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Abstract

Many diseases can be prevented or treated if they can be detected early or signaled before

their occurrence. Disease early detection and prevention (DEDAP) is thus important for health

improvement of our society. Traditionally, people are encouraged to check their health conditions

regularly so that readings of relevant medical indices can be compared with certain threshold

values and any irregular readings can trigger further medical tests in order to find root causes or

diseases. One limitation of such traditional DEDAP methods is that they focus mainly on the

data collected at the current time point and historical data are not fully used. Consequently,

irregular longitudinal pattern of the medical indices could be neglected and certain diseases could

be left undetected. In this paper, we suggest a novel and effective new method for DEDAP.

To detect a disease by this method, a patient’s risk to the disease is first quantified at each

time point, and then the longitudinal pattern of the risk is monitored sequentially over time. A

signal will be triggered by a large cumulative difference between the longitudinal risk pattern of

the patient under monitoring and the longitudinal risk pattern of a typical person without the

disease in concern. Both theoretical arguments and numerical studies show that it works well

in practice.

Key Words: Disease early detection; Longitudinal data; Online monitoring; Risk factors; Se-

quential test; Statistical process control.

1 Introduction

Many diseases (e.g., chronic diseases) can be prevented or treated if they can be detected early.

Disease early detection and prevention (DEDAP) is thus a critically important research problem in

public health and medical research. To this end, past medical research has discovered major risk

factors for many different diseases. For instance, the discovered major risk factors of cardiovascular
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diseases (CVDs) include high blood pressure, high cholesterol level, obesity, tobacco use, lack of

physical activity, diabetes, unhealthy diet, age, family history, and more (e.g., Mendis et al. 2011).

After the major risk factors of a disease are found, medical doctors/researchers can use them for

disease prediction and diagnostics. Most current methods for this purpose compare the readings of

the risk factors of a given patient collected at a given time point cross-sectionally with those of a

properly chosen healthy population. These methods, however, have not made use of all history data

of the given patient. This paper aims to develop a novel and effective new statistical method for

DEDAP, which effectively combines cross-sectional comparisons between the given patient and the

healthy population and sequential monitoring over time of a properly quantified risk to a disease

in question of the given patient. Thus, both the data collected at the current time point and all

history data are used in the new method; consequently, the disease can be detected effectively.

Because of its importance mentioned above, there has been a tremendous amount of existing

research on DEDAP. Much of the existing research is on finding relevant disease risk factors (e.g.,

Radbill et al. 2008, Ridker 2003). For certain diseases with signs and symptoms (e.g., breast

cancer, stroke), some research focuses on increasing the awareness of early signs and symptoms

(e.g., Hubbard et al. 2014, Robb et al. 2009). For high-risk populations of a given disease,

systematic application of screening tests is especially important. In such cases, more frequent tests

would increase success rates of disease diagnoses. But, they would increase the medical cost as well.

So, there have been debates in the literature about the real benefits of certain disease early detection

measures, e.g., breast cancer detection using mammograms (Kattlove et al. 1995). To balance the

diagnostic success rate and medical cost, much research has devoted to the “optimal” design of

sampling schemes for the screening tests (e.g., Cohn et al. 2003, Lee et al. 2004, Zelen 1993). After

data are collected about certain disease risk factors, almost all existing diagnostic methods compare

the observed readings of a given patient with some threshold values. For instance, the resting blood

pressure would be diagnosed abnormal if the systolic blood pressure (SBP) is at least 140 or the

diastolic blood pressure (DBP) is at least 90. These threshold values are usually obtained from

observed data of a healthy population. Therefore, these diagnostic methods actually try to detect

diseases by comparing the readings of certain disease risk factors of a given patient cross-sectionally

with the readings of a healthy population.

The traditional diagnostic methods mentioned above to compare the observed readings of a

given patient with some threshold values are related to the longitudinal data analysis (LDA) in
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the statistical literature. By an LDA method, we can construct confidence intervals for the mean

functions of the disease risk factors at different time points from an observed longitudinal dataset

of a properly chosen healthy population. The constructed confidence intervals can be used for

describing the regular longitudinal pattern of the disease risk factors. Some existing methods for

constructing such confidence intervals include Chen and Jin (2005), Li (2011), Liang and Zeger

(1986), Lin and Carroll (2001), Ma et al. (2012), Wang (2003), Xiang et al. (2013), and Zhao

and Wu (2008). However, these LDA methods are retrospective and cannot be used for prospective

monitoring of disease risk factors. Because they determine the disease status based on the observed

data at the current time point only, they are generally ineffective in detecting diseases early. Another

statistical research area related to DEDAP is statistical process control (SPC), which is mainly for

sequential monitoring of production lines in manufacturing industries. By a SPC chart, we can

sequentially monitor disease risk factors of each patient, and a signal can be triggered as soon

as the chart detects a shift in the longitudinal pattern of the disease risk factors of the patient

from an in-control (IC) status to an out-of-control (OC) status (cf., Hawkins and Olwell 1998,

Qiu 2014). However, a conventional SPC chart cannot be applied to the DEDAP problem directly

for the following reason. In a typical SPC problem, the distribution of process observations is

assumed to be unchanged over time when the process is IC. In the DEDAP problem, however, this

distribution can change over time (e.g., the mean total cholesterol level of a healthy person would

change with age). To overcome this difficulty, Qiu and Xiang (2014, 2015) suggested modifications

of the conventional SPC charts so that the modified charts can be used in cases with time-varying

IC process distributions. The major idea behind the modifications is that the regular longitudinal

pattern of the disease risk factors can first be estimated from a dataset of a healthy population,

and then observations of a person under monitoring can be standardized by the estimated regular

longitudinal pattern before a control chart is applied. For different versions of the modifications to

address different issues (e.g., serial data correlation), see papers such as Li and Qiu (2016, 2017),

Li et al. (2018), Liang et al. (2017), Qiu et al. (2018), and You and Qiu (2019). For a new

performance measure of these DEDAP methods, see Qiu et al. (2019).

In this paper, we suggest a novel and effective new method for DEDAP. Existing methods

discussed above are either ineffective because they are retrospective (e.g., the LDA methods) or

improper to use because of their assumption of time-independent IC process distribution (e.g.,

the conventional SPC charts). The modified SPC charts, such as the ones in Qiu and Xiang
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(2014, 2015), are ineffective because they sequentially monitor all standardized disease risk factors

simultaneously, no matter whether some of them cannot actually provide useful information for

predicting the occurrence of the disease in question. To effectively monitor the disease risk factors

of a person, our suggested new method first quantifies the risk to the disease in question at each

time point, based on observations of the original disease risk factors. During the risk quantification

process, the original disease risk factors are weighted differently according to their relevance to

the disease. Then, the quantified risk to the disease is monitored sequentially over time. Both

theoretical arguments and numerical studies show that this new method indeed provides an effective

tool for disease early detection.

The remainder of the article is organized as follows. Our proposed new method is described

in detail in Section 2. Its numerical performance is evaluated in Section 3. A real-data example

for demonstrating its application is discussed in Section 4. Several remarks conclude the article in

Section 5. Some technical details are provided in Appendix.

2 Proposed Method

Our proposed method consists of two steps. A survival model is first fitted from a training data, by

which the risk to a disease in question can be estimated. Then, the estimated risk to the disease is

monitored sequentially and a signal is triggered if the cumulative risk over time exceeds a threshold

value. A detailed description of the proposed method is given below.

2.1 Risk estimation by survival modelling

Assume that a training data contains observations of n individuals. For each individual, the

following survival and longitudinal data are observed. First, let Ti be the last follow-up time

of the ith individual, δi be the indicator whether a disease is observed at Ti, and Di be the true

disease occurrence time, for i = 1, 2, . . . , n. Then, define Ti = min{Di, Ci} and δi = I(Di ≤ Ci),

where Ci denotes the censoring time. Second, for the q disease risk factors in xi(t), they are

observed at times {ti1, ti2, . . . , timi}, where these observation times may not be equally spaced in

the study period [0, T ] and timi = Ti. Finally, let zi be a vector of p time-independent covariates

representing baseline measurements that can explain the heterogeneity of the population. These
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observed training data are assumed to follow the Cox proportional hazards model

λi(t) = λ0(t) exp(β′xi(t) + γ ′zi), for t ∈ [0, T ], (1)

where λi(t) is the hazard rate function of the ith individual, λ0(t) is the baseline hazard function,

and β and γ are respectively q-dimensional and p-dimensional vectors of coefficients. From (1),

it can be seen that the hazard ratio λi(t)/λ0(t) of the ith person is an increasing function of

β′xi(t) + γ ′zi, in which β′xi(t) represents the contribution of the risk factors in xi(t) and γ ′zi

explains the heterogeneity among different individuals. Because our research goal is to detect

the disease in question early by monitoring the risk factors in xi(t), we focus mainly on the part

ri(t) = β′xi(t), which is called the risk function of the ith individual here. For simplicity of

presentation, let R(t) = {i : Ti ≥ t} denote the set of people at risk at time t, yi(t) = I(Ti ≥ t)

indicate whether the ith individual is at risk at time t, and θ = (β′,γ ′)′ be the set of all parameters

in the model (1).

Next, we discuss estimation of the model (1). Because the observation times {ti1, ti2, . . . , timi}

of xi(t) could be unequally spaced and xi(t) are only observed at {ti1, ti2, . . . , timi}, if the model (1)

is fitted as usual by the conventional partial likelihood estimation, then xi(t) has to be interpolated

or extrapolated at some observed disease occurrence times of other people in the training data. A

naive solution is to impute xi(t) by the last-observation-carried-forward method, by which xi(t) at

an unobserved time is imputed by its last observed value. However, this method will not guarantee

an unbiased estimate for β when xi(t) are not piecewise constant or when {ti1, ti2, . . . , timi} are

sparsely distributed. In the literature, there are some existing discussions about different strategies

to extrapolate xi(t) (cf., Lin and Ying 1993, Paik and Tsai 1997). However, these methods need to

assume that xi(t) are completely observed in an interval, which is invalid in the current problem.

When xi(t) follows a parametric longitudinal model, some people suggested methods for joint

modeling of the survival and longitudinal data (e.g., Dupuy et al. 2006), but the assumed parametric

longitudinal model is often hard to justify in practice. In this paper, we suggest a kernel smoothing

method for a consistent estimation of β without imposing a parametric assumption on xi(t). In

the literature, kernel smoothing methods have been found useful in estimating time-varying effects

in the Cox proportional hazards modeling framework (e.g., Cai and Sun 2003, Yu and Lin 2010),

where time-dependent covariates are usually assumed to be observable at any time point in [0, T ].

Here, we extend the use of kernel smoothing methods to cases when the time-dependent covariates

xi(t) are only observed at several irregularly spaced time points. Details of the proposed estimation
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procedure are given below.

In the conventional partial likelihood estimation procedure, the partial likelihood function is

defined as ∏
i:δi=1

exp(β′xi(Ti) + γ ′zi)∑
l∈R(Ti)

exp(β′xl(Ti) + γ ′zi)
.

This function cannot be used here because many terms in {rl(Ti) = β′xl(Ti)} are not observed, as

discussed above. To overcome this difficulty, we suggest using the following local smoothing partial

likelihood function:

L(θ) =
∏
i:δi=1

exp(β′xi(Ti) + γ ′zi)∑
l∈R(Ti)

∑ml
j=1Khθ(Ti − tlj) exp(β′xl(tlj) + γ ′zl)

, (2)

where Khθ(s) = K(s/hθ)/hθ, K(s) is a density kernel function, and hθ > 0 is a bandwidth. In (2),

{rl(tlj), j = 1, 2, . . . ,ml} are weighted averaged for estimating rl(Ti) and the weights are determined

by the kernel function and the bandwidth. To estimate θ, we can work with the following logarithm

of L(θ):

l(θ) = log(L(θ))

=
∑
i:δi=1

β′xi(Ti) + γ ′zi − log

 ∑
l∈R(Ti)

ml∑
j=1

Khθ(Ti − tlj) exp
(
β′xl(tlj) + γ ′zl

) .

Then, the estimates of θ is defined as

θ̂ = arg max
θ

l(θ). (3)

To compute θ̂ by (3), the following Newton-Raphson iterative algorithm can be used: for j ≥ 0, let

θ̂(j+1) = θ̂(j) −
[
∇2l(θ̂(j))

]−1∇l(θ̂(j)),
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where θ̂(0) =
(
β(0)′,γ(0)′)′ = 0(q+p)×1, and

∇l(θ) =
∑
i:δi=1

[(
xi(Ti)

zi

)
− S1(θ;Ti)

S0(θ;Ti)

]
,

∇2l(θ) = −
∑
i:δi=1

[
S0(θ;Ti)S2(θ;Ti)− S1(θ;Ti)S

′
1(θ;Ti)

[S0(θ;Ti)]2

]
,

S0(θ; t) =
1

n

∑
i∈R(t)

mi∑
j=1

Khθ(t− tij)yi(t) exp(β′xi(tij) + γ ′zi),

S1(θ; t) =
1

n

∑
i∈R(t)

mi∑
j=1

Khθ(t− tij)yi(t) exp(β′xi(tij) + γ ′zi)

(
xi(tij)

zi

)
,

S2(θ; t) =
1

n

∑
i∈R(t)

mi∑
j=1

Khθ(t− tij)yi(t) exp(β′xi(tij) + γ ′zi)

(
xi(tij)

zi

)⊗2

.

In the last expression above, the outer product of a vector x with itself is denoted as x⊗2. The

algorithm stops at the (j + 1)th iteration when ‖θ̂(j+1) − θ̂(j)‖ ≤ ε, where ε > 0 is a small number.

After θ̂ = (β̂′, γ̂ ′)′ is obtained by (3), the estimated risk associated with x(t) is r̂i(t) = β̂′xi(t).

Let µ(t) = E[ri(t)|Ti ≥ t] be the mean risk at t among all people at risk in the training dataset,

and σ2(t) = Var(ri(t)|Ti ≥ t) be the corresponding variance. We can use the following local linear

kernel smoothing procedure to estimate µ(t) and σ2(t) (cf., Qiu and Xiang 2014):

µ̂(t) =
R0(t)Wµ,2(t)−R1(t)Wµ,1(t)

Wµ,0(t)Wµ,2(t)−Wµ,1(t)2
, (4)

σ̂2(t) =
Q0(t)Wσ,2(t)−Q1(t)Wσ,1(t)

Wσ,0(t)Wσ,2(t)−Wσ,1(t)2
, (5)

where ε̂i(tij) = r̂i(tij)− µ̂(tij), and for l = 0, 1, 2,

Wµ,l(t) =
1

n

∑
i∈R(t)

mi∑
j=1

Khµ(tij − t)
(
tij − t
hµ

)l
,

Rl(t) =
1

n

∑
i∈R(t)

mi∑
j=1

Khµ(tij − t)
(
tij − t
hµ

)l
r̂i(tij),

Wσ,l(t) =
1

n

∑
i∈R(t)

mi∑
j=1

Khσ(tij − t)
(
tij − t
hσ

)l
,

Ql(t) =
1

n

∑
i∈R(t)

mi∑
j=1

Khσ(tij − t)
(
tij − t
hσ

)l
ε̂2i (tij),

and hµ, hσ > 0 are two bandwidths.

When computing θ̂, µ̂(t) and σ̂2(t) by (3)-(5), the kernel function K(s) can be chosen to be the

Epanechnikov kernel function K(s) = 0.75(1 − s2)I(|s| ≤ 1), because it has some good properties
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(Epanechnikov 1969). The bandwidths hθ, hµ and hσ can be chosen by the cross-validation (CV)

procedures described below. To choose hθ, we suggest using the following leave-one-out CV score

modified from the one suggested by Tian et al. (2005) that is based on the martingale residuals:

CV θ(hθ) =
n∑
i=1

PE θ
i (hθ),

where PE θ
i (hθ) is the leave-one-out prediction error for the ith subject, defined by

PE θ
i (hθ) =

(
δi −

∑
k 6=i, δk=1
Tk≤Ti

∑mi
j=1Khθ(Tk − tij) exp{β̂′−ixi(tij) + γ̂ ′−izi}∑

d6=k,d∈R(Tk)

∑md
j=1Khθ(Tk − tdj) exp{β̂′−ixd(tdj) + γ̂ ′−izd}

)2

, (6)

and β̂−i and γ̂−i are the estimates of β and γ when the observed data of the ith subject are

excluded from estimation. A detailed derivation of (6) will be given in an appendix. Following Qiu

and Xiang (2014), the CV scores for choosing hµ and hσ are defined by

CV µ(hµ) =
n∑
i=1

mi∑
j=1

(
ε̂i(tij)− µ̂−i(tij)

)2
,

CV σ(hσ) =
n∑
i=1

mi∑
j=1

(
ε̂2i (tij)− σ̂2

−i(tij)
)2
,

where µ̂−i(t) and σ̂2
−i(t) denote the leave-one-out estimates of µ(t) and σ2(t) when the observations

of the ith subject are excluded. Then, hθ, hµ and hσ are chosen by minimizing CV θ(hθ), CV µ(hµ)

and CV σ(hσ), respectively.

Next, we give some statistical properties of the estimators θ̂, µ̂(t) and σ̂2(t). To this end, let

Mi(t) =
∑mi

j=1 I(tij ≤ t) denote the point process for observation times ti1, ti2, . . . , timi of the ith

subject. Then, we have the following results with the proof given in an appendix.

Theorem 1. Assume that (a) {xi(t), zi, Di, Ci,Mi(t)}ni=1 are independent and identically distributed

among n people in the training data, (b) within each person, (xi(t), zi, Di), Ci and Mi(t) are

independent, (c) xi(t) are bounded, predictable and left-adapted q-dimensional random processes

in [0, T ], zi are bounded random variables, and P(Ci ≥ T ) ≥ 0, (d) λ0(t), µ(t), σ2(t) ∈ C2[0, T ],

(e) there exists some positive function φ(t) ∈ C2[0, T ] such that for any 1 ≤ i ≤ n and any

0 ≤ t0 < t1 ≤ Ti,
∫ t1
t0
φ(s) ds = E[

∫ t1
t0
dMi(t)] = E[#{tij : tij ∈ [t0, t1], 1 ≤ j ≤ mi}], (f) let fT (t)

be the marginal probability density of Ti, and fx(x, z, s|t) be the conditional probability density of

(xi(s), zi) among the at-risk population at t, then ∂
∂tfT (t) is continuous in t, and ∂2

∂s2
fx(x, z, s|t) is

continuous in x, z, s and t, (g) the kernel function K(s) ∈ C2[−1, 1] is continuous and symmetric
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about 0 with support [−1, 1], and (h) the bandwidths hθ, hµ and hσ satisfy the conditions that

hθ, hµ, hσ → 0, and
√
nhθ,

√
nhµ,

√
nhσ →∞, as n→∞. Then, we have

(i) limn→∞ θ̂
p
= θ0, where θ0 = (β′0,γ

′
0)′ denotes the true value of θ,

(ii) limn→∞ supt∈[hµ,T −hµ] |µ̂(t)− µ(t)| p= 0, and

(iii) limn→∞ supt∈[hσ ,T −hσ ] |σ̂2(t)− σ2(t)| p= 0.

At the end of this part, we would like to point out that model (1) assumes that the impact

of the risk factors in xi(t) and the covariates in zi does not change over time. If it is believed

that such impact may change over time, then the following time-varying coefficient model might

be more appropriate (cf. Zucker and Karr 1990, Hastie and Tibshirani 1993):

λi(t) = λ0(t) exp(β′(t)xi(t) + γ ′(t)zi), for t ∈ [0, T ], (7)

where β(t) and γ(t) are time-varying coefficients. Let θ(t) = (β′(t),γ ′(t))′. There exists some

discussion about estimation of model (7) using the generalized additive modelling (e.g. Hastie and

Tibshirani 1993), smoothing splines (e.g. Zucker and Karr 1990), and local likelihood estimation

(e.g. Cai and Sun 2003) in cases when both the covariates and the risk factors do not change over

time or when they are continuously observed. To follow the idea in estimating the model (1) above,

we propose a kernel estimation procedure to deal with irregularly spaced observation times, which

can also accommodate time-varying coefficients. First, define the following local log-likelihood

function

l(θ, t) = l(β,γ, t)

=
∑
i:δi=1

Khθ(Ti − t)

β′xi(Ti) + γ ′zi − log

 ∑
l∈R(Ti)

ml∑
j=1

Khθ(Ti − tlj) exp
(
β′xl(tlj) + γ ′zl

) ,

where the related quantities are the same as those in (2). Then, a Newton-Raphson algorithm can

be used to minimize the above function. The resulting estimate of θ(t) is defined as

θ̂(t) = arg max
θ

l(θ, t),

where θ̂(t) = (β̂′(t), γ̂ ′(t))′. The risk function of interest becomes ri(t) = β′(t)xi(t), and the

estimated risk function is thus r̂i(t) = β̂′(t)xi(t). After these modifications, the estimates of µ(t)

and σ2(t) can still be computed by Equations (4) and (5), and the the online risk monitoring scheme

discussed in Section 2.2 below can still apply.
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2.2 Online risk monitoring

Next, we discuss how to online monitor the disease risk of a new person so that the disease in

question can be detected early. Assume that the disease risk factors in x(t) of the person are

observed at times {t∗1, t∗2, . . .}. Then, the disease risks at these time points can be estimated by

r̂(t∗j ) = β̂′x(t∗j ), for j ≥ 1, where β̂ is computed in advance by (3) from the training data. The

standardized risks are defined as

ê(t∗j ) =
r̂(t∗j )− µ̂(t∗j )

σ̂(t∗j )
, for j ≥ 1,

where µ̂(t) and σ̂2(t) are computed in advance from the training data by (4) and (5), respectively.

In the above expression, µ̂(t) and σ̂(t) describe the estimated longitudinal pattern of the disease

risk over time for the population that the training dataset represents, and ê(t) is the standardized

version of the estimated risk of the new person under monitoring, after comparing his/her disease

risk with the mean disease risk of people in the population that is represented by the training data.

So, a larger value of ê(t) implies a larger chance of the disease.

To online monitor the standardized risks {ê(t∗j ), j ≥ 1}, we need to take into account the fact

that the observation times {t∗1, t∗2, . . .} are often unequally spaced. The conventional control charts

in the literature are usually for cases with equally spaced observation times only (cf., Qiu 2014). To

overcome that difficulty and accommodate unequally spaced observation times, we suggest using a

modified exponentially weighted moving average (EWMA) chart described below. Let ω > 0 be a

basic time unit such that all unequally spaced observation times are its integer multiples. Then,

{n∗j = t∗j/ω, j = 1, 2, . . .} are the observation times in the basic time unit. The modified EWMA

chart is defined by

E1 = V (t∗1)ê(t∗1)

Ej = (1− V (t∗j ))Ej−1 + V (t∗j )ê(t
∗
j ), for j ≥ 2, (8)

where V (t∗1) = 1 − (1 − λ)∆̄, V (t∗j ) = V (t∗j−1)/[(1 − λ)∆j + V (t∗j−1)], for j ≥ 2, ∆̄ is the mean

of ∆j = n∗j − n∗j−1 which can be estimated from the training data, and λ ∈ [0, 1) is a weighting

parameter. It can be checked that Ej in (8) is a weighted average of ê(t∗j ), ê(t
∗
j−1), . . . , ê(t∗2), ê(t∗1)

and the weights are proportional to 1, (1 − λ)n
∗
j−n∗

j−1 , . . . , (1 − λ)n
∗
j−n∗

2 , (1 − λ)n
∗
j−n∗

1 , respectively.

Therefore, the weights are controlled by λ and by how far away a previous observation time is from

the current observation time in the basic time unit, which is recommended by Qiu et al. (2018)
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and Wright (1986). So, unequal observation times have been accommodated properly in Ej . In

cases when observation times are equally spaced, the chart (8) becomes the conventional EWMA

chart (i.e., V (t∗j ) is a constant in (8)). The chart (8) gives a signal when

Ej > ρ, (9)

where ρ > 0 is a control limit.

The performance of a control chart is usually measured by the IC average run length (ARL),

defined as the average number of observations from the start of online monitoring to the signal of

the chart, and the OC ARL, defined as the average number of observations from the occurrence

of a shift to the signal of the chart. However, in cases when observation times are unequally

spaced, the IC and OC ARLs would not be good performance measures any more. In such cases,

more reasonable performance measures are the IC average time to signal (ATS), denoted as ATS0,

and the OC ATS, denoted as ATS1. Namely, the average number of observations is replaced by

the average length of time in the related performance measures. Then, ATS0 is usually fixed in

advance, and the chart performs better for detecting a given shift if its ATS1 value is smaller. In

the chart (8)-(9), the weighting parameter λ and the control limit ρ need to be chosen in advance.

To this end, λ is usually pre-specified and ρ is chosen to achieve a given value of ATS0. It has been

demonstrated in the literature that a large value of λ is good for detecting a large shift and a small

value of λ is good for detecting a small shift (e.g., Qiu 2014, Chapter 5). To choose ρ, we can use

the block bootstrap procedure described below, where the block bootstrap is considered because

the within-subject observations are usually correlated. First, the training data with n subjects

are divided into two halves, with all diseased and non-diseased people evenly splitted, respectively.

Second, the first half of the training data is used for estimating β, γ, µ(t) and σ2(t), as discussed

in Section 2.1 (cf., (3)-(5)). The second half of the training data is used for determining the value

of ρ in the following several steps. i) A non-diseased person is randomly selected from the second

half of the training data, and the chart (8)-(9) with a given value of ρ is applied to this person for

online monitoring. If there is a signal, then the time from the beginning of online monitoring to

the signal time is recorded. ii) This process is then repeated for B times, and all times to signals

are averaged. The averaged time to signals is used to approximate ATS0(ρ) value. If ATS0(ρ) is

smaller than the pre-specified ATS0 value, then increase the value of ρ. Otherwise, decrease the

value of ρ. iii) The above two steps are executed iteratively until the pre-specified ATS0 value

is reached. The searched value of ρ is then defined as the one used when the iterative procedure
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stops. In this searching process, a bisection search or other numerical algorithms can be used to

speed up the search. See a related discussion in Section 4.2 of Qiu (2014).

3 Simulation Study

In this section, we will present some numerical results about the proposed risk estimation and

online monitoring methods discussed in the previous section. The results are presented after a brief

description about the simulation setup.

The study time period is assumed to be [0, 1], which is discretized into 1000 basic time units

T = {iω, i = 1, 2, . . . , 1000}, where ω = 0.001. We first considered cases when there are 3 risk

factors in xi(t) and no time-independent covariates zi in the model (1). The risk vector xi(t) is

assumed to follow five different models described below, and the true disease occurrence times Di

are generated from the Cox proportional hazards model (1) with the regression coefficients being

β = (0.5, 0.3, 0.2)′. Here, the method in Hendry (2014) is used for generating survival outcomes

from a Cox proportional hazards model with time-dependent covariates. The risk factors in xi(t)

are assumed to be observed at ti1, ti2, . . . , timi , where ti(j+1) = tij + (Nij + 1)ω and {Nij , j =

1, 2, . . . ,mi, i = 1, 2, . . . , n} are i.i.d. and Poisson(20) distributed (note: the quantity Nij +1 is used

here so that ti(j+1) − tij cannot be 0). The censoring times Ci are generated from the Weibull(5,1)

distribution, where 5 is its shape parameter value and 1 is the scale parameter value.

In the simulation study, we consider three different types of longitudinal models for the risk

vector xi(t) to study the performance of the proposed method in different longitudinal setups.

First, we consider the following mixed-effects model for generating the three IC risk factors in

xi(t) = (xi1(t), xi2(t), xi3(t))′:

xi1(t) = 2t+ ζi1 + (1− 0.5t2)εi1(t)

xi2(t) = − sin(2πt) + ζi2 + (1 + 0.2 sin(3πt))εi2(t)

xi3(t) = log(t+ 1) + ζi3 + (1 + 0.2 cos(3πt))εi3(t),

where the random-effect terms (ζi1, ζi2, ζi3)′ follow the distribution N(0, τ2 Σ) with

Σ =


1 0.25 0

0.25 1 0.25

0 0.25 1

 ,
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τ2 is a parameter, and {εik(t) : i = 1, . . . , n, k = 1, 2, 3, t ∈ T} are i.i.d. and generated from

the standard normal distribution. In the above model, the random-effect terms are considered for

accommodating the within-subject data correlation. Different functions are included as multipliers

of the error terms for accommodating time-varying variability of the pure measurement error. To

allow different magnitudes of within-subject variability, we set τ to be 0.2, 0.3, or 0.4. A constant

baseline hazard λ0(t) = 0.2 is assumed. The corresponding mixed-effects models are labeled as

models Ia, Ib and Ic, respectively, when τ = 0.2, 0.3 and 0.4. By considering these three models

together, we can study the impact of the within-subject variability on the performance of the

proposed method.

Next, we consider the following time-series model for generating xi(t):

xi1(t) = sin(πt)/2 + ζi1(t) + (1− 0.25 cos(3πt))ξi1(t)

xi2(t) = cos(πt)/2 + ζi2(t) + (1 + 0.25 sin(3πt))ξi2(t)

xi3(t) = − sin(πt)/2 + ζi3(t) + (1 + 0.25 cos(3πt))ξi3(t),

where for each k = 1, 2, or 3, {ζik(t), i = 1, 2, . . . , n} are i.i.d. and from the Brownian motions

with the starting values being {ζik(0), i = 1, 2, . . . , n} that all follow the N(0,0.32) distribution and

ζik(s)− ζik(t) follow the N(0,|t− s|) distributions, for any s, t ∈ T, and {ξik(t), i = 1, 2, . . . , n} are

generated from the AR(1) model

ξik(t) = 0.9ξik(t− ω) + 0.5εik(t), for t ∈ T, i = 1, . . . , n, k = 1, 2, 3,

in which {εik(t), i = 1, . . . , n, k = 1, 2, 3, t ∈ T} are i.i.d. and standard normally distributed. In

the above model, the three components of xi(t) are assumed independent. Besides the temporal

trends specified in the first terms of the three equations, the Brownian motions are considered to

add randomness to the temporal paths of the three components of xi(t). A time-varying baseline

hazard λ0(t) = t/2 is assumed. This model is labeled as model II.

Finally, we consider the following non-Gaussian model for generating xi(t):

xi1(t) = 0.3ζi1 + (1− 0.5t2)εi1(t)

xi2(t) = − sin(2πt)/2 + 0.3ζi2 + (1 + 0.25 sin(3πt))εi2(t)

xi3(t) = − cos(2πt)/2 + 0.2ηi3(t) + (1 + 0.25 cos(3πt))εi3(t),

where {εi1(t), εi2(t), i = 1, . . . , n, t ∈ T} and ζi1 are i.i.d. and t10 distributed, {εi3(t), t ∈ T} are

i.i.d. and standard normal, {ζi2} are i.i.d. and Gamma(2,4) distributed, and ηi3(t) are i.i.d. and
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Poisson(1) distributed. A constant baseline hazard λ0(t) = 0.2 is assumed. This model is labeled

as model III.

In all simulation studies in this section, the sample size of the training data is n = 1000. For

online monitoring, the ATS0 and ATS1 values are computed based on 10,000 replicated simulations.

When evaluating the OC performance of the proposed online monitoring procedure, the OC risk

factors are assumed to be

xδ(t) = x(t) + δβ,

where x(t) is the IC risk factors specified in the above five models, and δβ is the vector of step

shift sizes in the three components.

We first report some numerical results about the risk estimation in model (1). Under the five

different models described above, results about estimates of β based on 1,000 replicated simulations

are presented in Table 1. In the model estimation procedure, bandwidths hθ, hµ, and hσ are chosen

by CV, as discussed in Section 2.1. From the table, it can be seen that estimates of β are close to

the true values in all cases considered. The selected bandwidths by CV are presented in Table 2,

together with the optimal bandwidths obtained by minimizing the MSE (for hθ) and MISE (for hµ

and hσ) values. From the table, it can be seen that the selected bandwidths by CV are generally

smaller than their optimal values, but the corresponding MSE or MISE values when the bandwidths

are chosen by CV are close to those when they are chosen optimally. To study this phenomenon,

Figure 1 presents the MSE or MISE values when their related bandwidths change around their

optimal values in all cases considered. It can be seen that the MSE or MISE curves are quite flat

around the optimal values of the bandwidths (denoted by the vertical lines and dark dots in the

plots), and thus the MSE or MISE values at the selected bandwidths by CV (denoted by dark

crosses) are close to their values at the optimal bandwidths. Therefore, the selected bandwidths

by CV perform well in that sense.

Next, we evaluate the numerical performance of the proposed online monitoring chart (7)-(8).

To this end, the DySS method suggested in Qiu and Xiang (2015) is used as a standard. As

discussed in Section 1, the DySS method in Qiu and Xiang (2015), denoted as DySS, monitors all

risk factors in x(t) directly for disease early detection. As a comparison, the proposed method in

the current paper, denoted as New, monitors the estimated risk r̂(t) = β̂′x(t) of a given person at

different time points. In the simulation study, ATS 0 is fixed at 370, and the weighting parameter

14



Table 1: Estimated values of β = (β1, β2, β3)′ and their standard errors (in parentheses) under five

different models of xi(t).

Model β̂1 β̂2 β̂3

(Ia) 0.4878 (0.0028) 0.2843 (0.0021) 0.1957 (0.0023)

(Ib) 0.4887 (0.0027) 0.2900 (0.0021) 0.1925 (0.0022)

(Ic) 0.4887 (0.0027) 0.2882 (0.0020) 0.1967 (0.0022)

(II) 0.5020 (0.0023) 0.2911 (0.0023) 0.1958 (0.0023)

(III) 0.4969 (0.0025) 0.2969 (0.0022) 0.1961 (0.0023)

Truth β1 = 0.5 β2 = 0.3 β3 = 0.2

Table 2: Optimal values of hθ, hµ and hσ, their selected values by the cross-validation procedures,

and the corresponding MSE and/or MISE values.

Model hθ MSE hµ MISE hσ MISE

(Ia) Optimal 0.245 0.0182 0.085 0.2276 0.130 0.0891

Selected 0.170 0.0183 0.045 0.3018 0.070 0.1203

(Ib) Optimal 0.240 0.0169 0.085 0.2960 0.135 0.1085

Selected 0.170 0.0170 0.045 0.3703 0.070 0.1456

(Ic) Optimal 0.245 0.0160 0.085 0.3902 0.140 0.1456

Selected 0.170 0.0161 0.045 0.4650 0.070 0.1917

(II) Optimal 0.230 0.0149 0.210 0.3132 0.095 0.3971

Selected 0.235 0.0149 0.105 0.3808 0.050 0.5451

(III) Optimal 0.310 0.0150 0.110 0.2840 0.125 0.2079

Selected 0.155 0.0152 0.055 0.3680 0.065 0.2915
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Figure 1: MSE or MISE values when their related bandwidths change around their optimal values

(vertical lines and dark dots) in cases considered in Table 2. Dark crosses denote the selected

bandwidths by CV.
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λ is chosen to be 0.01, 0.02, 0.03 and 0.05. The shift size parameter δ changes between 0 and 5.

The results of computed ATS 0 and ATS 1 values are presented in Figure 2, along with the 95%

confidence intervals (CIs) of the ATS 1 values of New. From the plots in the figure, it can be seen

that (i) the calculated ATS 0 values of the two methods are all close to the nominal ATS 0 value,

and (ii) the calculated ATS 1 values of New are significantly smaller than those of DySS in all cases

considered. Therefore, the proposed method New improves disease early detection by DySS in this

example. If we compare the ATS 1 values of New in cases of (Ia)-(Ic) carefully, it can be seen that

New performs slightly worse when the within-subject variability gets larger (i.e., when τ gets larger

from Model (Ia) to Model (Ic)).

Next, we consider cases when there are time-independent covariates zi in the model (1). First, in

model Ia described above, we add a two-dimensional time-independent covariate vector zi generated

from the distribution N(0, σ2
zΣz), where σz = 0.5, Σz =

 1 0.5

0.5 1

 , and {zi, i = 1, 2, . . . , n} are

independent of each other. The resulting model is labelled as Ia*. Second, we add a two-dimensional

time-independent covariate vector zi to model II, where observations of the first covariate zi1 are

generated from the discrete distribution Binomial(0.5, 1), observations of the second covariate zi2

are generated from N(0, 0.25), and {zi = (zi1, zi2)′, i = 1, 2, . . . , n} are independent of each other.

The resulting model is labelled as II*. The true regression coefficients of γ in both models Ia*

and II* are assumed to be (0.2, 0.2)′, and other settings remain the same as those in models Ia

and II. The numerical results on estimates of θ based on 1,000 replicated simulations are presented

in Table 3, where the bandwidths hθ, hµ, and hσ are chosen by CV, as discussed in Section 2.1.

From the table, it can be seen that estimates of β and γ are all close to their true values in both

scenarios considered here. Next, we evaluate the numerical performance of the proposed online

monitoring chart New, in comparing with DySS. In the same setup as that of Figure 2, the results

of computed ATS 0 and ATS 1 values are presented in Figure 3. It can be seen from the figure that

similar conclusions can be made here to those from Figure 2.

At the end of this section, some cases with the time-varying model (7) are considered. Again, the

models Ia and II are modified, and the resulting models are labelled as Ia** and II**, respectively.

The true regression coefficients are assumed to be θ(t) = β(t) = (0.5 + 0.5t, 0.2 + 2(t− 0.5)2, 0.6−

(t − 0.3)2)′ in model Ia**, and θ(t) = β(t) = (0.5 + 0.5 sin(t), 0.7 − 0.5t2, 0.6 − 0.3 log(1 + 2t))′ in

model II**. In both models, a constant baseline hazard h0(t) = 0.2 is assumed, and all censoring
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Figure 2: Calculated ATS 0 and ATS 1 values of the proposed method New and the DySS method

in Qiu and Xiang (2015) when the weighting parameter λ and the shift size parameter δ change

among several values. The dashed lines denote the 95% confidence intervals (CIs) of the ATS 1

values of New. In this example, the nominal ATS 0 is chosen to be 370.
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Table 3: Estimated values of θ = (β1, β2, β3, γ1, γ2)′ and their standard errors (in parentheses)

under two different models Ia* and II*.

Model β̂1 β̂2 β̂3 γ̂1 γ̂2

(Ia*) 0.4941 (0.0028) 0.2898 (0.0022) 0.1964 (0.0023) 0.2082 (0.0056) 0.2010 (0.0055)

(II*) 0.5037 (0.0022) 0.2914 (0.0021) 0.1986 (0.0022) 0.2028 (0.0055) 0.1935 (0.0053)

Truth β1 = 0.5 β2 = 0.3 β3 = 0.2 γ1 = 0.2 γ2 = 0.2
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Figure 3: Calculated ATS 0 and ATS 1 values of the proposed method New and the DySS method

in Qiu and Xiang (2015) under the models Ia* and II* and other setups are the same as those in

Figure 2.
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times Ci are set to be 1 to create more events. Other setups are the same as those in the example

of Table 1. In cases when the bandwidths are all fixed at 0.1, the point estimates and the 90%

pointwise confidence intervals for β(t) based on 1,000 replicated simulations are shown in Figure 4.

It can be seen from the figure that the point estimates are reasonably good, although the pointwise

confidence intervals are quite wide at certain places, due mainly to limited sample sizes. We also

compared our proposed method New with DySS in this example under the same setup as that of

Figure 2. The results are shown in Figure 5, from which it can be seen that New still outperforms

DySS in terms of ATS1.
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Figure 4: Point estimates (solid curves) and 90% pointwise confidence intervals (dotted curves) of

β(t) = (β1(t), β2(t), β3(t))′. The dark-dashed curves in the plots are the true functions of β(t).

4 Application to the Stroke Data

In this section, we apply the proposed method to a dataset obtained from the SHARe Framingham

Heart Study. In the data, there were a total of 1,055 people involved, among which 27 people

experienced stroke during the study period and the remaining 1,028 people did not. Each person

was followed 7 times, and three medical indices, including the systolic blood pressure (mmHg),

diastolic blood pressure (mmHg), and total cholesterol level (mg/100ml) were recorded at each

20



Raw shift size

AT
S

8
15

25
50

10
0

20
0

37
0

λ = 0.01

(I
a*

*)

New
DySS

Raw shift size

AT
S

λ = 0.02

New
DySS

Raw shift size

AT
S

λ = 0.03

New
DySS

Raw shift size

AT
S

λ = 0.05

New
DySS

Raw shift size

AT
S

8
15

25
50

10
0

20
0

37
0

(I
I*

*)

0 1 2 3 4

New
DySS

Raw shift size

AT
S

0 1 2 3 4

New
DySS

Raw shift size

AT
S

0 1 2 3 4

New
DySS

Raw shift size

AT
S

0 1 2 3 4

New
DySS

Shift size

AT
S

Figure 5: Calculated ATS 0 and ATS 1 values of the proposed method New and the DySS method

in Qiu and Xiang (2015) under the models Ia** and II** and other setups are the same as those

in Figure 2.

time. The data are shown in Figure 6. To apply the proposed method, we randomly select two-

thirds of the stroke people and two-thirds of the non-stroke people as the training data and the

remaining are used as the test data for online monitoring. In the entire dataset, all observation times

are between 16 and 83 years old, the mean interval length between two consecutive observation

times is ∆̄ = 4.37 (in years).
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Figure 6: Three risk factors of the stroke data: systolic blood pressure (mmHg), diastolic blood

pressure (mmHg), and total cholesterol level (mg/100ml). The solid gray lines are the longitudinal

observations of the non-stroke people, and the black dashed lines are the longitudinal observations

of the stroke people.
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We first check the proportional hazards assumption in model (1) by applying the goodness-of-fit

test discussed in Park and Qiu (2014) to the training data. To this end, all subjects in the training

data set are partitioned into 30 groups based on the estimated baseline risks, i.e., the estimated risk

at the first observation time point r̂i(ti1), for i = 1, 2, . . . , n. The number of groups, 30, is chosen

to be a simple integer that is close to 2n2/5 = 27.546, as suggested in Park and Qiu (2014). The

groups are determined by the (k/30)-th quantiles of the estimated baseline risks, for k = 1, . . . , 30.

Then, the test statistic is defined by

T = (H1, H2, . . . ,H29)Σ̂−1
H (H1, H2, . . . ,H29)′,

where Hk denotes the sum of all approximate martingale residuals within the kth group, for k =

1, 2, . . . , 29, and Σ̂H is the estimated covariance matrix of (H1, H2, . . . ,H29)′. The 30th group is not

included above because the matrix ΣH would be singular otherwise. Details about the calculation

of Σ̂−1
H can be found in Grønnesby and Borgan (1996). Here, the approximate martingale residuals

and Σ̂−1
H are all adjusted using the proposed kernel smoothing technique, as discussed in Section

2.1 about the equation (2). When the proportional hazards assumption holds, the test statistic T

should be asymptotically χ2-distributed with 29 degrees of freedom. The resulting p-value for the

goodness-of-fit test is 0.621, implying that no significance evidence is found for the violation of the

proportional hazards assumption.

The training data are then used for estimating the survival model (1), and the estimated

regression coefficients are β̂ = (0.0001, 0.0047, 0.0269)′. Consequently, the estimates of µ(t) and

σ2(t) can be obtained by (4) and (5). In the control chart (8)-(9), the weighting parameter λ is

chosen to be 0.1. The control charts for monitoring the 9 people in the test data when ATS0 is

chosen to be 10 or 15 are shown in Figure 7. From the plots in the figure, it can be seen that when

ATS0 = 10, the proposed method gives signals to 9 out of 9 stroke people and to 187 out of 342

non-stroke people in the test data. When ATS0 = 15, it gives signals to 7 out of 9 stroke people

and to 125 out of 342 people in the test data. As a comparison, the DySS method suggested by Qiu

and Xiang (2015) in the same setup gives signals to all 9 stroke people and to 202 non-stroke people

in the test data when ATS0 = 10. When ATS0 = 15, it only gives signals to 2 stroke people and

to 52 non-stroke people in the test data. The above results are summarized in Table 4. From the

table, it can be seen that New performs better than DySS when ATS0 = 10, because their numbers

of signals to stroke patients are the same, but New gives less signals to non-stroke patients. In the

case when ATS0 = 15, it is hard to compare their performance by just looking at the numbers
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in the table, because DySS gives less signals to both stroke and non-stroke patients. To overcome

this difficulty, we first compute the odds ratios of both New and DySS. The odds ratio of New

is 7 ∗ (342 − 125)/[(9 − 7) ∗ 125] = 6.076 and its 95% confidence interval is (1.243, 29.700), which

indicates that the odds ratio of New is significantly larger than 1. On the other hand, the odds

ratio of DySS is 2∗ (342−52)/[(9−2)∗52] = 1.593 and its 95% confidence interval is (0.322, 7.884),

which indicates that the odds ratio of DySS is not significantly different from 1. By comparing the

odds ratios of the two methods, it seems that New has a larger odds ratio than DySS. To further

compare their performance in the case when ATS0 = 15, we adjust the weighting parameter in the

EWMA chart of the DySS method, so that the modified DySS method gives the same number of

signals to stroke patients as that of New. As a result, when the weighting parameter λ is chosen to

be 0.027, it gives signals to 7 stroke patients and 142 non-stroke patients in the test data. Thus,

when ATS0 = 15, New is still better because it give signals to less non-stroke patients, compared

to DySS, when their numbers of signals to stroke patients are kept the same. Then, we use the

results in rows 1, 2, 3 and 5 of Table 4 to perform a Cochran-Mantel-Haenszel chi-squared test for

examining whether the proportion of signals to non-stroke patients given by New is significantly

smaller than that of DySS in both cases when ATS 0 = 10 and 15. This test gives a p-value of

0.0393, implying a significant improvement of the proposed method New over the DySS method in

terms of the proportion of signals given to non-stroke patients. In Table 4, the calculated ATS1

values of the methods New and DySS are also presented. It can be seen that ATS1 values of New

are considerably smaller than those of DySS. As a side note, in cases when ATS0 = 15, there are

still 125 out of 342 non-stroke patients receive signals from New. Figure 8 shows the estimated

disease risks of these 125 non-stroke patients and the remaining 342−125 = 217 non-stroke patients

who do not receive any signals. The bold dashed and solid lines are their means. From the plot, it

can be seen that the estimated disease risks of the 125 non-stroke patients who receive signals are

generally higher than those of the non-stroke patients who do not receive signals, which confirms

that New is indeed effective in detecting upward mean shifts in the estimated disease risks.

5 Discussion and Concluding Remarks

In this paper, a new disease early detection method based on risk estimation and risk monitoring

is proposed. Numerical results and theoretical arguments show that it performs well in practice
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Figure 7: Control charts New (upper) and DySS (bottom) for monitoring the 9 stroke patients in

the test data when ATS0 = 10 (left) and ATS0 = 15 (right). The dashed horizontal line in each

plot denotes the control limit.

Table 4: Numbers of signals and calculated ATS1 values of the two methods New and DySS in the

stroke data example when they are applied to the 351 people contained in the test data.

ATS0 λ Method ATS1

# Signals to Stroke

Patients (9 in total)

# Signals to Non-Stroke

Patients (342 in total)

10
0.1 New 7.56 9 187

0.1 DySS 8.56 9 202

15

0.1 New 11.57 7 125

0.1 DySS 17.50 2 52

0.027 DySS 15.71 7 142

and outperforms the existing method that monitors the original disease risk factors directly. There

are still many issues about the proposed method for us to address in the future research. For the

time-varying coefficient model (7), the consistency of proposed estimate for θ(t) needs to be further

validated theoretically. By using Model (7), the proposed cross-validation method for selecting hθ

discussed in section 2.1 will become highly computationally intensive, which should be addressed

properly in the future research. Also, although Model (7) is already quite flexible, it can be further

generalized to a nonparametric model (e.g., Chen and Zhou 2007). It is still unknown to us whether

such a generalization would improve the performance of the proposed method in a substantial way.

The proposed chart (8)-(9) depends on the weighting parameter λ. In the SPC literature, this
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Figure 8: Dashed thin lines denote the estimated disease risks of the 125 non-stroke patients who

received signals from New, and solid thin lines denote the estimated disease risks of the non-stroke

patients who did not receive any signals from New. The bold dashed and solid lines are their means.

parameter is usually pre-specified, a large λ value is good for detecting a large shift, and a small

λ value is good for detecting a small shift. In some applications, it is often unknown whether a

future shift is large or small. So, pre-specification of λ becomes difficult. In the literature, there

are two approaches to overcome this difficulty. One is to use the so-called adaptive EWMA chart,

in which the shift size is sequentially estimated during online process monitoring and then the λ

value is adjusted accordingly (cf., Qiu 2014, Section 5.4). Another strategy is to use a set of λ

values and the charting statistic at each time point is defined to be the maximum of the charting

statistics with the individual λ values (e.g., Qiu et al. 2018). Both strategies will be considered in

our future research.

Supplementary Materials

ComputerCodesAndData.zip: This zip file contains computer codes of our proposed method

and the stroke data used in the paper.
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their constructive suggestions and comments, which improved the quality of the paper substantially.
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For ease of presentation, we will simply write hβ, hµ, hσ as h (or hn if we want to emphasize

that they are a sequence indexed by n). In all appendices, for matrices A and B, the notation

A ≥ 0 means that A is a positive-semidefinite matrix, while A ≥ B means that A − B is a

positive-semidefinite matrix. Let x̃i(t) = (x′i(t), z
′
i)
′ denote the stacked vector of xi(t) and zi. The

gradient of a function f(θ) with respect to the vector θ will be written as ∇f , and ∇2f = (∇·∇)f

denotes the second derivative of f . For clarity, θ0 = (β′0,γ
′
0)′ is used to denote the true value of

θ = (β′,γ ′)′.

A Proof of Theorem 1

Lemma A1 (Cauchy-Schwarz inequality). For random variables {wi, i = 1, 2, . . . , n} and random

vectors {vi, i = 1, 2, . . . , n}, we have[
n∑
i=1

wi

][
n∑
i=1

wiviv
′
i

]
≥

[
n∑
i=1

wivi

][
n∑
i=1

wivi

]′
,

E[wi] E[wiviv
′
i] ≥ E[wivi] E[wivi]

′.

Lemma A2. Under the assumptions (a)-(d) in Theorem 1, we have P (yi(t) = 1, for all t ∈ [0, 1]) >

0.

Proof. Since yi(t) = 1 for all t ∈ [0, T ] if and only if Ti ≥ T , we only need to verify P(Ti ≥ T ) > 0.

It can be checked that

P(Di ≥ T ) = E{exp[−
∫ T

0 exp(ri(t)) dt]}

≥ E{exp[− exp(sup t∈[0,T ]|ri(t)|+ log T )]}.

Since exp(− exp(x)) is a concave function of x, by the Jensen’s inequality, we have

P(Di ≥ T ) ≥ exp
[
− exp

(
E[sup t∈[0,T ]|ri(t)|]

)]
> 0.

Lemma A3. The logarithm of the partial likelihood function

l(θ) =
∑
i:δi=1

θ′x̃i(Ti)− log

[ ∑
l∈R(Ti)

ml∑
j=1

Kh(Ti − tlj) exp(θ′x̃i(Ti))

]
is a concave function of θ.
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Proof. By definition, we have

S0(θ; t) =
1

n

n∑
i=1

mi∑
j=1

Kh(t− tij)yi(t) exp(θ′x̃i(tij)),

S1(θ; t) =
1

n

n∑
i=1

mi∑
j=1

Kh(t− tij)yi(t) exp(θ′x̃i(tij))x̃i(tij),

S2(θ; t) =
1

n

n∑
i=1

mi∑
j=1

Kh(t− tij)yi(t) exp(θ′x̃i(tij))x̃i(tij)x̃
′
i(tij).

Then,

∇l(θ) =
∑
i:δi=1

[
x̃i(Ti)−

S1(θ;Ti)

S0(θ;Ti)

]
,

∇2l(θ) = −
∑
i:δi=1

[
S0(θ;Ti)S2(θ;Ti)− S1(θ;Ti)S

′
1(θ;Ti)

[S0(θ;Ti)]2

]
.

By Lemma A1, we can show that S0(θ;Ti)S2(θ;Ti) ≥ S1(θ;Ti)S
′
1(θ;Ti), which implies directly that

∇2l(θ) is negative-semidefinite. Therefore, the log-likelihood function l(θ) is a concave function.

Lemma A4. Under the assumptions in Theorem 1, we have

sup
t∈[0,T ]

∣∣S0(θ, t)− E[S0(θ, t)]
∣∣ p→ 0, as n→∞.

Proof. Let ζ(t) =
∫
e−iutK(u) du be the inverse Fourier transform of K(t). So, we have K(t) =

1
2π

∫
eiutζ(u) du. Then,

S0(θ, t) =
1

n

n∑
i=1

mi∑
j=1

Khn(tij − t)yi(t) exp(θ′x̃i(t))

=
1

n

n∑
i=1

mi∑
j=1

[
1

2πhn

∫
eiu(tij−t)/hnζ(u) du

]
yi(t) exp(θ′x̃i(tij))

=
1

2π

∫
1

n

n∑
i=1

mi∑
j=1

eiu(tij−t)ζ(uhn)yi(t) exp(θ′x̃i(tij)) du

=
1

2π

∫
1

n

n∑
i=1

I(Ti ≥ t)
mi∑
j=1

eiu(tij−t)ζ(uhn) exp(θ′x̃i(tij)) du

=
e−iut

2π

∫ [
1

n

n∑
i=1

I(Ti ≥ t)
mi∑
j=1

eiutij exp(θ′x̃i(tij))

]
ζ(uhn) du.

Let ψi(u) =
∑mi

j=1 e
iutij exp(θ′x̃i(tij)). Since x̃i(t) is assumed to be bounded, exp(θ′x̃i(tij)) is

bounded by some constant M . So, |ψi(u)|2 ≤ Mm2
i uniformly in u, and supt∈[0,T ] E[(I(Ti ≥
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t)ψi(u))2] ≤ E[ψ2
i (u)] ≤M E[m2

i ]. By Lemma 1 of Cai and Sun (2003), it can be shown that

sup
t∈[0,T ]

∣∣∣∣∣ 1n
n∑
i=1

I(Ti ≥ t)ψi(u)− E[I(Ti ≥ t)ψi(u)]

∣∣∣∣∣ ≤ Ψn = Op(1/
√
n).

Consequently,

sup
t∈[0,T ]

|S0(t)− E[S0(t)]| ≤ 1

2π

∣∣∣∣∣
∫ {

1

n

n∑
i=1

I(Ti ≥ t)ψi(u)− E [I(Ti ≥ t)ψi(u)]

}
ζ(uhn) du

∣∣∣∣∣
≤ 1

2π

∫
|Ψn||ζ(uhn)| du = Op(1/

√
nhn).

Lemma A5. Under the assumptions in Theorem 1, we have

sup
t∈[0,T ]

∣∣∣∣∣ 1n
n∑
i=1

mi∑
j=1

Kh(tij − t)
(
tij − t
h

)l
yi(t)[ri(tij)− µ(tij)]

− E

[
mi∑
j=1

Kh(tij − t)
(
tij − t
h

)l
yi(t)[r(tij)− µ(tij)]

]∣∣∣∣∣ = Op(1/
√
nhn),

for l = 0, 1, where ri(t) = β′xi(t).

Proof. Let ζ(t) =
∫
e−iutulK(u) du be the inverse Fourier transform of tlK(t). So, we have tlK(t) =

1
2π

∫
eiutζ(u) du, for l = 0, 1, 2. Then, the remaining part of the proof is similar to the proof of

the previous lemma and thus omitted. One can also refer to Lemma A.1 in Yao et al. (2005) for

details.

Proof of Result (i) in Theorem 1. Let ‖·‖ denote the maximum norm of a vector, M∗i (t) = Mi(t)−∫ t
0 yi(u)φ(u) du, N∗i (t) = Ni(t)−

∫ t
0 yi(u)λi(u) du,

S†0(θ, t) =
1

n

n∑
i=1

yi(t) exp(θ′x̃i(t)),

S†1(θ, t) =
1

n

n∑
i=1

yi(t) exp(θ′x̃i(t))x̃i(t),

S†2(θ, t) =
1

n

n∑
i=1

yi(t) exp(θ′x̃i(t))x̃i(t)x̃
′
i(t),

and

s0(θ, t) = E
[
yi(t) exp(θ′x̃i(t))

]
,

s1(θ, t) = E
[
yi(t) exp(θ′x̃i(t))x̃i(t)

]
,

s2(θ, t) = E
[
yi(t) exp(θ′x̃i(t))x̃i(t)x̃

′
i(t)
]
.
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Since x̃i(t) is bounded, we can findM such that | exp(θ′x̃i(t))|, ‖ exp(θ′x̃i(t))x̃i(t)‖, and ‖ exp(θ′x̃i(t))x̃i(t)x̃
′
i(t)‖

are all bounded by M uniformly in t ∈ [0, T ]. Then by Lemma 1 in Cai and Sun (2003),

supt∈[0,T ] ‖S
†
0(θ, t)−s0(θ, t)‖ p→ 0 and supt∈[0,T ] ‖S

†
l (θ, t)−sl(θ, t)‖

p→ 0 for l = 1, 2. By Lemma A4,

supt∈[0,T ],θ∈B ‖S0(θ, t)−E[S0(θ, t)]‖ p→ 0. Note that E[S0(θ, t)] = E[
∫ T

0 Kh(t−s)yi(t) exp(θ′x̃i(s))dMi(s)] =∫ T
0 Kh(t − s) E[yi(t) exp(θ′x̃i(s))]φ(s) ds. So, by the Taylor expansion and all assumptions in the

theorem, it is easy to show that supt∈[h,T −h] ‖E[S0(θ, t)] − s0(θ, t)φ(t)‖ → 0. Consequently, we

have supt∈[h,T −h] ‖S0(θ, t)− s0(θ, t)φ(t)‖ p→ 0. Then,

1

n
[l(θ)− l(θ0)] =

1

n

n∑
i=1

∫ T
0

{
(θ − θ0)′x̃i(t)− log

[
S0(θ, t)

S0(θ0, t)

]}
dNi(t)

=
1

n

n∑
i=1

∫ T
0

{
(θ − θ0)′x̃i(t)− log

[
S0(θ, t)

S0(θ0, t)

]}
dN∗i (t)

+
1

n

n∑
i=1

∫ T −h
h

{
(θ − θ0)′x̃i(t)− log

[
S0(θ, t)

S0(θ0, t)

]}
yi(t)λi(t) dt+Op(h).

Let

Xn(θ, t) =
1

n

n∑
i=1

∫ t

0

{
(θ − θ0)′x̃i(s)− log

[
S0(θ, s)

S0(θ0, s)

]}
dN∗i (s),

An(θ) =
1

n

n∑
i=1

∫ T −h
h

{
(θ − θ0)′x̃i(s)− log

[
S0(θ, s)

S0(θ0, s)

]}
yi(s)λi(s) ds

=

∫ T −h
h

{
(θ − θ0)′S†1(θ0; s)− log

[
S0(θ, s)

S0(θ0, s)

]
S†0(θ0; s)

}
λ0(s) ds.

Since N∗i (s) is a martingale, the quadratic variation process of Xn(θ, T ) can be written as

〈Xn(θ, T ), Xn(θ, T )〉

=
1

n2

n∑
i=1

∫ T
0

[
(θ − θ0)′x̃i(t)− log

[
S0(θ, s)

S0(θ0, s)

]]2

yi(s)λi(s) ds

=
1

n

∫ T
0

[
(θ − θ0)′S†2(θ0, s)(θ − θ0)− 2(θ − θ0)′S†1(θ0, s) log

[
S0(θ, s)

S0(θ0, s)

]
+

{
log

[
S0(θ, s)

S0(θ0, s)

]}2

S†0(θ0, s)
]
ds.

By the convergence of S0(θ, t) and S†l (θ, t), for l = 0, 1, 2, n〈Xn(θ, T ), Xn(θ, T )〉 converges in

probability to a finite limit. Then, by a corollary to the Lenglart inequality (cf., Theorem I.1(b)

in Andersen and Gill 1982), the above result implies that limn→∞Xn(θ, T ) = 0. Again, by the

uniform convergence of S0(θ, t) and S†l (θ, t), for l = 0, 1, 2, we have

An(θ)
p→
∫ T

0

{
(θ − θ0)′s1(θ0; s)− log

[
s0(θ, s)

s0(θ0, s)

]
s0(θ0; s)

}
λ0(s) ds.
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Thus, 1
n [l(θ)− l(θ0)] will converge to the same limit as An(θ). Let the above limit be A(θ). Then,

we can conclude that 1
n [l(θ)− l(θ0)]

p→ A(θ). By Theorem 4.1 of Andersen and Gill (1982), we can

evaluate the first and second derivatives of A(θ) in a compact and convex set B containing θ0:

∇A(θ) =

∫ T
0

[
s1(θ0; t)

s0(θ0; t)
− s1(θ; t)

s0(θ; t)

]
s0(θ0; t)λ0(t) dt,

∇2A(θ) = −
∫ T

0

[
s0(θ; t)s2(θ; t)− s1(θ; t)s′1(θ; t)

[s0(θ; t)]2

]
s0(θ0; t)λ0(t) dt.

Furthermore, ∇A(θ0) = 0 and ∇2A(θ0) ≤ 0 by Lemma A1. So, A(θ) has a unique maximum at

θ0 in B. Since 1
n [l(θ) − l(θ0)] is a convex function of θ, by Theorem II.1 and Corollary II.2 of

Andersen and Gill (1982), 1
n [l(θ)− l(θ0)] converges uniformly to A(θ) in probability for all θ ∈ B.

Because A(θ) is also a convex function of θ, θ̂
p→ θ0.

Proof of Result (ii) in Theorem 1. We first proceed our arguments in the case when β = β0, and

will plug in the consistent estimate β̂ in the last step. Let G(s, t) = E[ri(s)|Ti ≥ t] and R∗l (t) =

Rl(t)− µ(t)Wl(t)− hµ′(t)Wl+1(t). Then,

µ̂(t)− µ(t) =
R∗0(t)W2(t)−R∗1(t)W1(t)

W0(t)W2(t)−W1(t)2
,

and

R∗l (t) =Rl(t)− µ(t)Wl(t)− hµ′(t)Wl+1(t)

=
1

n

n∑
i=1

mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[ri(tij)− µ(t)− µ′(t)(tij − t)]

=
1

n

n∑
i=1

mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[ri(tij)− µ(tij)]

+
1

n

n∑
i=1

mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[µ(tij)− µ(t)− µ′(t)(tij − t)].

By Lemma A5, we have

sup
t∈[0,T ]

∣∣∣∣∣ 1n
n∑
i=1

mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[ri(tij)− µ(tij)]

− E

[
mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[ri(tij)− µ(tij)]

]∣∣∣∣∣ p→ 0.
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Note that

E

[
mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[ri(tij)− µ(tij)]

]

= E
[ ∫ T

0
Kh(s− t)

(s− t
h

)l
yi(t)[ri(s)− µ(s)]φ(s) ds

]
=

∫ T
0
Kh(s− t)

(s− t
h

)l
E
[
yi(t)[ri(s)− µ(s)]

]
φ(s) ds.

By the Taylor’s expansion, it can be shown that the above quantity will tend to E[yi(t)[ri(t) −

µ(t)]] = E[ri(t)− µ(t)|Ti ≥ t] P(Ti ≥ t) = 0 uniformly for t in [h, T − h]. Therefore,

sup
t∈[0,T ]

∣∣∣∣∣
mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[ri(tij)− µ(tij)]

∣∣∣∣∣ p→ 0.

On the other hand, µ(s)− µ(t)− µ′(t)(s− t) = O(|s− t|2), and Kh(tij − t) = 0 when |tij − t| > h.

So,

1

n

n∑
i=1

mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[µ(tij)− µ(t)− µ′(t)(tij − t)] = Op(h)

uniformly for t ∈ [0, T ]. Therefore, the decomposed terms of R∗l all tend to 0, and we have

sup
t∈[h,T −h]

|R∗l (t)|
p→ 0, for l = 0, 1.

By similar arguments, we can show that

sup
t∈[h,T −h]

|W0(t)− φ(t) P(Ti ≥ t)|
p→ 0,

sup
t∈[h,T −h]

|W1(t)| p→ 0,

sup
t∈[h,T −h]

|W2(t)−K2φ(t) P(Ti ≥ t)|
p→ 0,

where K2 =
∫
s2K(s) ds. Therefore, we have

sup
t∈[h,T −h]

|µ̂(t)− µ(t)| = sup
t∈[h,T −h]

∣∣∣∣R∗0(t)W2(t)−R∗1(t)W1(t)

W0(t)W2(t)−W1(t)2

∣∣∣∣ p→ 0.

So far, we have showed the consistency of µ̂(t;β0). Because µ̂(t;β) is a continuous function of β,

the same conclusion holds for µ̂(t; β̂).

Proof of Result (iii) in Theorem 1. As in the proof for Result (ii) in Theorem 1, we only provide

arguments in the case when β = β0. The results when β = β̂ can be obtained at the final step
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after replacing β0 with β̂ and after using the consistency of β̂. Let εi(t) = ri(t) − µ(t;β0) and

ε̂i(t) = ri(t)− µ̂(t;β0). Then,

Q∗l (t) = Ql(t)− σ2(t)Wl − h[σ2(t)]′Wl+1

=
1

nt

n∑
i=1

mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[ε̂

2(tij)− σ2(t)− [σ2(t)]′(tij − t)].

So, we have

σ̂2(t)− σ2(t) =
Q∗0(t)W2(t)−Q∗1(t)W1(t)

W0(t)W2(t)−W1(t)2
.

The convergence of Wl(t), for l = 0, 1, 2, has been established in the proof of Result (ii), where we

have

sup
t∈[h,T −h]

|W0(t)− φ(t) P(Ti ≥ t)|
p→ 0,

sup
t∈[h,T −h]

|W1(t)| p→ 0,

sup
t∈[h,T −h]

|W2(t)−K2φ(t) P(Ti ≥ t)|
p→ 0.

Again, we can consider the following decomposition of Q∗l (t):

Q∗l (t) =
1

n

n∑
i=1

mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[ε̂

2
i (tij)− ε2i (tij)]

+
1

n

n∑
i=1

mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[ε

2
i (tij)− σ2(tij)]

+
1

n

n∑
i=1

mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[σ

2(tij)− σ2(t)− [σ2(t)]′(tij − t)].

For the first term on th right-hand-side, we have

1

n

n∑
i=1

mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[ε̂

2
i (tij)− ε2i (tij)]

=
1

n

n∑
i=1

mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[(ε̂i(tij) + εi(tij))(ε̂i(tij)− εi(tij))]

=
1

n

n∑
i=1

mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[(ε̂i(tij) + εi(tij))(µ(tij)− µ̂(tij))].

So, this term will uniformly converge to 0 in probability due to the uniform convergence of µ̂(t)−
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µ(t). By some arguments similar to those in the proof of Lemma A5, we have

sup
t∈[0,T ]

∣∣∣∣∣ 1n
n∑
i=1

mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[ε

2
i (tij)− σ2(tij)]

− E

[
mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[ε

2
i (tij)− σ2(tij)]

]∣∣∣∣∣ p→ 0.

Thus,

sup
t∈[h,T −h]

∣∣∣∣∣∣ 1n
n∑
i=1

mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[ε

2
i (tij)− σ2(tij)]

∣∣∣∣∣∣ p→ 0.

By combining these results with the following fact that

1

n

n∑
i=1

mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
yi(t)[σ

2(tij)− σ2(t)− [σ2(t)]′(tij − t)] = Op(h),

which is uniformly true for t ∈ [0, T ], we can conclude that

sup
t∈[h,T −h]

|Q∗l (t)|
p→ 0, for l = 0, 1.

After plugging in all the established convergences of the related terms into the expression
Q∗

0(t)W2(t)−Q∗
1(t)W1(t)

W0(t)W2(t)−W1(t)2
,

we have supt∈[h,T −h] |σ̂2(t)− σ2(t)| → 0.

B Derivation of Equation (6)

The leave-one-out cross-validation score in Equation (6) is modified from the prediction error score

discussed in Tian et al. (2005). Let θ̂−i and Λ̂−i(t) be the estimates of θ and baseline cumulative

hazard function Λ0(t) when observations of the i subject are excluded, and PE θ
i (h) be the squared
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integrated value of the martingale residuals. Then, we have

PE θ
i (h) =

∫ T
0

[
Ni(t)−

∫ t

0
yi(s) exp{θ̂′−ix̃i(s)} dΛ̂−i(s)

]2
dNi(t)

=

∫ T
0

[
Ni(t)−

∫ t

0
yi(s) exp{θ̂′−ix̃i(s)} d

( ∑
k 6=i, δk=1

Nk(s)∑
d6=i yd(Tk) exp{θ̂′−ix̃d(s)}

)]2

dNi(t)

=

∫ T
0

[
Ni(t)−

∑
k 6=i, δk=1

yi(Tk) exp{θ̂′−ix̃i(Tk)}∑
d 6=i yd(Tk) exp{θ̂′−ix̃d(Tk)}

]2

dNi(t)

≈
∫ T

0

[
Ni(t)−

∑
k 6=i δk=1

∑mi
j=1 yi(Tk)Kh(Tk − tij) exp{θ̂′−ix̃i(tij)}∑

d6=i
∑md

j=1 yd(Tk)Kh(Tk − tdj) exp(θ̂′−ix̃d(tdj))

]2

dNi(t)

=

(
Ni(Ti)−

∑
k 6=i, δk=1
Tk≤Ti

∑mi
j=1Kh(Tk − tij) exp{θ̂′−ix̃i(tij)}∑

d6=i,d∈R(Tk)

∑md
j=1Kh(Tk − tdj) exp(θ̂′−ix̃d(tdj))

)2

=

(
δi −

∑
k 6=i, δk=1
Tk≤Ti

∑mi
j=1Kh(Tk − tij) exp{θ̂′−ix̃i(tij)}∑

d 6=i,d∈R(Tk)

∑md
j=1Kh(Tk − tdj) exp(θ̂′−ix̃d(tdj))

)2

.

The last equation is Equation (6).
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