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Abstract

To online monitor the longitudinal performance of processes and give early signals to pro-

cesses with irregular patterns, a series of dynamic screening systems (DySS) have been proposed

in the literature. Existing DySS methods are all based on estimation of the in-control (IC) mean

and variance of processes with a regular longitudinal pattern. In this paper, a new DySS method

is suggested, which is based on estimation of the IC distribution of processes with a regular lon-

gitudinal pattern. Based on the estimated IC distribution, a statistical process control chart is

constructed for sequentially detecting any distributional shifts in a longitudinal process. The

suggested control chart is relatively simple to design and implement, and it is robust to the

true IC distribution. Numerical examples show that it outperforms some representative existing

DySS methods. These properties make it an ideal tool for dynamic screening applications, which

is demonstrated by a real-data example.

Key Words: Data correlation; Dynamic processes; Longitudinal pattern; Normalization;

Online monitoring; Transformation.

1 Introduction

In practice, dynamic processes whose in-control (IC) distribution changes over time are common.

For instance, durable goods (e.g., airplanes, computers) often need to be checked regularly or

occasionally for certain performance variables. The distribution of such performance variables

would change when the durable goods get older, even when they perform normally at their ages.

The research problem to monitor the longitudinal performance of such a dynamic process is called

dynamic screening (DS) in the literature (cf., Qiu and Xiang 2014). This paper aims to develop a

new method for handling DS applications effectively.
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Statistical process control (SPC) charts provide a popular tool for online process monitoring

(Hawkins and Olwell 1998, Montgomery 2012, Qiu 2014). However, SPC methods are mainly for

monitoring production lines in manufacturing industries, and most of them are designed based on

the assumptions that process observations are independent and identically distributed at different

observation times. These assumptions are obviously invalid in many DS applications because the

IC process distribution can change over time in these applications. For this reason, Qiu and Xiang

(2014) proposed the first dynamic screening system (DySS) to handle univariate DS problems.

This method consists of three main steps. First, the regular longitudinal pattern of the dynamic

process under monitoring is first estimated from an IC data that contain the observed data of

some IC dynamic processes. Second, the observed data of the dynamic process under monitoring is

standardized by using the estimated regular longitudinal pattern. Third, a control chart is applied

to the standardized observations to check whether the longitudinal pattern of the process under

monitoring is significantly different from the estimated regular longitudinal pattern and a signal

is given once a significant difference is detected. In the real data example about the Framingham

heart study that will be discussed in more details in Section 4, we would like to detect the oc-

currence of strokes early by sequentially monitoring patients’ systolic blood pressure readings. By

using the DySS method, the regular longitudinal pattern of the systolic blood pressure needs to

be first estimated from a dataset of some non-stroke patients. Then, for a new patient to monitor,

we can standardize his/her observations using the estimated longitudinal pattern and then mon-

itor the standardized observations by a control chart. This univariate method was generalized to

multivariate cases in Qiu and Xiang (2015). Cases with serially correlated data were discussed in

Li and Qiu (2016, 2017). Certain modifications and improvements of these charts were discussed

in Li et al. (2018), Qiu et al. (2018), and Qiu et al. (2020).

It should be pointed out that the DS problem discussed in this paper is completely different

from the profile monitoring problem discussed extensively in the SPC literature (e.g., Kang and

Albin 2000, Qiu et al. 2010). In the profile monitoring problem, we are mainly concerned about the

functional relationship between a response variable and some covariates, and the collected data of a

process at each time point are a set of observations of the response variable and the covariates(i.e.,

profiles). Then, a profile monitoring method is for sequentially monitoring the sequence of profiles

collected at different time points. As a comparison, our ultimate goal in the current DS problem is

to sequentially monitor the longitudinal pattern of each individual subject and the observed data
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of an individual subject at each time point is usually a single value of the performance variables.

Thus, the DS problem is the same as the conventional process monitoring problem, except that

the IC process distribution could change over time in the DS problem while it is often assumed

unchanged over time in the conventional process monitoring problem. Although observations of

each individual subject look like a profile in the DS problem, each individual is actually treated as

a separate process and we are interested in monitoring the longitudinal behavior of each individual

in that problem.

In all the DySS methods mentioned above, the regular longitudinal pattern of a dynamic process

is described by its mean and covariance functions. This may not be appropriate in cases when the

time-varying process distribution is non-Gaussian. In practice, the true distribution of a dynamic

process is rarely Gaussian. So, a natural idea to improve the existing DySS methods is to describe

the regular longitudinal pattern of a dynamic process by the entire IC process distribution which

could change over time. Then, a control chart can be applied to the observations of the dynamic

process that are standardized by using the estimated IC process distribution. Based on this idea, we

develop a new and effective DySS method in this paper. Compared to the existing DySS methods,

the proposed new method has two major advantages. First, its design is relatively simple because

the control limit of its control chart can be determined conveniently by a Monte Carlo simulation,

as discussed in detail in Section 2. As a comparison, the control limits of the control charts involved

in most existing DySS methods need to be computed by some relatively complicated resampling

procedures from an IC dataset. Second, the proposed new method is robust to the true IC process

distribution without sacrificing information in the observed data. As a comparison, the existing

DySS methods are either sensitive to the true IC process distribution (e.g., Qiu and Xiang 2014) or

losing some effectiveness due to the fact that they need to use nonparametric control charts that are

based on the categorized data or the ordering information of the original process observations (e.g.,

Li and Qiu 2016). Numerical examples in Section 3 will show that the proposed method indeed

outperforms some representative existing DySS methods in various different cases considered.

The remainder of the paper is organized as follows. In Section 2, the proposed new DySS

method will be described in detail. Some simulation studies are presented in Section 3 to evaluate

its numerical performance. In Section 4, the proposed method is applied to a real-data example

about the well-known Framingham heart study. Finally, Section 5 concludes the paper with some

comments and remarks.
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2 Proposed New Method

As mentioned in Section 1, the novelty of the proposed method is mainly in describing the regular

longitudinal pattern of an IC dynamic process by the entire IC process distribution. Estimation

of this time-varying distribution and construction of the subsequent online monitoring scheme are

discussed in the two parts below.

2.1 Modeling the Regular Longitudinal Pattern of an IC Dynamic Process

Assume that we want to describe and estimate the regular longitudinal pattern of the performance

variable y(t) and there are observed data of n IC dynamic processes of y(t). Observations of the

ith IC dynamic process yi(t) are obtained at the times {ti1, ti2, . . . , timi}, where the observation

times could be unequally spaced in the time interval [0, T ] and yi(t) are assumed to be independent

realizations of y(t), for i = 1, 2, . . . , n. Let F (q; t) = P(y(t) ≤ q) be the cumulative distribution

function (cdf) of y(t). In this paper, we assume that F (q; t) is a continuous function of both t and q.

This assumption implies that the performance variable y(t) has a continuous IC cdf at any given t

and the cdf changes continuously over t, which should be reasonable in many applications including

the one about the Framingham heart study discussed in Section 1. Then, F (q; t) can be used for

describing the regular longitudinal pattern of y(t). In the example of the Framingham heart study,

the performance variable of interest is the systolic blood pressure, F (q; t) is its IC cdf at time t,

and F (q; t) can be estimated from an IC data to describe the regular longitudinal pattern of the

systolic blood pressure.

To estimate F (q; t) from the observed data {yi(tij), j = 1, 2, . . . ,mi, i = 1, 2, . . . , n} of the n IC

dynamic processes, one natural idea is to use the local kernel smoothing method that was discussed

in Fan et al. (1996) and Yu and Jones (1998). To this end, let W (·) be a pre-specified cdf kernel

function, and Whw(·) = W (·/hw), where hw > 0 is a bandwidth parameter. Then, for any value of

q, F (q; t) can estimated by

F̂ (q; t) = arg min
a≥0

n∑
i=1

mi∑
j=1

[Whw(q − yi(tij))− a]2Khf (tij − t), (1)

where hf > 0 is another bandwidth parameter, and Khf (·) = K(·/hf )/hf is a symmetric density

kernel function. In (1), two kernel functions W (·) and K(·) are used. Thus, this estimation

procedure is often called a double-kernel smoother in the literature (cf., Yu and Jones 1998). In this
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paper, the density kernel function K(·) is chosen to be the Epanechnikov kernel function, namely,

K(s) = 0.75(1 − s2)I(|s| ≤ 1), because of its good statistical properties (cf., Epanechnikov 1969).

To ensure that the estimate F̂ (q; t) takes values in the entire interval (0, 1), the cdf kernel function

W (·) should not have a compact support. To meet this requirement, we adopt the suggestion in Yu

and Jones (1998) to choose W (·) to be the standard normal cdf in this paper. Namely, we choose

W (t) = 1√
2π

∫ t
−∞ exp(−s2/2) ds.

In the above estimation procedure, there are two bandwidth parameters hw and hf that need

to be specified in advance. To this end, by the normal referencing rule proposed by Silverman

(1986) and Fan and Gijbels (1995), hw can be chosen to be

hw =

∫ T
0 σ̂(t) dt

T

[
8π1/2

∫
w2(t) dt

3{
∫
t2w(t) dt}2

∑n
i=1mi

]1/5
,

where σ̂2(t) is an estimate of σ2(t) = σ2y(t), and w(t) = dW (t)/dt is the density function of W (t).

Here, σ̂2(t) can be obtained using the kernel smoothing estimation discussed in Qiu and Xiang

(2014). To choose the bandwidth parameter hf , we can consider using the following residual

squares criterion, which is similar to the one discussed in Fan et al. (1996):

RSC(hf ) =
n∑
i=1

mi∑
j=1

τ2(yi(tij), tij ;hf )
[
1 + 3S0(tij)/V0(tij)

2
]
,

where

τ2(y, t;hf ) =
1

V0(t)− S0(t)/V0(t)

n∑
i=1

mi∑
j=1

[
Whw(y − yi(tij))− F̂ (y; t)

]2
Khf (tij − t),

V0(t) =

n∑
i=1

mi∑
j=1

Khf (tij − t),

S0(t) =
n∑
i=1

mi∑
j=1

Khf (tij − t)2.

Then, hf can be chosen by minimizing RSC(hf ).

2.2 Online Dynamic Process Monitoring

Now, we would like to construct an online monitoring procedure to sequentially monitor a new

dynamic procedure (e.g., a new patient in the Framingham heart study discussed in Section 1) to

see whether its longitudinal pattern is significantly different from the regular longitudinal pattern
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that has been estimated by the method discussed in Subsection 2.1. If a significant difference

is detected, then a signal will be given as soon as possible. The construction of such an online

monitoring procedure is discussed below.

Assume that observations of the new dynamic process are obtained sequentially at times

{t∗1, t∗2, . . .}, and the corresponding observations are denoted as {y∗(t∗1), y∗(t∗2), . . .}. In the above

notations, the symbol “*” is used to denote that the observation times {t∗1, t∗2, . . .} could be different

from those in the IC data, and the new dynamic process could be different from those in the IC

data as well. However, it is assumed that if the new dynamic process is IC, then its time-varying

process distribution should be the same as the process distribution of the regular longitudinal pat-

tern, which is F (q; t) discussed in Subsection 2.1. To monitor the new dynamic process, the DySS

method proposed in Qiu and Xiang (2014) first standardized the observations of the new process

by computing

ε̂(t∗j ) = {y∗(t∗j )− µ̂(t∗j )}/σ̂(t∗j ),

where µ̂(t) and σ̂(t) were the estimates of the IC process mean function µ(t) and the IC process

standard deviation σ(t). Then, a cumulative sum (CUSUM) control chart was applied to the

standardized observations. As discussed in Section 1, this existing DySS method described the

regular longitudinal pattern of an IC dynamic process by µ(t) and σ(t), which was appropriate

only in cases when the IC dynamic process was a Gaussian process. In practice, however, the

Gaussian process assumption would be rarely valid. Thus, the efficiency of this DySS method can

be improved.

In our proposed new method, the regular longitudinal pattern is described by the IC time-

varying process distribution F (q; t). We would like to standardize the observations {y∗(t∗1), y∗(t∗2), . . .}

of the new dynamic process by using the entire distribution function F (q; t), instead of just its mean

µ(t) and standard deviation σ(t). To this end, after F (q; t) is estimated by F̂ (q; t) (cf., (1)), we

consider the following transformation (cf., Hawkins 1969):

z∗j = Φ−1
[
F̂
(
y∗(t∗j ); t

∗
j

)]
, (2)

where Φ−1(·) is the inverse function of the standard normal cdf. If the new dynamic process y∗(t)

is IC, then it is obvious that the distribution of F
(
y∗(t∗j ); t

∗
j

)
is Uniform(0,1) and the distribution

of z∗j is close to N(0, 1). Thus, when the observations {y∗(t∗j ), y∗(t∗2), . . .} are independent of each

other at different time points, it is natural to apply the following conventional CUSUM chart to
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the transformed observations {z∗j , j ≥ 1}:
C̃+
0 = 0,

C̃+
j = max

(
0, C̃+

j−1 + z∗j − k̃
)
, for j ≥ 1,

(3)

where k̃ > 0 is an allowance constant. In the CUSUM chart (3), large values of z∗j after a specific

time point indicate an upward mean shift and will result in large values of the charting statistic

C̃+
j . A signal for an upward distributional shift is then triggered at the time t∗j if C̃+

j > ρ̃, where

ρ̃ > 0 is a properly chosen control limit. Because upward mean shifts are our main concern in

applications like the monitoring of cardiovascular disease risk factors (e.g., blood pressure read-

ings) that was discussed in Section 1, the chart (3) is constructed for detecting upward mean shifts

in {y∗(t∗j ), j ≥ 1}. If our interest is in detecting a downward or arbitrary mean shift in a specific

application, then the corresponding charts can be constructed in a similar way. See Chapter 4 in

Qiu (2014) for a detailed discussion.

In practice, process observations at different time points are usually serially correlated. It has

been well discussed in the literature that such data correlation should be taken into account in

the design of the control chart and the chart would be unreliable to use otherwise (cf., Apley and

Lee 2003, Apley and Shi 1999, Qiu et al. 2019). To handle the issue of data correlation, we try

to decorrelate the transformed data (cf., (2)) and then apply the control chart to the decorrelated

data, as discussed in Li and Qiu (2016). To this end, the serial data correlation structure should

be estimated first from the IC dataset. Let

zij = Φ−1
(
F̂ (yi(tij), tij)

)
, for j = 1, 2, . . . ,mi, i = 1, 2, . . . , n

be the transformed observations in the IC dataset, and Q(s, t) be the covariance function of

Φ−1(F̂ (y(t); t)), for any s, t ∈ [0, T ]. Then, Q(s, t) can be estimated by the following local ker-

nel estimate (cf., Qiu and Xiang 2015):

Q̂(s, t) =

∑n
i=1

∑
j1,j2=1,...,mi,j1 6=j2 zij1zij2Khσ(tij1 − s)Khσ(tij2 − t)∑n

i=1

∑
j1,j2=1,...,mi,j1 6=j2 Khσ(tij1 − s)Khσ(tij2 − t)

, for s 6= t,

and define Q̂(s, t) = 1 when s = t since the transformed data are approximately standard normally

distributed. The bandwidth parameter hσ in the above expression can be selected by the cross-

validation procedure, as discussed in Qiu and Xiang (2015).

After Q(s, t) is estimated from the IC dataset, we can decorrelate the transformed data

{z∗j , j ≥ 1} of the new dynamic process under sequential monitoring. The specific data decor-
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relation procedure used here was proposed by You and Qiu (2019), which is a more computation-

ally efficient version of the one discussed in Li and Qiu (2016). This procedure starts by defining

U1 = [Q̂(t∗1, t
∗
1)]
−1/2. Then, the first standardized and decorrelated observation is defined to be

e∗1 = U1z
∗
1 .

For j ≥ 2, the standardized and decorrelated version of z∗j is defined by

e∗j =
[
z∗j − v′j(e

∗
1, e
∗
2, . . . , e

∗
j−1)

′
]/
dj ,

where

vj = Uj−1

(
Q̂(t∗1, t

∗
j ), Q̂(t∗2, t

∗
j ), . . . , Q̂(t∗j−1, t

∗
j )
)′
,

dj =
[
Q̂(t∗j , t

∗
j )− v′jvj

]1/2
,

Uj =

 Uj−1 0

−v′jUj−1/dj 1/dj

 .

In the above expressions, dj is a scalar, vj is a (j − 1)-dimensional vector, and Uj is a j × j matrix.

To see how this decorrelation algorithm works, let e∗j = (e∗1, . . . , e
∗
j )
′ and z∗j = (z∗1 , . . . , z

∗
j )′. By the

above definitions of e∗j and Uj , it can be seen that

e∗j = Ujz
∗
j ,

which means that each e∗j is some linear combination of z∗1 , . . . , z
∗
j . By inversion matrix identity, we

can show that

[
U′jUj

]−1
=

U′j−1Uj−1 + U′j−1vjv
′
jUj−1/d

2
j −U′j−1vj/d2j

−v′jUj−1/d
2
j 1/d2j

−1

=

[U′j−1Uj−1
]−1

U−1j−1vj

v′j
[
U−1j−1

]′
d2j + v′jvj



=


[
U′j−1Uj−1

]−1


Q̂(t∗1, t
∗
j )

...

Q̂(t∗j−1, t
∗
j )


(
Q̂(t∗j , t

∗
1), · · · , Q̂(t∗j , t

∗
j−1)

)
Q̂(t∗j , t

∗
j )

 .
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Thus, by induction, we have
[
U′jUj

]−1
=
{
Q̂(t∗k1 , t

∗
k2

)
}
1≤,k1,k2≤j . Consequently, the variance of e∗j

is

Var(e∗j ) = Uj Var(z∗j )U
′
j ,

which is an identity matrix if Q̂(s, t) = Q(s, t). Therefore, after the linear transformation e∗j = Ujz
∗
j ,

e∗1, . . . , e
∗
j will be asymptotically uncorrelated and each of them will have the asymptotic mean of 0

and asymptotic variance of 1. Since the distribution of z∗j is approximately N(0, 1), for each j, the

distribution of e∗j should be close to N(0, 1) as well since e∗j is a linear combination of z∗1 , z
∗
2 , . . . , z

∗
j .

After obtaining the standardized and decorrelated values e∗1, e
∗
2, . . ., the following CUSUM chart

can be applied to them for detecting upward distributional shifts in the original dynamic process:
C+
0 = 0,

C+
j = max

(
0, C+

j−1 + e∗j − k
)
, for j ≥ 1,

(4)

where k > 0 is an allowance constant. The chart gives a signal for an upward shift at the time t∗j if

C+
j > ρ, where ρ > 0 is a properly chosen control limit. This is the control chart that we propose

in the paper for solving the DS problem, and is denoted as DySS-new hereafter.

To evaluate the performance of DySS-new in cases when observation times could be unequally

spaced, we can use the IC average time to signal (ATS), denoted as ATS0 and defined as the average

time from the beginning of process monitoring to the signal time of the chart, and the OC ATS,

denoted as ATS1 and defined as the average time from the occurrence of a shift to the signal time.

Usually, ATS0 is fixed in advance, along with the allowance constant k. The control limit ρ is

then computed (cf., the related discussion below) to achieve the given value of ATS0. The chart

performs better if its ATS1 value is smaller for detecting a given shift.

From the above description about the proposed method DySS-new, it can be seen that it first

transforms and decorrelates observations of a dynamic process with an arbitrary time-varying IC

distribution to a sequence of standardized and uncorrelated observations {e∗j , j ≥ 1} and then ap-

plies the conventional CUSUM chart to {e∗j , j ≥ 1}. The transformation and data decorrelation

depend on the estimated functions F̂ (q; t) and Q̂(s, t) obtained from the IC data. Under some

regularity conditions, these estimated functions would converge to the true functions F (q; t) and

Q(s, t) when the IC data size M =
∑n

i=1mi increases. Thus, the IC distribution of {e∗j , j ≥ 1}

would be asymptotically N(0, 1) (Note: that IC distribution would be N(0, 1) if F (q; t) and Q(s, t)

can be estimated perfectly well from the IC data). By this property, the control limit ρ of the

9



chart (4) can be determined by the Monte Carlo simulation, as described below. To accommodate

unequally spaced observation times, Qiu and Xiang (2014) first suggested the concept of basic time

unit, to denote the largest time unit that all unequally spaced observation times are its integer

multiples. For instance, if all possible observation times are multiples of 7 days and there could

be two consecutive observation times just 7-day apart, then the basic time unit is a week. Let d

denote the average number of observation times within 10 consecutive multiples of the basic time

unit. Then, d is a measure of the sampling rate. For a given value of d, a given value of k, and a

desired level of ATS0, the Monte Carlo simulation for determining the control limit ρ is described

below.

Step 1. Generate an IC dataset with n dynamic processes. For the ith process, its observation

times are generated from 1 to 10∗M consecutive multiples of the basic time unit, by a random

sampling algorithm so that d observation times are randomly selected without replacement

from every 10 consecutive multiples of the basic time unit. The corresponding standardized

and decorrelated values of the process observations are generated from the N(0, 1) distribu-

tion. The generated IC dataset is denoted as {(emc
ij , t

mc
ij ), j = 1, 2, . . . , d ∗M, i = 1, 2, . . . , n}.

Step 2. For a given control limit ρ, apply the control chart (4) to the IC data generated in Step

1, and the ATS value is recorded.

Step 3. If the calculated ATS in Step 2 is within ε of the desired level of ATS0, then the current

value of ρ is exported as the selected control limit and the entire algorithm is finished. If the

calculated ATS is smaller than ATS0 − ε, then the current value of ρ is increased and then

Step 2 is repeated. If the calculated ATS is larger than ATS0 + ε, then the current value of

ρ is decreased and then Step 2 is repeated.

In cases when n = 100, 000, M = 100, ε = 10−5, d = 1, 2 or 5, k = 0.1 or 0.2, and the given

level of ATS0 is 100, 150, 200, 250, 300 or 370, the values of ρ determined by the above algorithm

are presented in Table 1. These values can be used in practice for cases with the listed values of d,

k and ATS0 in the table. In cases when the values of d, k and ATS0 cannot be found in the table,

the corresponding values of ρ can be computed easily using the above algorithm.
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Table 1: Calculated values of ρ of the CUSUM chart (4) in cases when n = 100, 000, M = 100,

ε = 0.1, d = 1, 2 or 5, k = 0.1 or 0.2, and the given level of ATS0 is 100, 150, 200, 250, 300 or 370.

d = 1 d = 2 d = 5

ATS0 k = 0.1 k = 0.2 k = 0.1 k = 0.2 k = 0.1 k = 0.2

100 1.756 1.500 2.764 2.318 4.570 3.676

150 2.308 1.959 3.494 2.884 5.568 4.394

200 2.768 2.323 4.093 3.335 6.363 4.941

250 3.176 2.641 4.607 3.713 7.048 5.394

300 3.545 2.929 5.081 4.049 7.668 5.796

370 4.045 3.309 5.691 4.487 8.473 6.315

3 Simulation Study

In this section, we present some simulation studies to evaluate the numerical performance of the

proposed method. In these examples, all observation times are in the time interval [0, 1], the

basic time unit is ω = 0.001, and M = 100. Thus, all observation times are in the set T =

{ω, 2ω, . . . , 1000ω}. We consider 6 different cases for the IC longitudinal pattern. In cases (I)-(III),

the IC dynamic processes are assumed to follow the model

yi(t) = µ(t) + σ(t)εi(t), (5)

where µ(t) = cos(πt), σ(t) = 1 + 0.2 sin(3πt), and εi(t) is a random error process. In these three

cases, {εi(t) : t ∈ T} are generated independently from the following three distributions: N(0, 1)

in case (I), standardized version with mean 0 and variance 1 of the χ2
5 distribution in case (II),

and standardized version with mean 0 and variance 1 of the t2.5 distribution in case (III). These

three cases represent three scenarios with a symmetric light-tailed error distribution, a skewed error

distribution, and a symmetric heavy-tailed error distribution. In case (III), the degree of freedom

of 2.5 is chosen since the variance of t2.5 is well defined and t2.5 has a heavy tail. In cases (IV)-(VI),

the IC dynamic processes are assumed to follow the following nonparametric mixed-effects model

yi(t) = µ(t) + ξi1u1(t) + ξi2u2(t) + ξi3u3(t) + 0.5εi(t), (6)

where µ(t) = − sin(t), u1(t) = t(1− t), u2(t) = (1− t)/2, u3(t) = log(1 + t), the random effects ξi1,

ξi2 and ξi3 are independent and identically distributed with the common distribution of N(0, 1),
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and the random error terms {εi(t) : t ∈ T} are generated in the same ways as those in cases (I)-(III),

respectively.

In all cases considered in this section, the sampling rate d is set to be 2. The allowance

constant k in the CUSUM chart (4) is chosen to be 0.1 or 0.2, and its control limit is chosen by

the procedure described at the end of Section 2. Besides the proposed method DySS-new, we will

also consider four other methods for comparison purposes, including the method by Qiu and Xiang

(2014), the method by Li and Qiu (2016), the method that monitors z∗j directly (which can be

accomplished by replacing e∗j by z∗j in the chart (4)), and the method by You and Qiu (2019). In

the method by Qiu and Xiang (2014), the conventional CUSUM chart is applied directly to the

standardized observations {ε̂(t∗j ) = [y∗(t∗j ) − µ̂(t∗j )]/σ̂(t∗j )}, where µ̂(t) and σ̂2(t) are estimates of

the IC process mean function µ(t) and the IC process variance function σ2(t). Its control limit is

determined by simulations based on the assumptions that the standardized observations {ε̂(t∗j )} are

i.i.d. with the common distribution of N(0, 1) when the process is IC. This method is denoted as

DySS-std hereafter. The method by Li and Qiu (2016) decorrelated the standardized observations

{ε̂(t∗j )} first, and then applied the conventional CUSUM chart to the decorrelated data. Its control

limit is chosen by simulations as well based on the assumption that the decorrelated standardized

observations are i.i.d. with the common IC distribution of N(0, 1). This method is denoted as

DySS-dec hereafter. As discussed in Section 1, both of these two competing methods described

the regular longitudinal pattern of an IC dynamic process by using the IC process mean function

µ(t) and the IC process variance function σ2(t) only, which may not be good enough in cases when

the IC process distribution is skewed or heavy-tailed, such as the cases (II), (III), (V) and (VI)

discussed above. The alternative method that monitors the transformed observations z∗j directly

is denoted by DySS-dir. Its control limit is chosen in the same way as that for DySS-new. This

method considered the IC process distribution through the transformation (2), but ignored possible

correlation among process observations in its chart construction. Thus, it may not perform well in

cases (IV)-(VI) when the process observations are correlated. The method by You and Qiu (2019)

proposed to make use of the restarting mechanism of a CUSUM chart when decorrelating process

observations. By the restarting mechanism, it only decorrelates a small portion of the previous

process observations that are collected after the last time that the CUSUM chart is reset to 0. In

the literature, the number of observation times after the last time the CUSUM chart is reset to 0 is

called “sprint length” (Chatterjee and Qiu 2009 ). The method by You and Qiu (2019) is denoted
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by DySS-spr. Its control limit is chosen by a bootstrap procedure from the IC data, as suggested

in You and Qiu (2019). As a comparison, our proposed method DySS-new described the regular

longitudinal pattern by using the entire cdf of the IC process distribution. It should be more robust

to the shape of the IC process distribution, which will be confirmed below.

We first evaluate the IC performance of the five methods. In this simulation example, the IC

sample size is set to be 100, 200 or 500, the nominal ATS0 value is set to be 370, and the control

limits of the charts are selected by using the Monte Carlo algorithm described in Section 2.2. For

each method, its actual ATS0 values are calculated as follows. First, an IC dataset is generated and

the IC mean function, the IC variance function and the IC cdf are computed from the IC dataset.

Second, the ATS0 value of the method is computed by applying the related control chart to the

simulated data of 2,000 IC dynamic processes. Finally, the previous two steps are repeated for

200 times, and the actual ATS0 value is computed to be the sample mean of the 200 ATS0 values

obtained from the 200 replicated simulations. The standard error of the actual ATS0 value can

also be calculated from the 200 ATS0 values, as their standard deviation divided by
√

200. The

calculated actual ATS0 values of the five methods in cases (I)-(VI) are presented in Table 2. In the

table, those actual ATS0 values which are within 10% of the nominal ATS0 level of 370 are in bold.

From the table, we can see that our proposed method DySS-new is indeed robust to different IC

time-varying process distributions considered in this example, since its actual ATS0 values are close

to the nominal ATS0 level of 370 in all cases considered. As a comparison, the method DySS-std

has a reliable IC performance only in case (I) and in case (II) with k = 0.2. In all other cases,

its actual ATS0 values are substantially different from the nominal ATS0 level. Besides the reason

given in the previous paragraph that this method cannot accommodate skewed or heavy-tailed IC

process distributions properly, it cannot accommodate serial data correlation in cases (IV)-(VI)

either. The method DySS-dec improves DySS-std in cases (IV)-(VI) when there is serial data

correlation, as expected, since the former decorrelates the standardizes observations {ε̂(t∗j )} before

process monitoring. But, its performance in cases when the IC process distribution is skewed or

heavy-tailed is still unreliable. The method DySS-dir takes the IC process distribution into account

whereas ignores the serial data correlation. As a consequence, it is robust to the distribution of

data when serial data correlation does not exist in cases (I)-(III). However, in cases (IV-VI) when

serial data correlation exists, it fails to achieve the desired IC performance. The method DySS-spr

relies on the block bootstrap procedure for selection of control limit. The original IC samples will

13



be partitioned into two parts with one part for model estimation and the other part for selection of

the control limit. Although this method can approximately attain the desired IC ATS in most cases

considered here, its standard error of IC ATS is much larger than that of the proposed method.

This suggests that the variability of IC ATS of DySS-spr is much higher than that of the proposed

method.

Next, we evaluate the OC performance of the related methods. In the following example,

the ATS0 value is still fixed at 370, the IC sample size is fixed at n = 500, and the OC process

observations are generated from the model

y∗(t) =


y(t), for t ≤ 0.05

y(t) + δ, for t > 0.05,

(7)

where y(t) follows the models (5) and (6), and δ ≥ 0 is an upward shift that occurs at time 0.05.

The upward shift size δ changes from 0.0 to 1.0 with a step of 0.1. To make the comparison fair,

the control limits of the related charts have been adjusted so that all methods have their actual

ATS0 values being 370. Then, in each case considered, the ATS1 value of each method is calculated

in the same way as that for calculating the actual ATS0 value, except that process observations are

generated from (7) here. The calculated ATS1 values of the five charts are presented in Figure 1.

From the figure, it can be seen that i) the OC performance of the five charts is almost identical in

case (I), ii) DySS-new and DySS-dir are better than DySS-std, DySS-dec, and DySS-spr in cases

(II) and (III), iii) the performance of DySS-new and DySS-dec are similar in cases (IV)-(VI) and

both of them are much better than DySS-std, DySS-dist and DySS-spr. So, this example shows

that the proposed method DySS-new would have the best OC performance in all cases considered,

although its OC performance could be similar to that of DySS-dir in certain cases when process

observations are independent, and similar to that of DySS-dec in certain cases when serial data

correlation exists. By combining the results in this example and the results in Table 2, DySS-new

can indeed provide a more reliable and effective solution to the DS applications, compared to the

alternative methods DySS-std, DySS-dec, DySS-dir and DySS-spr.
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Table 2: Calculated actual ATS0 values in cases (I)-(VI), when n = 100, 200, 500, k = 0.1, 0.2, and

the nominal ATS0 value is 370. Numbers in bold denote those within 10% of the nominal ATS0

value. Numbers in parentheses are the corresponding standard errors.

k Case n DySS-std DySS-dec DySS-dir DySS-spr DySS-new

100 362.8 (1.3) 355.2 (1.4) 373.2 (1.3) 375.8 (3.1) 362.3 (1.4)

200 363.0 (0.9) 358.8 (1.0) 371.1 (1.0) 369.3 (2.0) 366.8 (1.0)(I)
500 363.3 (0.8) 361.9 (0.8) 371.0 (0.8) 368.4 (1.4) 369.4 (0.8)

100 343.5 (1.3) 337.4 (1.2) 362.2 (1.3) 369.7 (2.6) 353.3 (1.2)

200 344.3 (1.0) 341.7 (1.1) 365.8 (1.0) 372.4 (2.0) 362.0 (1.1)(II)
500 344.9 (0.7) 343.5 (0.7) 368.0 (0.7) 370.4 (1.4) 366.1 (0.8)

100 516.0 (3.5) 502.5 (3.5) 369.7 (1.3) 379.2 (3.1) 362.8 (1.4)

200 536.2 (3.2) 528.7 (3.1) 374.8 (1.0) 371.2 (2.0) 371.1 (1.1)(III)
500 541.3 (2.6) 538.0 (2.7) 376.0 (0.6) 371.3 (1.4) 374.1 (0.7)

100 495.6 (2.6) 359.9 (1.4) 500.9 (2.6) 367.8 (4.1) 374.6 (1.5)

200 497.2 (1.8) 365.8 (1.1) 500.9 (1.3) 370.4 (2.8) 377.0 (1.1)(IV)
500 498.0 (1.4) 369.2 (0.8) 500.5 (1.0) 369.6 (2.0) 376.8 (0.8)

100 494.9 (2.7) 340.7 (1.3) 480.8 (2.7) 366.2 (3.9) 362.1 (1.2)

200 493.6 (1.9) 344.8 (0.9) 481.5 (1.9) 370.1 (2.5) 362.2 (0.8)(V)
500 492.1 (1.3) 346.0 (0.7) 481.4 (1.2) 369.3 (1.9) 360.3 (0.6)

100 494.9 (2.7) 445.2 (2.8) 489.5 (2.6) 373.1 (3.8) 387.3 (1.3)

200 494.1 (1.7) 459.8 (2.5) 490.9 (1.8) 366.6 (2.7) 388.1 (1.1)

0.1

(VI)
500 498.2 (1.3) 477.8 (2.4) 495.4 (1.3) 372.8 (1.7) 386.2 (1.0)

100 363.8 (1.2) 355.8 (1.3) 375.6 (1.3) 375.1 (3.1) 363.2 (1.3)

200 364.1 (0.9) 359.5 (1.0) 372.7 (1.0) 369.3 (2.1) 368.2 (1.0)(I)
500 364.2 (0.8) 362.5 (0.8) 372.0 (0.8) 369.2 (1.4) 370.3 (0.8)

100 310.4 (1.2) 305.6 (1.1) 363.9 (1.3) 370.5 (2.8) 354.3 (1.2)

200 311.2 (1.0) 309.2 (1.0) 368.0 (1.0) 371.3 (2.2) 363.6 (1.0)(II)
500 311.6 (0.7) 310.6 (0.7) 370.0 (0.7) 370.3 (1.5) 368.0 (0.8)

100 531.2 (3.5) 518.8 (3.6) 373.1 (1.3) 378.7 (3.1) 365.5 (1.4)

200 553.3 (3.2) 547.0 (3.1) 377.7 (1.0) 370.9 (2.1) 374.0 (1.1)(III)
500 558.7 (2.6) 555.6 (2.6) 378.2 (0.7) 372.3 (1.4) 376.4 (0.7)

100 513.4 (2.6) 359.5 (1.3) 519.6 (2.6) 368.2 (4.0) 379.8 (1.4)

200 515.3 (1.9) 365.3 (1.0) 519.8 (1.3) 371.3 (2.9) 381.0 (1.1)(IV)
500 516.3 (1.4) 369.3 (0.8) 519.3 (1.0) 369.7 (2.0) 379.9 (0.8)

100 501.8 (2.7) 310.5 (1.2) 495.2 (2.8) 367.3 (3.9) 349.0 (1.1)

200 500.9 (1.9) 314.5 (0.9) 496.4 (1.9) 369.4 (2.5) 348.3 (0.8)(V)
500 499.2 (1.3) 315.5 (0.6) 496.3 (1.3) 368.4 (1.9) 344.7 (0.6)

100 506.3 (2.7) 462.9 (3.2) 506.4 (2.6) 372.0 (3.6) 385.2 (1.3)

200 506.1 (1.8) 479.8 (2.9) 508.6 (1.8) 367.1 (2.7) 384.4 (1.0)

0.2

(VI)
500 511.1 (1.4) 500.6 (2.7) 513.0 (1.3) 371.6 (1.7) 381.8 (1.1)
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Figure 1: Calculated ATS1 values of the five DySS methods in cases (I)-(VI) when the IC sample

size is n = 500, the ATS0 value is 370, and the allowance constant k is fixed at 0.1 (two top rows)

and 0.2 (two bottom rows).
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4 A Real-Data Application

In this section, we present an application of the proposed DySS method. The data considered

here were obtained from the well-known Framingham heart study in which scientists were mainly

concerned about the risk factors of cardiovascular diseases (cf., Cupples et al. 2007). The data

contain systolic blood pressure readings of 1,055 patients, among which 27 patients had strokes

during the study and the other 1,028 did not. In the study, each patient was followed for 7 times

at different ages. The readings of the systolic blood pressure of all patients are displayed in the left

panel of Figure 2, in which the dark dashed lines denote the longitudinal observations of the stroke

patients and the gray solid lines denote the longitudinal observations of the non-stroke patients. In

this example, the observed data of the 1,028 non-stroke patients are used as the IC data, the data

of the 27 stroke patients are used for testing the proposed method. The histogram of the observed

data of the 1,028 non-stroke patients is shown in the right panel of Figure 2, from which it can

be seen that the IC distribution of the systolic blood pressure is moderately skewed to the right.

As a matter of fact, the sample skewness can be calculated to be 0.721 with the 95% CI being

(0.665,0.778), which confirms the significant positive skewness. The p-value of the Shapiro-Wilk

normality test is < 10−5, indicating that the distribution is significantly different from normal. We

also examined the serial data correlation among observations. After removing the mean from the

observed data by using the estimated mean function from the IC data, the estimated correlation

coefficient between two adjacent observations is 0.582 with the 95% CI being (0.566,0.599). The

corresponding test for zero correlation between two adjacent observations gives a p-value that is

< 2.2 × 10−16, which provides a significant evidence for serial correlation between two adjacent

observations.

To apply our proposed method DySS-new to this data, we first need to compute the estimated

cdf from the IC data (cf., (1)), and then transform (cf., (2)) and decorrelate the test data, as

discussed in Subsection 2.2. The control limit of the chart (4) should also be determined using the

procedure described at the end of Section 2, in which observation times of a simulated dynamic

process are obtained by i) randomly selecting a patient from the 1,028 non-stroke patients in the

IC data with replacement, and ii) using the observation times of the selected patient in step i). In

the chart, the allowance constant k is chosen to be 0.1 and the ATS0 level is set to be 30 years.

The chosen value for k has been used in the simulation examples in Section 3, and the chosen ATS0
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Figure 2: The systolic blood pressure readings (left panel) of 1,028 non-stroke patients (gray solid

lines) and 27 stroke patients (dark dashed lines), and the histogram (right panel) of the systolic

blood pressure readings of the 1,028 non-stroke patients.

level of 30 years should be reasonable in the context of this example since it should be acceptable

for non-stroke patients to have the expected time to a false signal being as long as 30 years. The

chart of DySS-new for monitoring the 27 stroke patients are shown in the bottom panel of Figure 3,

from which it can be seen that 22 stroke patients receive signals from the chart. As a comparison,

the charts of DySS-std, DySS-dec, DySS-dir and DySS-spr for monitoring the same group of stroke

patients are shown in the top four panels of Figure 3. In these charts, the same values of k and

ATS0 are used as those in DySS-new. From the figure, it can be seen that the number of patients

receiving signals from the charts DySS-std, DySS-dec, DySS-dir and DySS-spr are 19, 21, 19 and

21, respectively. Also, the ATS1 value of the proposed method DySS-new is 19.1 years, while the

ATS1 values of DySS-std, DySS-dec, DySS-dir and DySS-spr are 21.1 years, 20.5 years, 21.2 years,

and 25.2 years, respectively. Thus, in this example, DySS-new gives more signals to stroke patients

with a shorter ATS1 value, compared to the four competing methods.

5 Discussion and Concluding Remarks

In this paper, a new and effective DySS method has been proposed, which is based on estimation of

the entire IC process distribution of a dynamic process following the regular longitudinal pattern.

Numerical studies have shown that it is indeed more effective than some representative existing

DySS methods in various cases considered. However, there are still some issues about the new

method that need to be addressed in our future research. First, the proposed method DySS-new
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Figure 3: Charting statistics of five different methods for monitoring 27 stroke patients (from top to

bottom: DySS-std, DySS-dec, DySS-dir, DySS-spr and DySS-new). Control charts in dark denote

cases with signals, and those in gray denote cases without signals.
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requires a relatively large IC dataset to estimate the cdf of the IC process distribution. In many

applications such as the one discussed in Section 4, this may not be a problem. But, in some

applications, a relatively large IC dataset may not be available. In such cases, self-starting control

charts might be helpful (cf., Hawkins 1987), which will be studied carefully in our future research.

Second, although the proposed method is more robust to the IC process distribution, compared

to some existing methods, there is room for improvement in computing the control limit of the

chart (4) using the Monte Carlo searching algorithm described at the end of Section 2. The reason

is that transformed and standardized process observations are assumed to be independent in the

Monte Carlo searching algorithm, but the transformed and standardized process observations are

only guaranteed to be asymptotically uncorrelated. Some theoretical study is needed to figure out

conditions under which the independence assumption is (asymptotically) valid, although simulation

results in Table 2 have shown that results based on the independence assumption are reasonably

good in all cases considered there. To address this issue, some research in multivariate copula

modelling (cf., Smith et al. 2010) and in monitoring of serially correlated data (cf., Qiu et al. 2019)

might be helpful, which will be investigated in our future research. Third, in many applications,

one may wish to use available covariate information in process monitoring. In the literature,

several modeling approaches have been proposed to accommodate covariates. For example, Wu

and Tian (2013) used a time-varying transformation model to describe the conditional distribution

of y(t) given some covariates. However, their method requires that the number of observations

obtained at each observation time point is relatively large and the linkage function that connects

the longitudinal outcome and covariates is known and pre-specified. These requirements are difficult

to meet in many DS problems. This topic will be investigated in our future research. Last but

not the least, in some DS problems, the observation time scale could be uninformative, and the

origins of different dynamic processes can be all different. In such cases, proper alignment of

dynamic processes becomes an important issue. There have been several methods for aligning time

series data with equally spaced observation times (e.g., Colosimo and Pacella 2007). Because the

observation times could be unequally spaced in some DS problems, temporal alignment of different

dynamic processes could be trickier than the alignment of equally spaced time series data. The

issue to align different dynamic processes when the observation time scale is uninformative will be

left for our future research.
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