (0.001) 0.560 (0.002) 0.831 (0.001) 0.833 (0.001) 0.874 (0.000)

100

0.5
Reduced 0.730 (0.003) 0.674 (0.003) 0.836 (0.001) 0.677 (0.003) 0.850 (0.001) 0.852 (0.001) 0.890 (0.001)

Full 0.707 (0.002) 0.538 (0.002) 0.807 (0.001) 0.581 (0.002) 0.838 (0.000) 0.834 (0.000) 0.875 (0.000)
0.1

Reduced 0.752 (0.002) 0.669 (0.003) 0.846 (0.001) 0.691 (0.003) 0.858 (0.001) 0.859 (0.001) 0.890 (0.001)

Full 0.700 (0.002) 0.538 (0.002) 0.806 (0.001) 0.561 (0.002) 0.839 (0.000) 0.838 (0.000) 0.875 (0.000)
0.2

Reduced 0.748 (0.002) 0.674 (0.003) 0.841 (0.001) 0.679 (0.003) 0.854 (0.001) 0.855 (0.001) 0.890 (0.001)

Full 0.693 (0.002) 0.537 (0.001) 0.797 (0.001) 0.560 (0.002) 0.833 (0.000) 0.834 (0.000) 0.874 (0.000)

200

0.5
Reduced 0.731 (0.002) 0.653 (0.002) 0.836 (0.001) 0.664 (0.003) 0.851 (0.001) 0.852 (0.001) 0.890 (0.001)
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worth studying the performance of different DySS procedures under such alternative performance

measures. The CUSUM and EWMA control charts used in the DySS procedures depend on the

parameters k and λ. In the SPC literature, it is well known that smaller values of k and λ are

good for detecting smaller shifts while larger values of k and λ are good for detecting larger shifts.

However, in the JIA application, it is usually unknown to us how the HRQOL scores of the JIA

patients at the HDA status would deviate from the mean scores of the JIA patients at the LDA

status. Thus, selection of these parameters could be difficult. Several existing methods to overcome

this difficulty will be considered in our future research. For example, Sparks (2001) proposed an

adaptive CUSUM chart that continually adjusted the parameter k after the shift size is estimated

at each observation time point. Qiu et al. (2018) proposed a hybrid method by combing a set of

admissible values for the parameter λ in the EWMA chart.
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