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Abstract

Some deadly diseases can be treated or even prevented if they or some of their symptoms

are detected early. Disease early detection and prevention is thus important for our health

improvement. In this paper, we suggest a novel and effective new method for disease early

detection. By this method, a patient’s risk to the disease is first quantified at each time point

by survival data analysis of a training dataset that contains patients’ survival information and

longitudinally observed disease predictors (e.g., disease risk factors and other covariates). To

improve the effectiveness of the proposed method, variable selection is used in the survival

analysis to keep only important disease predictors in disease risk quantification. Then, the

longitudinal pattern of the quantified risk is monitored sequentially over time by a nonparametric

control chart. A signal will be given by the chart once the cumulative difference between the

risk pattern of the patient under monitoring and the risk pattern of a typical person without

the disease in concern exceeds a control limit.

Key Words: Disease screening; Disease early detection; Dynamic process; Longitudinal data;

Statistical process control; Survival data.

1 Introduction

One of the primary objectives of a disease screening program is to give early signals to patients

who have the disease in concern or who are at high risk of having the disease, so that these patients

can receive timely intervention and treatment (Qiu and Xiang 2014). This paper aims to develop

a novel and effective method for disease screening.

Medical research has identified major predictors of many diseases. For instance, the major

predictors for cardiovascular diseases include high blood pressure, high cholesterol level, obesity,
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tobacco use, lack of physical activity, diabetes, unhealthy diet, age, gender, family history, and

some others (e.g., Mendis et al. 2011). For disease screening, patients often take scheduled disease

screening examinations over time to have their medical conditions evaluated. To identify high-risk

patients through the data collected during the screening examinations, an effective statistical tool is

needed. This type of research problem is called dynamic screening (DS) problem in Qiu and Xiang

(2014), because medical data are collected sequentially over time from patients, data distribution

would change over time, and decisions about the disease status need to be made sequentially as

well during the process of data collection. Qiu and Xiang (2014) proposed a dynamic screening

system (DySS) to monitor a single disease predictor over time for handling the DS problem. In their

method, they first model the regular longitudinal pattern of the disease predictor by a nonparamet-

ric longitudinal model estimated from an in-control (IC) dataset that contains observed data of the

disease predictor of patients without the disease in concern. Then, to monitor the disease predictor

of a new individual, they constructed a statistical process control (SPC) chart to detect undesirable

deviations and/or changes in the longitudinal pattern of the disease predictor of the individual un-

der monitoring from the estimated regular longitudinal pattern. By employing a cumulative sum

(CUSUM) control chart, this method makes use of the observed data at the current time point and

all history data efficiently, and it has been demonstrated to good performance in many applications.

In subsequent research, Qiu and Xiang (2015) further extended the DySS method to multivariate

cases where multiple disease predictors are considered. A multivariate control chart was proposed

to jointly monitor all disease predictors. Some other extensions of the DySS method include those

discussed in Li and Qiu (2016, 2017) and You and Qiu (2018) where serially correlated data are

considered, and the one discussed in Qiu et al. (2018) where unequally-spaced observation times

were accommodated in the construction of the control chart. Qiu et al. (2019) proposed a new

metric for evaluating the numerical performance of DS methods.

In practice, there could be many different disease predictors involved. Some of them might

be more important than the others in predicting the occurrence of the disease in question. But,

in the multivariate DySS methods mentioned above, all disease predictors are treated equally in

constructing the related multivariate control charts, which would make the charts less effective in

predicting the disease. To overcome this limitation, You and Qiu (2019) recently proposed a new

method consisting of the following two steps: i) estimation of a survival model from a training

dataset and the estimated survival model is then used for quantifying the disease risk of a person,
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where the quantified disease risk is a linear combination of all disease predictors, and (ii) sequential

monitoring of the quantified risks over time using a control chart. In the estimated survival model,

more important covariates will receive more weights in the linear combination of the disease pre-

dictors. Thus, the effectiveness of the control chart is improved. Nonetheless, the aforementioned

method still uses all disease predictors when defining disease risk. Intuitively, if certain disease

predictors actually contain little useful information about the disease in concern, then they should

be removed from disease screening. Based on this intuition, we propose a new method in this

paper, in which variable selection by LASSO is incorporated in survival data modelling, so that the

redundant disease predictors are deleted during survival model estimation. It will be shown that

this new method is more effective than the original one by You and Qiu (2019) in various different

cases.

The remaining parts of the article is organized as follows. In Section 2, the proposed model

and its estimation for disease risk quantification will be introduced. In Section 3, some simulation

studies will be presented to evaluate the performance of the proposed method. The proposed

method will be demonstrated in a real-data example in Section 4. Finally, Section 5 will conclude

the article with some discussions about certain future research topics.

2 Proposed Method

In this section, we describe the proposed disease screening method in detail. Our proposed method

consists of two main steps. In the first step, a survival model is fitted from a training dataset that

contains observations of the survival times and disease predictors of certain individuals. The fitted

model can then be used to quantify people’s disease risk at a given time. In this step, we will also

discuss how to select important disease predictors by a LASSO variable selection method. In the

second step, the quantified disease risk of a specific individual is monitored sequentially over time

by a control chart. These two steps are discussed in detail in the following two parts.

2.1 Risk estimation and variable selection

Suppose that a training dataset containing observations of the longitudinal disease predictors and

survival times of n individuals. The survival outcomes of the ith individual are described by
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(δi, Ti), where Ti is the last-follow-up time and δi is the survival indicator with δi = 1 indicating

the occurrence of an disease at the last follow-up time Ti, and δi = 0 otherwise. Following the

notations of survival models in the literature, we use Di to denote the true disease time and Ci

to denote the censoring time. Then, the survival outcomes can be expressed as Ti = min{Di, Ci}

and δi = I(Di ≤ Ci). For simplicity of presentation, we will also use R(t) = {i : Ti ≥ t} to denote

the set of all individuals who are at risk of disease at a given time t (i.e., they are still under

monitoring in the study at time t). The q-dimensional longitudinal disease predictor of the ith

individual is denoted as xi(t), and it is repeatedly and sequentially observed at times ti1, . . . , timi ,

where these observation times can be unequally spaced and timi = Ti. Let λi(t) = limdt→0 P{Di ∈

[t, t+ dt]|Di ≥ t}/dt be the hazard function of the disease in question for the ith individual. Then,

the following Cox proportional hazards model is assumed (cf., Klein and Moeschberger 1997):

λi(t) = λ0(t) exp(β′xi(t)), (1)

where β is a q-dimensional vector of coefficients and λ0(t) is the baseline hazard function. By using

model (1), the linear combination β′xi(t) can measure the disease risk of the ith individual at time

t, and it is denoted as ri(t). Namely, we define

ri(t) = β′xi(t).

To estimate model (1), You and Qiu (2019) suggested using the following kernel-smoothed likeli-

hood:

L(β) =
∏
i:δi=1

exp(β′xi(Ti))∑
l∈R(Ti)

∑ml
j=1Kh(Ti − tlj) exp(β′xl(tlj))

,

where Kh(s) = K(s/h)/h, K(s) is a density kernel function, and h > 0 is a bandwidth. The use

of kernel smoothing in Cox proportional hazards model is motivated by some existing works on

estimating time-varying coefficients model in the literature (e.g., Cai and Sun 2003, Tian et al.

2005). The corresponding log-likelihood function is given by

l(β) =
∑
i:δi=1

β′xi(Ti)− log

 ∑
l∈R(Ti)

ml∑
j=1

Kh(Ti − tlj) exp(β′xl(tlj))


 . (2)

Then, β can be estimated by the maximizer of (2), denoted as β̃, which can be obtained by using

the Newton-Raphson algorithm.

So far, we assume that all disease predictors in xi(t) have substantial impact on the disease

risk. In reality, because we do not know which disease predictors are important and which are not,
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we often include many potential disease predictors in xi(t), to avoid important disease predictors

being overlooked. Thus, some disease predictors in xi(t) may not have much prediction power for

the specific disease. This will be reflected in the regression coefficients in β, which some of them

could be 0 or small. However, the estimate β̃ given by the partial log-likelihood function in (2)

usually would not contain elements that are exactly 0. Thus, it cannot serve the purpose of variable

selection. To properly select important disease predictors and exclude unimportant ones, we need

to identify zero elements in the regression coefficient β, which can be achieved by using the LASSO

method (Tibshirani 1996). The main idea of LASSO is to add a penalty term on the regression

coefficients to shrink the coefficients of unimportant disease predictors toward zero. In this paper,

we choose to use the following L1 adaptive LASSO penalty (cf., Zou 2006):

pγ(β) = γ

q∑
k=1

wk|βk|,

where γ is a non-negative regularization parameter, and w = (w1, . . . , wq)
′ is a vector of adaptive

weights. The adaptive weights {wk} can be simply chosen to be 1/|β̃k|, where β̃ = (β̃1, . . . , β̃k) is

the estimate of β obtained from (2), as discussed above. The LASSO penalized estimate of β is

then defined to be the minimizer of the following penalized log-likelihood function:

−l(β) + pγ(β). (3)

The above penalized log-likelihood function is not differentiable with respect to β at 0 and thus β̂

cannot be obtained by the Newton-type optimization algorithms. Here, we can use the coordinate

optimization algorithm discussed in Friedman et al. (2007) and Simon et al. (2011) to find the

estimate, which is denoted as β̂.

Note that there are some components in β̂ that are exactly 0. These components and the

corresponding disease predictors can then be deleted from the subsequent analysis. Without loss

of generality, after these components and the corresponding disease predictors are deleted, the

estimated regression coefficient vector and the disease predictor vector are still denoted as β̂ and

xi(t). Then, the estimated disease risk of the ith individual at time t is defined to be

r̂i(t) = β̂′xi(t).

Similar to the univariate DySS method discussed in Qiu and Xiang (2014), we can characterize the

regular pattern of the disease risk by a nonparametric longitudinal model, with the mean to be

µ(t) = E[ri(t)|Ti ≥ t] and the variance to be σ2(t) = Var[ri(t)|Ti ≥ t]. Here, we only assume that
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µ(t) and σ2(t) are two smooth functions of time, and they can be estimated by the local linear

kernel smoothing procedure, as discussed in Qiu and Xiang (2014) and Xiang et al. (2013). The

corresponding local linear kernel estimates of µ(t) and σ2(t) are given by

µ̂(t) =
R0(t)W2,hµ(t)−R1(t)W1,hµ(t)

W0,hµ(t)W2,hµ(t)−W1,hµ(t)2
, (4)

σ̂2(t) =
Q0(t)W2,hσ(t)−Q1(t)W1,hσ(t)

W0,hσ(t)W2,hσ(t)−W1,hσ(t)2
, (5)

where hµ and hσ are two bandwidths that could be different from h used in (2), ε̂i(tij) = r̂i(tij)−

µ̂(tij), and

Wl,h(t) =
1

n

∑
i∈R(t)

mi∑
j=1

Kh(tij − t)
( tij − t

h

)l
,

Rl(t) =
1

n

∑
i∈R(t)

mi∑
j=1

Khµ(tij − t)
( tij − t

hµ

)l
r̂i(tij),

Ql(t) =
1

n

∑
i∈R(t)

mi∑
j=1

Khσ(tij − t)
( tij − t

hσ

)l
ε̂2i (tij).

As a side note, in the above model, the regular disease risk pattern is characterized by the first

and second moments µ(t) and σ2(t). Alternatively, we can characterize the regular disease risk

pattern by the entire distribution of ri(t). To this end, let F (y; t) = P(ri(t) ≤ y|Ti ≥ t) be the

conditional distribution function of the disease risk at time t. For given values of y and t, we can

use the local linear kernel smoothing method to estimate this conditional distribution, as discussed

in Fan et al. (1996) and Yu and Jones (1998). By following their ideas, we can consider minimizing

the following objective function:

∑
i∈R(t)

mi∑
j=1

[
Ψhψ

(
r̂i(tij)− y

)
− α0 − α1(tij − t)

]2
KhF (tij − t),

where Ψ(y) is a suitable kernel cumulative distribution function, hψ and hF are two bandwidths,

and Ψh(y) = Ψ(y/h). Then, the estimate F̂ (y; t) of F (y; t) can be defined by the minimizer with

respect to α0 in the above minimization problem, which has the expression

F̂ (y; t) =
S0(y; t)W2,hF (t)− S1(y; t)W1,hF (t)

W0,hF (t)W2,hF (t)−W1,hF (t)2
, (6)

where for l = 0, 1,

Sl(y; t) =
1

n

∑
i∈R(t)

mi∑
j=1

KhF (tij − t)
( tij − t

hF

)l
Ψhψ

(
r̂i(tij)− y

)
.
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This idea will not be further explored in this paper, and will be studied in our future research.

In (3)-(6), there are several bandwidths to use. To determine the bandwidth h used in (3)

for estimating β, we can use the leave-one-out cross-validation (CV) criterion that is based on the

martingale residuals (cf., Tian et al. 2005, You and Qiu 2019). The selected bandwidth can be

calculated by minimizing the following function of h

CV β(h) =
n∑
i=1

PE i(h),

where

PE i(h) =

δi − ∑
k 6=i, δk=1
Tk≤Ti

∑mi
j=1Kh(Tk − tij) exp(β̃′−ixi(tij))∑

d6=k,d∈R(Tk)

∑md
j=1Kh(Tk − tdj) exp(β̃′−ixd(tdj))


2

,

β−i is the estimate of β when the ith individual is excluded from model estimation, and PE i is

the square of some estimate of the integrated martingale residual. To choose the regularization

parameter γ in the LASSO penalty in (3), we propose to use the Akaike information criterion

(AIC) (cf., Akaike 1992, Tibshirani 1997). Let c(β) be the number of non-zero elements of the

vector β. Then, the AIC of the modified Cox partial likelihood is defined as

AIC (γ) = −2l(β̂) + 2c(β̂)

where β̂ is the estimate of β with the regularization parameter being γ. The regularization pa-

rameter γ is then chosen to be the minimizer of AIC (γ). The bandwidths hµ and hσ in (4) and

(5) can be chosen using the leave-one-out CV procedure discussed in Qiu and Xiang (2014). In

this chapter, all kernel functions are chosen to be the Epanechnikov kernel function (Epanechnikov

1969).

2.2 Online disease risk monitoring

To monitor the quantified disease risk of a new individual, assume that the disease predictors are

sequentially observed at times t∗1, t
∗
2, . . ., and the corresponding observations are x(t∗1),x(t∗2), . . ..

For simplicity of presentation, we further assume that t∗1, t
∗
2, . . . are multiplications of a basic time

ω. Thus, we can write t∗j = n∗jω, for j ≥ 1. When the disease risk pattern is characterized by the

estimated mean and variance function µ̂(t) and σ̂2(t), we can define the standardized value of the

estimated disease risk as

ê(t∗j ) =
r̂(t∗j )− µ̂(t∗j )

σ̂(t∗j )
, for j ≥ 1.
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To monitor the quantified disease risks of the new individual and detect an undesirable upward

shift in the longitudinal pattern of the disease risk when observations are sequentially obtained,

SPC charts can be used. To this end, we consider using the following upward EWMA chart, based

on the exponential smoothing idea that was discussed in Wright (1986) and Qiu et al. (2018) to

account for irregularly spaced observation times:

E1 = V1ê(t
∗
1), (7)

Ej = (1− Vj)Ej−1 + Vj ê(t
∗
j ), (8)

where V1 = 1 − (1 − λ)∆̄, Vj = Vj−1/[(1 − λ)n
∗
j−n∗

j−1 + Vj−1], λ is a weighting parameter in [0, 1),

and ∆̄ is an estimate of the mean of n∗j − n∗j−1 obtained from the IC dataset. The chart gives a

signal at time t∗j if

Ej > ρ

where ρ > 0 is a control limit. It should be pointed out that the upward chart is considered here

because we are mainly concerned about upward shifts in disease risk in the current disease screening

problem. In other problems, downward or two-sided charts might be more appropriate. Also, the

observation times t∗1, t
∗
2, . . . are often unequally spaced in disease screening applications, and the

above EWMA chart can accommodate the unequally spaced observation times well. With other

types of control charts (e.g., CUSUM), we still do not know how to accommodate this properly in

their chart construction.

The performance of control charts are traditionally evaluated by the average run length (ARL),

which is the average number of collected observations before triggering a signal. When observation

times are unequally spaced, a more sensible measure is the average time to signal (ATS) (cf., Qiu

and Xiang 2014). In disease monitoring problems, there is also interest in the receiver operating

characteristics (ROC) of monitoring schemes in terms of sensitivity and specificity, which are for

evaluating whether the monitoring scheme can correctly identify patients who may or may not have

the disease in the future. Recently, Qiu et al. (2019) has proposed a new measure, called process

monitoring ROC curve, which attempts to combine the ATS measure and the ROC measures.

The control limit ρ is usually chosen such that the nominal IC ATS value is fixed at a given level

when the monitoring schemes are applied to an IC dataset. To accommodate the within-subject

data correlation, the block bootstrap procedure discussed in Qiu and Xiang (2014) can be used for

searching for the control limit. When there are enough training data, we can split them into two
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parts. The first part can be used for estimating model (1) to describe the regular pattern of the

disease risk, and the IC individuals in the second part can be used for determining the control limit

ρ. To expedite the searching algorithm, we can use the bisection method as discussed in Qiu (2014,

Section 4.2).

3 Simulation Study

Simulations were conducted to evaluate the numerical performance of the proposed method. We

used a simulated training data set of n = 500 individuals to estimate the regular disease risk

pattern. The whole design interval [0, 1] is discretized in to 1000 basic time units. We considered

three different cases with the dimension of covariates being q = 10, 20 and 30. The processes of

xik(t) are generated from the following random process model

xik(t) = − sin(πt+ πuik1) + 0.5 cos(10πt+ 10πuik2) + εik(t), for i = 1, . . . , n, k = 1, . . . , q, (9)

where {uik1, uik2} are independent realizations from the uniform [0, 1] distribution, εik(t) are gener-

ated from the Ornstein-Uhlenbeck processes with dεik(t) = −θ(mik−εik(t))dt+σdWik(t), Wik(t) are

independent realizations from the Wiener process, θ = 50, σ = 20, εik(0) ∼ N(0, 0.22), and the ran-

dom mean vectors mi = (mi1, . . . ,miq)
′ are realizations from the multivariate normal distribution

with mean 0 and variance-covariance matrix being
0.5 0.1 · · · 0.1

0.1 0.5 · · · 0.1
...

...
. . .

...

0.1 0.1 · · · 0.5

 .

The baseline hazard function in model (1) is chosen to be λ0(t) = 0.25. The true regression

coefficients β are sparse with the first three dimensions being 0.2 and all the remaining dimensions

being 0, i.e., β = (0.2, 0.2, 0.2, 0, . . . , 0)′. In each simulation, we estimate the regular disease risk

pattern using the simulated dataset of n = 500 individuals, and then determine the control limit

ρ from another simulated dataset of 500 individuals. The control limit ρ here is chosen such that

the nominal IC ATS is 370. Then, the proposed monitoring scheme is applied to simulated data

of 10,000 new individuals to evaluate its performance. All the results presented in this section are

based on 1000 replicated simulations.
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We first present some results about the variable selection method using LASSO. In Table 1,

we displayed the mean-squared errors of estimated regression coefficients for different dimensions

q = 10, 20, 30. From the table, we can see that when there is a substantial percentage of zeros in

the true regression coefficients, the LASSO penalized estimate β̂ has a smaller mean-squared-error

(MSE), compared to the MSE of the ordinary estimate β̃ in this example. The relative efficiency

of β̂ with respect to β̃, defined as the ratio of their MSE values, decreases as the dimension q

increases. The implication is that when many covariates are unrelated to the disease risk, applying

the LASSO penalty can indeed improve the efficiency of parameter estimates.

Table 1: MSE of LASSO penalized estimate β̂ and unpenalized estimate β̃ of β and their corre-

sponding standard errors (in parentheses). The relative efficiency of β̂ with respect to β̃ is the

ratio of the their MSE values, and the standard errors of relative efficiency is obtained by the delta

method.

q = 10 q = 20 q = 30

MSE of β̃ 0.0140 (0.0002) 0.0283 (0.0003) 0.0424 (0.0004)

MSE of β̂ 0.0084 (0.0002) 0.0115 (0.0003) 0.0139 (0.0003)

Relative efficiency of β̂ 0.6000 (0.0072) 0.4077 (0.0061) 0.3265 (0.0051)

Next, we present some results about the proposed online monitoring scheme. To examine

whether the proposed method can effectively detect distributional shifts that lead to an increased

disease risks, we considered a shift of x(t) in the direction of β, namely,

x∗(t) = x(t) + δβ,

where x(t) is simulated from model (9). The out-of-control ATS values of three different methods

are presented in Figure 1, where DySS denotes the multivariate DySS by Qiu and Xiang (2015),

NoSelection denotes the original risk monitoring method by You and Qiu (2019) without using the

LASSO variable selection, and Selection is the proposed method in this paper. From the figure, we

can see that (i) the proposed method Selection has the best performance among all three methods,

(ii) DySS has the worst performance among all three methods, and (iii) the improvement from

NoSelection to Selection is more pronounced as the dimensionality of x(t) increases.

We then compare the three different methods when they are applied to individuals in a simu-

lated training dataset, using the metrics of true positive rate (TPR) and false positive rates (FPR).

Here, TPR is defined to be the percentage of individuals receiving signals among all diseased people,
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Figure 1: OC ATS values of different monitoring methods when λ = 0.02, 0.05 and q = 10, 20, 30.

NoSelection is the method by You and Qiu (2019) where β is estimated from (2) without using the

LASSO penalty. Selection is the proposed method in this paper. DySS is the multivariate DySS

by Qiu and Xiang (2015).

and FPR is defined to be the percentage of individuals receiving signals among all non-diseased

people. The results are presented in Table 2, from which we can see that i) DySS tends to have a

high false positive rate in all cases considered, and ii) Selection and NoSelection have similar TPR

values in most scenarios considered here, but the FPR values of NoSelection are lower than those

of Selection in all cases considered here.
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Table 2: TPR and FPR values of different monitoring methods when λ = 0.02, 0.05 and q =

10, 20, 30. Numbers in parentheses are the corresponding standard errors. NoSelection is the risk

monitoring method by You and Qiu (2019) where β is estimated from (1) without using the LASSO

penalty. Selection is the proposed risk monitoring method where β is estimated from (3). DySS is

the multivariate DySS by Qiu and Xiang (2015).

q = 10 q = 20 q = 30

TPR FPR TPR FPR TPR FPR

λ = 0.02

NoSelection 0.427 (0.002) 0.457 (0.003) 0.432 (0.002) 0.473 (0.003) 0.430 (0.002) 0.468 (0.002)

Selection 0.427 (0.002) 0.453 (0.003) 0.432 (0.002) 0.465 (0.003) 0.433 (0.002) 0.453 (0.003)

DySS 0.483 (0.002) 0.640 (0.002) 0.483 (0.002) 0.640 (0.002) 0.483 (0.002) 0.639 (0.002)

λ = 0.05

NoSelection 0.426 (0.003) 0.467 (0.003) 0.431 (0.003) 0.482 (0.003) 0.428 (0.003) 0.478 (0.003)

Selection 0.426 (0.002) 0.463 (0.003) 0.430 (0.003) 0.471 (0.003) 0.430 (0.003) 0.462 (0.003)

DySS 0.392 (0.003) 0.509 (0.003) 0.392 (0.003) 0.508 (0.003) 0.392 (0.003) 0.509 (0.003)
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Figure 2: Cholesterol levels, systolic blood pressure readings and diastolic blood pressure readings

of 1,055 participants of the Framingham heart study. Gray solid lines are longitudinal observations

of 1,028 non-stroke participants, while black dashed lines are longitudinal observations of 27 stroke

participants.

4 Real Data Example

In this section, we apply the proposed method to a real data example from the Framingham heart

study. In this study, participants are regularly examined for risk factors of cardiovascular diseases.

The data set contains observations of the cholesterol levels, systolic blood pressures and diastolic

blood pressures of 1,055 participants. Each participant was followed for 7 times at their different

ages. Among the 1,055 participants, 27 of them had strokes at least once during the study. This data
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set is displayed in Figure 2. To implement and evaluate the proposed method, we randomly partition

the original dataset into training and test datasets. The training dataset contains approximately

two-thirds of all the participants, among which 18 of them had strokes during the study and 686

did not have any strokes. This training dataset is then used for estimating the regular disease risk

pattern using (2)-(5). The test dataset contains approximately 1/3 of all the participants, among

which 9 had strokes and 342 did not have any strokes. The test dataset is then used for evaluating

the numerical performance of the proposed method. Its weighting parameter λ is chosen to be 0.2

and the nominal IC ATS is set to be 10 years.

The estimate of β by (2) without the LASSO penalty is β̃ = (−0.0013, 0.0178, 0.0099)′, and

the LASSO estimate of β is β̂ = (0.0000, 0.0169, 0.0092)′ where the parameter γ is chosen to be

0.05. We can see that the first dimension of the LASSO estimate has been shrunk to 0. We then

compare the performance of the three monitoring methods: NoSelection, Selection and DySS. A

summary of the results is presented in Table 3. From the table, we can see that i) all the three

methods considered here correctly gave signals to 8 out of 9 stroke patients in the test dataset,

ii) NoSelection gives 132 signals to 342 non-stroke patients, and Selection gives only 9 less signals

to the non-stroke patients, and iii) DySS has the worst performance because it gives more signals

to the non-stroke patients than each of the other two methods. The three types of charts for

monitoring the 9 stroke patients in the test dataset are shown in Figure 3.

Table 3: Number of signals when different methods are used to monitor patients in the test dataset.

DySS NoSelection Selection

Signal No signal Signal No signal Signal No signal

Stroke Patients 8 1 8 1 8 1

Non-Stroke Patients 167 175 132 210 123 219

5 Concluding remarks

In this chapter, we presented an improved version of the disease risk monitoring method suggested

by You and Qiu (2019). The major contribution of the improved version is that variable selection

is used when quantifying disease risks, in order to reduce variability of the quantified disease risks.
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Figure 3: Charting statistics of the three types of charts for monitoring the 9 stroke patients in the

test dataset. Horizontal dotted lines are the control limits.

Variable selection is achieved by using the LASSO penalty to reduce the dimensionality of the

disease predictors in the related survival model. Through numerical simulations and a real data

example, we have shown that when many disease predictors are included in the survival model,

implementing variable selection before monitoring the quantified disease risks can often improve

the performance of disease risk monitoring.

Our proposed method still has its own limitations and there are many issues to be addressed

in the future research. For instance, in real-life disease screening practice, it is quite common that

patients may miss some medical tests or have some incomplete medical examinations during a clinic

visit. Future research is needed to extend existing methods to allow for missing data of different

types. Also, the effect of disease predictors can be time-varying. Though You and Qiu (2019)

has provided a method for estimating time-varying regression coefficients, the variable selection

problems in a time-varying-effect model will be much more challenging than the problem considered

here, which has not properly discussed yet. Finally, the proposed variable selection method is based

on the L1 adaptive LASSO penalty. In the literature, there are a series of alternative penalized

regression methods for variable selection. For example, one may consider the alternative penalty

functions like the elastic net (Zou and Hastie 2005) and the smoothly clipped absolute deviation
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penalty (Fan and Li 2001) to reduce the bias of the LASSO estimates. When disease predictors

come from many different groups, one may consider using the group LASSO (Yuan and Lin 2006)

to select some groups of disease predictors for quantifying disease risks. It is of interest to study

all these variable selection methods in the dynamic disease screening and monitoring problems in

the future research.
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