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Summary

In many clinical studies, evaluating the association between longitudinal and sur-
vival outcomes is of primary concern. For analyzing data from such studies, joint
modeling of longitudinal and survival data becomes an appealing approach. In some
applications, there are multiple longitudinal outcomes whose longitudinal pattern is
difficult to describe by a parametric form. For such applications, existing research on
joint modeling is limited. In this paper, we develop a novel joint modeling method to
fill the gap. In the new method, a local polynomial mixed-effects model is used for
describing the nonparametric longitudinal pattern of the multiple longitudinal out-
comes. Two model estimation procedures, i.e., the local EM algorithm and the local
penalized quasi-likelihood estimation, are explored. Practical guidelines for choos-
ing tuning parameters and for variable selection are provided. The new method is
justified by some theoretical arguments and numerical studies.
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1 INTRODUCTION

Evaluating the effect of longitudinal variables on survival outcomes is of particular interest in many clinical trials and observa-
tional studies. To make use of the information in all available data, joint modeling of longitudinal and survival data has become
a powerful tool. In many applications, there are multiple longitudinal variables whose longitudinal pattern is difficult to describe
by a parametric form. This paper aims to develop an effective methodology for such applications.
The framework of joint modeling of longitudinal and survival data is first discussed in Wulfsohn and Tsiatis1, where a lin-

ear mixed-effects model is used for modeling the growth curve of a univariate longitudinal outcome, and the growth curve is
used for quantifying the survival rate of a patient. Since then, many methods have been proposed to extend the original joint
modeling method to cases with multiple longitudinal outcomes2,3 and cases with nonlinear longitudinal trajectories4,5. Most of
these existing methods use regression splines or other parametric forms to generalize the univariate linear mixed-effects model
to different nonlinear mixed-effects models with a single or multiple longitudinal outcomes. In these generalizations, the num-
bers of random-effects terms and model parameters can be quite large. Thus, model estimation often requires a considerable
computational effort in evaluating certain intractable integrals related to the random effects. As an alternative, Brown et al4
proposed a Bayesian framework for joint modeling of multivariate longitudinal data and survival data. In that Bayesian frame-
work, B-spline basis functions were used to model the nonparametric longitudinal trajectories of the longitudinal variables, and

0Abbreviations: EM, expectation-maximization; MCMC, Markov chain Monte Carlo; AIC, Akaike information criterion; PQL, penalized quasi-likelihood; LASSO,
least absolute shrinkage and selection operator; MSE, mean squared error; MISE, mean integrated squared error.
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the Markov Chain Monte Carlo (MCMC) algorithm was used to evaluate the intractable integrals. However, in cases when the
dimensions of the parameter space and the random-effects are high, it is hard to search the entire parameter space using the
MCMC algorithm. Another limitation of that method is that it is often challenging to select the number of basis functions and
the knots of the B-splines properly. After making a thorough literature review, Yang et al3 claimed that their paper was the first
one on joint modeling of nonlinear multivariate longitudinal data and survival data using the maximum likelihood estimation
approach. However, their method was based on the polynomial function approximation, and it was challenging to deal with cer-
tain intractable integrals related to the random-effects of high dimensions in cases when either the number of basis functions
or the dimension of longitudinal outcomes is large. Because of this challenge, they considered cases with only two longitudi-
nal outcomes and with quadratic polynomial basis functions in their numerical studies. Of course, their assumed polynomial
structure may not be adequate in characterizing the real pattern of the longitudinal data.
In this paper, we try to make another effort in joint modeling of multivariate nonparametric longitudinal data and survival data.

A novel new method is suggested for solving this challenging problem. Instead of using spline or polynomial basis functions for
approximating the multivariate nonparametric longitudinal trajectories of the data, we suggest a multivariate local mixed-effects
model, in which the longitudinal trajectories are approximated locally by polynomial functions of lower degrees. Thus, the new
method is flexible in describing the longitudinal trajectories of the observed data, and its computation is relatively simple as well.
The rest of the article is organized as follows. In Section 2, wewill describe the suggestedmethod in detail for joint modeling of

multivariate nonparametric longitudinal data and survival data. Its statistical properties will be discussed in Section 3. Simulation
studies are presented in Section 4 to evaluate the numerical performance of the proposed method in comparison with some
alternative methods. A real-data application is discussed in Section 5. Some remarks conclude the article in Section 6.

2 PROPOSED METHOD FOR JOINT MODELING

We describe our proposed new method in three parts. In Subsection 2.1, model formulation is discussed in detail for joint
modeling of multivariate nonparametric longitudinal data and survival data. Then, an existing method based on the maximum
likelihood estimation (MLE) and the regression spline function approximation is introduced in Subsection 2.2. Finally, the
proposed new method is discussed in Subsection 2.3.

2.1 Model formulation
Suppose we have observations of both longitudinal and survival outcomes of m subjects in a study. For the ith subject, let Ti be
the observed last follow-up time, Δi = 1 denote the event that a “survival” outcome is observed at the last follow-up time Ti,
and Δi = 0 denote its complementary event. The last-follow-up time Ti is assumed to be the minimum of the time to event Di
and the censoring time Ci, i.e., Ti = min{Di, Ci}. Besides the survival outcomes, it is assumed that p-dimensional longitudinal
outcomes y are observed at times ti1,… , tini with ti1 <… < tini , and their observations are denoted as yi1,… , yini . It is further
assumed that all observation times {tij} and the last follow-up time Ti are within the study period [0,T], and the observed
longitudinal outcomes follow the following nonparametric mixed-effects model:

yij = �(tij) + vi(tij) + �i(tij), for j = 1,… , ni, i = 1,… , m, (1)

where �(t) is the population mean outcomes, vi(t) is the random-effects function that models the subject-specific variation from
�(t), and �i(t) is the pure measurement error. The random-effects function vi(t) is assumed to have the mean E[vi(t)] = 0 and the
covariance Cov(vi(s), vi(t)) = �v(s, t), for any t, s ∈ [0,T]. The pure measurement errors �i(t), for different i, are assumed to be
independent realizations of a process with mean 0 and variance functionVar(�i(t)) = �e(t). In model (1), letmi(t) = �(t)+vi(t),
which denotes the latent trajectory of the longitudinal outcomes after the pure measurement errors are removed. This latent
trajectory is assumed to be associated with the observed survival outcomes through the following proportional hazards model:

�i(t) = �0(t) exp{�Tmi(t)}, (2)

where �i(t) = limdt↓0 P {Di ∈ (t, t+dt]|Di > t}∕dt is the hazard function for the ith subject, �0(t) is the baseline hazard function,
and � is the coefficient vector. For ease of presentation, we introduce the following notations. Let i = {yij , j = 1,… , ni}
and i = {(Δi, Ti)} denote the observed longitudinal and survival data of the ith subject, and  = {i, i = 1,… , m} and
 = {i, i = 1,… , m} denote the observed survival and longitudinal data of all subjects. Furthermore, R(t) = {i ∶ Ti ≥ t}
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denotes the set of subjects at risk at time t, Ni(t) = ΔiI(Ti ≥ t) is the counting process of disease incidence of the ith subject,
andN(t) =

∑m
i=1Ni(t).

Conditional on mi(t), the log joint probability density function of i is

log f1(i|{mi(t)};�e) = −
ni
2
log det(2��e) −

1
2

ni
∑

j=1

[

yij −mi(tij)
]T�−1e

[

yij −mi(tij)
]

, (3)

where det(⋅) denotes the determinant of a matrix. Conditional on mi(t), the log joint probability density function of i is
Δi log �i(Ti) − ∫ Ti

0 �i(u) du. Because in the likelihood function, we only need to know the baseline hazard function �0(t) at each
observed time, the log conditional joint probability density function can also be written as follows6,7:

log f2(i|{mi(t)}; �,�0) = Δi
{

log �0{Ti} + �Tmi(Ti)
}

−
m
∑

l=1
Δl�0{Tl} exp{�Tmi(Tl)}I(Ti ≥ Tl), (4)

where we have followed the notational convention of Murphy and Van der Vaart7 that �0{t} denotes the mass of the estimated
baseline hazard function at t, and �0 = {�0{t}, t = T1,… , Tn} is a collection of all �0{t}. Murphy and Van der Vaart7 further
showed that the log conditional joint probability density function for {i}mi=1 can be rewritten as

m
∑

i=1
log f2(i|{mi(t)})

=
m
∑

i=1
Δi
{

log �0{Ti} + �Tmi(Ti)
}

−
m
∑

i=1

m
∑

l=1
Δi�0{Ti} exp{�Tmi(Ti)}I(Tl ≥ Ti)

=
m
∑

i=1
Δi

[

log �0{Ti} + �Tmi(Ti) − �0{Ti}
m
∑

l=1
exp{�Tml(Ti)}I(Tl ≥ Ti)

]

.

(5)

By plugging in the following expression

�0{Ti} =
Δi

∑m
l=1 exp{�

Tml(Ti)}I(Tl ≥ Ti)
,

Expression (5) becomes the familiar Cox’s partial likelihood function.7

2.2 Maximum likelihood estimation by using regression splines
Many existing methods for joint modeling of longitudinal and survival data approximate the latent longitudinal trajectoriesmi(t)
by using regression splines that are linear combinations of some pre-specified B-splines or other types of basis functions.4,5,3
The major steps in such methods are briefly described below. Let �1(t),… , �q(t) be q basis functions. Then, each component of
mi(t) = �(t) + vi(t) = (mi1(t),… , mip(t))T can be expressed as mik(t) =

∑q
l=1 ckl�l(t) +

∑q
l=1 aikl�l(t) =

∑q
l=1 bikl�l(t), where

ckl are the fixed-effects coefficients, and aikl are the random-effects coefficients, and bikl = ckl+aikl. The longitudinal outcomes
can be described by the following linear mixed-effects model:

⎡

⎢

⎢

⎣

yi1
⋮
yini

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

�(ti1)
⋮

�(tini)

⎤

⎥

⎥

⎦

c +
⎡

⎢

⎢

⎣

�(ti1)
⋮

�(tini)

⎤

⎥

⎥

⎦

ai +
⎡

⎢

⎢

⎣

�i(ti1)
⋮

�i(tini)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

�(ti1)
⋮

�(tini)

⎤

⎥

⎥

⎦

bi +
⎡

⎢

⎢

⎣

�i(ti1)
⋮

�i(tini)

⎤

⎥

⎥

⎦

,

where

�(tij) = Ip×p ⊗
(

�1(tij),… , �q(tij)
)

=

⎡

⎢

⎢

⎢

⎢

⎣

�1(tij) ⋯ �q(tij) 0 ⋯ 0 ⋯ 0 ⋯ 0
0 ⋯ 0 �1(tij) ⋯ �q(tij) ⋯ 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 ⋯ 0 0 ⋯ 0 ⋯ �1(tij) ⋯ �q(tij)

⎤

⎥

⎥

⎥

⎥

⎦

c =
[(

c11,… , c1q
)

…
(

cp1,… , cpq
)]T ,

ai =
[(

ai11,… , ai1q
)

…
(

aip1,… , aipq
)]T ,bi =

[(

bi11,… , bi1q
)

…
(

bip1,… , bipq
)]T .
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In the above model, the fixed-effects part �(t), the random-effects part vi(t), and the latent trajectorymi(t) are modeled by�(t)c,
�(t)ai, and �(t)bi respectively. c is a pq-dimensional coefficient vector of the fixed-effects, ai is a pq-dimensional coefficient
vector of the random-effects that is assumed to follow the distribution N(0,�b), bi is therefore pq-dimensional and N(c,�b)
distributed, and the error terms {�i(tij)} are assumed to be independent of each other and follow the common distribution
N(0,�e). Then, conditional on ai, the log joint probability density function of i and i are given respectively by

log f1(i|bi;�e) = −
ni
2
log det(2��e) −

1
2

ni
∑

j=1

[

yij −�(tij)bi
]T�−1e

[

yij −�(tij)bi
]

and

log f2(i|ai; �,�0) = Δi
{

log �0{Ti} + �T�(Ti)bi
}

−
m
∑

l=1
Δl�0{Tl} exp{�T�(Tl)bi}I(Ti ≥ Tl).

The log probability density function of bi is

log f3(bi; c,�b) = −
1
2
log det(2��b) −

1
2
(bi − c)T�−1b (bi − c).

So, the likelihood function of the observed longitudinal and survival data can be written as

L(c,�b,�e, �,�0) =
m
∏

i=1
∫
ℝpq

f1(i|bi;�e)f2(i|bi; �,�0)f3(bi|c,�b) dai. (6)

Then, all model parameters can be estimated bymaximizing the above likelihood function. The trajectoriesmi(t) can be estimated
by�(t)(c+E[ai|i,i]), which is an analogy of the best linear unbiased predictor in the linear mixed-effects model literature8.
In (6), the integrals are taken over the pq-dimensional spaceℝpq for the random effects ai. Most existing methods in the literature
used either the Gaussian quadrature or the Monte Carlo method to approximate these integrals. However, a Q-point Gaussian
quadrature will involve Qpq evaluations of the integrand function, and the Monte Carlo methods with an insufficient number of
sampling points will lead to large variability in the estimates. Furthermore, properly selecting of the number of basis functions
and knots of splines basis functions is always challenging. Therefore, although such methods are theoretically possible, they are
often practically inconvenient to implement.

2.3 A proposed method by using the local polynomial mixed-effects modeling
In this part, we describe our proposed method for joint modeling of longitudinal and survival data. In our proposed method, an
alternative way to model the nonparametric longitudinal trajectories mi(t) is suggested. In the literature, there have been some
existing discussions on nonparametric longitudinal data modeling9,10,11,12. Most of these methods are for modeling univariate
longitudinal data. Here, we try to develop a multivariate local polynomial mixed-effects model for analyzing multivariate longi-
tudinal data. Our model is similar to the one discussed in Wu and Zhang11, although the latter is for univariate cases only and it
does not take into account any survival data. Let �c(t) = E[mi(t)|Ti ≥ t] be the conditional mean of mi(t) given the ith subject
being at risk by the time t, and vc,i(t) = mi(t) −�c(t) be the mean variation of the ith subject from �c(t). Then, in a small neigh-
borhood [t − ℎ, t + ℎ] of a given time t ∈ [0,T], where ℎ is a bandwidth parameter, we have the following Taylor’s expansion
of order r:

�c(s) ≈
r
∑

l=0
(s − t)l 1

l!
�(l)c (t) = X(s − t)

⎡

⎢

⎢

⎣

�c(t)
⋮

1
r!
�(r)c (t)

⎤

⎥

⎥

⎦

,

vc,i(s) ≈
r
∑

l=0
(s − t)l 1

l!
v(l)c,i(t) = X(s − t)

⎡

⎢

⎢

⎣

vc,i(t)
⋮

1
r!
v(r)c,i(t)

⎤

⎥

⎥

⎦

,

where the superscript (l) denotes the lth derivative of a function,X(t) =
[

Ip×p, tIp×p,… , trIp×p
]

, and Ip×p is the p×p dimensional
identity matrix. By using these local function approximations, model (1) can be approximated by the following multiple linear
mixed-effects model in [t − ℎ, t + ℎ]

yij = X(tij − t)
[

c(t) + ai(t)
]

+ �i(tij) = X(tij − t)bi(t) + �i(tij), (7)
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where c(t) =
[

�c(t)T,… , 1
r!
�(r)c (t)

T
]T is the fixed-effects term, and ai(t) =

[

vc,i(t)T,… , 1
r!
v(r)c,i(t)T

]T is the random-effects term.
Let bi(t) = c(t) + ai(t). Then, X(s − t)bi(t) in (7) is an approximation ofmi(s) in the neighborhood [t − ℎ, t + ℎ]. It is assumed
that bi(t) follows a multivariate normal distribution with the mean c(t) and the variance-covariance matrix �b(t), and that the
error term �i(t) follows a multivariate distribution with the mean 0 and the variance-covariance matrix �e(t), given that the ith
subject is at risk at time t. To estimate the time-varying parameters c(t), �b(t) and �e(t) in Model (7), consider using the local
kernel smoothing MLE that is described below. LetK(s) be a symmetric kernel function with the support [−1, 1] andK(0) = 1.
In this paper, the Epanechnikov kernel function K(u) = (1 − u2)I(|u| ≤ 1) is used because of its good theoretical properties13.
Assume that the ith subject is in R(t) (i.e., it is at risk by the time t). Then, conditional on bi(t), the locally weighted log joint
probability density function of i is

log f1,t(i|bi(t);�e(t)) = −
ni
2
log det(2��e(t))Kℎ(tij − t)

− 1
2

ni
∑

j=1

[

yij − X(tij − t)bi(t)
]T�e(t)−1

[

yij − X(tij − t)bi(t)
]

Kℎ(tij − t),

where Kℎ(s) = K(s∕ℎ). Conditional on bi(t), the locally weighted log probability density function of i is

log f2,t(i|bi(t); �,�0) = Δi
{

log �0{Ti} + �TX(Ti − t)bi(t)
}

Kℎ(Ti − t)

−
m
∑

l=1
Δl�0{Tl} exp{�TX(Tl − t)bi(t)}Kℎ(Tl − t)I(Ti ≥ Tl),

and the log probability density function of bi(t) is

log f3,t(bi(t)|c(t),�b(t)) = −
1
2
log det(2��b(t)) −

1
2
[bi(t) − c(t)]T�b(t)−1[bi(t) − c(t)].

The entire local likelihood function of the observed longitudinal and survival data in the neighborhood [t − ℎ, t + ℎ] is then
given by

Lt(c(t),�b(t),�e(t),�0) =
∏

i∈R(t)
∫
ℝpr

f1,t(i|bi(t);�e(t))f2,t(i|bi(t); �,�0)f3,t(bi(t)|c(t),�b(t)) dbi(t). (8)

From (8), it can be seen that when the bandwidth parameter ℎ is larger, the above local likelihood function would be closer
to the (global) likelihood function defined in (6). However, these two likelihood functions are still different in several aspects.
First, the dimension of random-effects in the local likelihood function depends on the order of polynomials in the local function
approximation (cf., (7)), while the dimension of random-effects depends on the number of basis functions used in the (global)
likelihood function. Because the order of polynomials considered in (8) is usually just 1, which corresponds to the local linear
kernel estimation14, the dimension of random-effects in (8) would be much smaller than that in (6). Second, the local likelihood
function defined in (8) involves the observed data in the neighborhood [t − ℎ, t + ℎ] only, its computation would be relatively
simple, compared to the computation for the (global) likelihood function. Although the local likelihood function needs to be
evaluated at all observed event times, when the trajectories of the longitudinal outcomes are nonparametric it is still more
computationally efficient than the (global) likelihood function in (6) where the conditional expectations of the random-effects
also need to be evaluated at all observed event times. Finally, the mixed-effects model that results in the (global) likelihood
function (6) assumes time-independent variance-covariance matrices for the random-effects and the pure measurement error,
while time-varying variance-covariance matrices are used in (8). Obviously, the latter is much more flexible for describing the
data correlation in the observed longitudinal data.
Model estimation by a local EM algorithm. The EM algorithm15 is one of the most popular tools for model estimation

in joint modeling of longitudinal and survival data1. Because the proposed method is formulated based on the local likelihood
function, we need to develop a local version of the EM algorithm. In the literature, the local EM algorithm is first discussed
by Betensky et al. for estimating the hazard function in cases with interval-censored data16. It has been used for nonparametric
density estimation17 and spatial data analysis18,19. However, its application to joint modeling of longitudinal and survival data is
still missing. The local EM algorithm is a straightforward solution to maximizing a local likelihood. It is also a computationally
efficient method to approximate a complex model locally. See Nguyen et al.19 for a more comprehensive discussion about its
preferable features. Our proposed local EM algorithm for joint modeling of longitudinal and survival data is described below.
Similar to the conventional EM algorithm, the proposed local EM algorithm proceeds by iterating between the expectation step

and the maximization step. In the expectation step, the expectation of the local log-likelihood function is evaluated, conditional



6 YOU AND QIU

on the observed data. Then, in themaximization step, parameter estimates are updated bymaximizing the conditional expectation
of the local log-likelihood function. Different from the conventional EM algorithm, in the current local EM algorithm, we work
with the local log-likelihood function, and thus the conditional expectation in the local EM algorithm should take with respect
to the local probability density function.
To proceed with the proposed local EM algorithm, we first need to derive a formula for calculating the expectations of the

random-effects bi(t) conditional on the observed data. Let  (bi(t)) be some function of bi(t), and 
̂ be the set of all parameters
estimated in the maximization step. For a given t, denote the expectation of  (bi(t)) conditional on (i,i) and 
̂ by

Ẽi,t[ (bi(t))] = ∫
ℝpr

 (bi(t))ft(bi(t)|i,i; 
̂) dbi(t),

where by the Bayes rule,

ft(bi(t)|i,i; 
̂) =
f2,t(i|bi(t); 
̂)ft(bi(t)|i; 
̂)

∫ℝpr f2,t(i|bi(t); 
̂)ft(bi(t)|i; 
̂) dbi(t)
.

The quantity ft(bi(t)|i) in the above expression is the density function of a multivariate normal distribution whose expression is
given in Appendix A.1. Similarly, Ẽ[⋅] denotes the expectation of a quantity conditional on ( ,) and 
̂. Then, the expectation
of the local log-likelihood function conditional on the observed data is

Ẽ
[

lt
(

c(t),�b(t),�e(t)
)]

= Ẽ
[

∑

i∈R(t)

(

log f1,t(i|bi(t);�e(t)) + log f2,t(i|bi(t); �,�0) + log f3,t(bi(t)|c(t),�b(t))
)

]

= −1
2

m
∑

i=1

ni
∑

j=1
Ẽi,t

[

[

yij − X(tij − t)bi(t)
]T�e(t)−1

[

yij − X(tij − t)bi(t)
]

]

×Kℎ(tij − t)I(Ti ≥ t) − 1
2

m
∑

i=1

ni
∑

j=1
log det(2��e(t))Kℎ(tij − t)I(Ti ≥ t)

+
m
∑

i=1
Δi
[

log �0{Ti} + �TX(Ti − t)Ẽi,t[bi(t)]
]

Kℎ(Ti − t)

−
m
∑

i=1

m
∑

l=1
Δl�0{Tl}Ẽi,t

[

exp
{

�TX(Tl − t)bi(t)
}

]

Kℎ(Tl − t)I(Ti ≥ Tl)

− 1
2

m
∑

i=1
Ẽi,t

[

[

bi(t) − c(t)]T�b(t)−1
[

bi(t) − c(t)
]

]

I(Ti ≥ t)

− 1
2

m
∑

i=1
log det(2��b(t))I(Ti ≥ t).

To maximize the above quantity, we can set its derivatives with respect to each time varying parameter c(t), �b(t) and �e(t) to
zero. The resulting parameter updating formulas in the maximization step are as follows:

c(t)←
∑m
i=1 Ẽi,t[bi(t)]I(Ti ≥ t)
∑m
i=1 I(Ti ≥ t)

(9)

�b(t)←
∑m
i=1 Ẽi,t

[

(bi(t) − c(t))⊗2
]

I(Ti ≥ t)
∑m
i=1 I(Ti ≥ t)

(10)

�e(t)←
∑m
i=1

∑ni
j=1 Ẽi,t

[

(yij − X(tij − t)bi(t))⊗2
]

Kℎ(tij − t)I(Ti ≥ t)
∑m
i=1

∑ni
j=1Kℎ(tij − t)I(Ti ≥ t)

, (11)

where x⊗2 = xxT denotes the outer product of a vector with itself. To update parameters in the survival model, we only need
to focus on the survival part in the likelihood function since the longitudinal part does not involve the parameter �. It is often
easier to work with the Cox log partial likelihood defined in (5), which results in

log pl(�) =
m
∑

i=1
Δi

[

log �0{Ti} + �TX(0)bi(Ti) − �0{Ti}
m
∑

l=1
exp{�TX(0)bl(Ti)}I(Tl ≥ Ti)

]

,
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wheremi(t) in (5) has been replaced by its corresponding local polynomial estimator X(0)bi(t). The conditional expectations of
the log partial-likelihood is then

Ẽ[log pl(�)] =
m
∑

i=1
Δi

[

log �0{Ti} + �TẼi,Ti[X(0)bi(Ti)] − �0{Ti}
m
∑

l=1
Ẽl,Ti

[

exp{�TX(0)bl(Ti)}
]

I(Tl ≥ Ti)

]

.

By maximizing the above expected log-partial likelihood and using the Fisher-Scoring approach, we can update the parameters
in the survival model as follows:

�0{Ti}←
Δi

∑m
l=1 Ẽl,Ti[exp{�

TX(0)bl(Ti)}]I(Tl ≥ Ti)
(12)

� ← � + I(�)−1S(�), (13)

where

S(�) =
m
∑

i=1
Δi

{

Ẽi,Ti[X(0)bi(Ti)] − �0{Ti}
m
∑

l=1
Ẽl,Ti

[

X(0)bi(Ti) exp
{

�TX(0)bl(Ti)
}]

I(Tl ≥ Ti)
}

,

I(�) =
m
∑

i=1
Δi

{

�0{Ti}
m
∑

l=1
Ẽl,Ti

[

[X(0)bl(Ti)]⊗2 exp{�TX(0)bl(Ti)}
]

I(Tl ≥ Ti)

−
{

�0{Ti}
m
∑

l=1
Ẽl,Ti

[

X(0)bl(Ti) exp{�TX(0)bl(Ti)}
]

I(Tl ≥ Ti)
}⊗2

}

are the score and information functions of �, respectively.
To make a simultaneous inference on the time-varying parameters c(t), �b(t), �e(t) and the time-independent parameters �

in the joint model, we use the updating algorithm described below, which can be viewed as a variation of the kernel profile
estimation algorithm discussed by Yu and Lin20. First, given an estimate of �, we can update the time-varying parameters c(t),
�b(t) and �e(t) by following (9)–(11) for each t in a set of time points that contains all the event times {Ti ∶ Δi = 1}. Then,
to update the time-independent parameters �, we can use the Newton-Raphson procedure given in (12) and (13). To obtain the
final parameter estimates of the model, we can iterate between the above two steps until convergence. In this procedure, we can
also obtain an estimate of mi(t) by calculating X(0)Ẽi,t[bi(t)], which is an analogy of the best linear unbiased predictor.8
It should be pointed out that besides the local EM algorithm, we can also consider model estimation by using the local

penalized quasi-likelihood (PQL) described below. The main idea is to modify the penalized quasi-likelihood approach21,22

properly to fit the proposed joint model. The penalized quasi-likelihood discussed in the existing literature23,21,24,22 is one of the
most popular method for estimating generalized linear mixed-effects models. Instead of working with the likelihood functions
that involve integrations, they proposed to apply the Laplacian approximation to the log-likelihood function, which leads to an
additional penalty term. As an approximation method for estimating generalized linear mixed-effects models, the PQL approach
will give slightly biased estimates in finite-sample cases25,22. But, because of its relatively simple computation, the PQL approach
has become a popular model estimation method in the existing statistical software packages (e.g., R-package lme426; SAS
GLIMMIX27). Next, we describe this method briefly, and a more detailed description about its implementation can be found
in Appendix A.2. Conditional on bi(t), the locally weighted log joint probability density functions of i and i are given by
log f1,t(i|bi(t)) and log f2,t(i|bi(t)) (c.f., (3) and (4)). By the PQL method, an extra term needs to be added to log f3,t(bi(t))
to approximate the integrated local likelihood as follows:

log f p3,t(bi(t)|c(t),�b(t)) = −
1
2
[bi(t) − c(t)]T�b(t)−1[bi(t) − c(t)]I(Ti ≥ t)

− log ||
|

Ai(t)�b(t) + Ipr×pr
|

|

|

I(Ti ≥ t),

where
Ai(t) = −

)2 log f1,t(i|bi(t);�e(t))
)bi(t)T)bi(t)

−
)2 log f2,t(i|bi(t); �,�0)

)bi(t)T)bi(t)
.

The locally-weighted log penalized quasi-likelihood function is then given by

logLpt (c(t),�b(t),�e(t)) =
∑

i∈R(t)

[

log f1,t(i|bi(t);�e(t)) + log f2,t(i|bi(t); �,�0) + log f
p
3,t(bi(t)|c(t),�b(t))

]

.



8 YOU AND QIU

We can use the Newton-Raphson algorithm to maximize the above local log likelihood function and estimate the time-varying
parameters c(t), �b(t) and �e(t) in the model. The algorithm for finding the estimates are presented in (A.1)–(A.5) in Appendix
A.2. To estimate the time-independent parameters � in the model, we maximize the log partial-likelihood function log pl(�),
which can be achieved by using the Fisher-Scoring procedure, as in (A.6)–(A.7) of Appendix A.2. Similarly, to make a simul-
taneous inference on the time-varying and time-independent parameters in the joint model, we can update parameters in the
following way. First, given an estimate of �, we update the time-varying parameters c(t), �b(t), and �e(t) by following (A.1)–
(A.5) in Appendix A.2 for each t in a set of time points that includes all the event times {Ti ∶ Δi = 1}. Second, we follow
(A.6)–(A.7) in Appendix A.2 to update the time-independent parameters � in the joint model. In this procedure, we can also
obtain an estimate of mi(t) from X(0)̂bi(t), where b̂i(t) is the estimated bi(t) by the algorithm.

3 THEORETICAL PROPERTIES AND PRACTICAL GUIDELINES

3.1 Asymptotic properties
We derive some asymptotic properties of the proposed joint modeling method. Let �0 be the true coefficients in the Cox pro-
portional hazards model (2). Then, the following theorem gives the statistical consistency of the estimated coefficients by the
proposed local EM algorithm.

Theorem 1. Let �̂EM be the estimated coefficients in model (2) by the proposed local EM algorithm (cf., (9)–(13)). If the
assumptions (C1)–(C7) given in Appendix A.3 are valid, then we have �̂EM

p
→ �0.

It is worth mentioning that the above theorem confirms that we do not need to specify the distribution of the longitudinal
outcomes to establish the consistency of �̂EM, although the density functions of normal distributions have been used in Section
2 when we derive the local likelihood function of the joint model.
If the joint model is estimated by the local PQL method, as discussed at the end of Section 2, then the following theorem

establishes the statistical consistency of the estimated coefficients.

Theorem 2. Let �̂PQL be the estimated coefficients by the proposed local PQL method. Then, under the assumptions (C1)–(C6)
and (C7’) given in Appendix A.3, we have �̂PQL

p
→ �0.

3.2 Bandwidth selection
Several cross-validation methods for selecting bandwidths in local mixed-effects models with univariate longitudinal outcomes
have been reviewed in Section 3 of Wu and Zhang11. Here, we introduce a multivariate version of the leave-one-point-out cross-
validation (PTCV) method.28,11 Let t∗1 < … < t∗J be all distinct time points of the set {tij ∶ i = 1,… , m, j = 1,… , ni}. For a
given time point t∗j , let O(t

∗
j ) be the set of subjects who have observations at t∗j , where the observed y is denoted as yi(t∗j ). Let

m(−j)
i (t∗j ) denote the estimator ofmi(t∗j )when all observations at the design point t

∗
j are excluded. In the local EM estimation, we

letm(−j)
i (t∗j ) = X(0)Ẽi,t∗j [b

(−j)
i (t∗j )], which is defined similarly to the best linear unbiased prediction formi(t∗j ) in the linear mixed-

effects modeling where observations at t∗j are also excluded when taking the conditional expectation. In the local penalized
quasi-likelihood estimation, we definem(−j)

i (t∗j ) = X(0)b
(−j)
i (t∗j ), where b

(−j)
i (t∗j ) is the fitted value of bi(t

∗
j )when all observations

at t∗j are excluded. Then, the PTCV score is defined as

CV(ℎ) =
J
∑

j=1

∑

i∈O(t∗j )

‖

‖

‖

yi(t∗j ) −m
(−j)
i (t∗j )

‖

‖

‖

2
,

where ‖x‖ denotes the Euclidean norm of a vector x. The bandwidth ℎ is then selected by minimizing the PTCV score CV(ℎ).
This PTCV procedure requires fitting the joint model as many times as the number of distinct observation times in the observed
dataset. One strategy to reduce the computational burden is to approximate Ẽi,t∗j [b

(−j)
i (t∗j )] by the expectation of bi(t) conditional

on the longitudinal data i, which has a closed form solution as shown in Appendix A.1. The use of this strategy is justified by
some simulation results given in Supporting Information B.4.1. In cases when the scales of the longitudinal outcomes are quite
different, we recommend to scale the longitudinal outcomes so that their sample variances are the same before performing the
above PTCV procedure.
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3.3 Variable selection
In some applications, a large number of longitudinal outcomes are involved, and some of them may not be associated with the
survival outcomes. In such cases, variable selection is necessary to identify important longitudinal outcomes for joint modeling.
To this end, the least absolute shrinkage and selection operator (LASSO) and its variations have received wide popularity.29,30,31
To identify important longitudinal outcomes for joint modeling, we can add the following L1 penalty to the survival part of the
likelihood function

p
 (�) = −

p
∑

k=1
wk|�k|,

where 
 ≥ 0 is a regularization parameter, and {wk} are weights. In the local EM algorithm and the local penalized quasi-
likelihood estimation procedure, the resulting objective functions for estimating � become respectively

Ẽ
[

log pl(�)
]

+ p
 (�) and log pl(�) + p
 (�).

The coordinate optimization algorithm by Simon et al32 can be used to find the parameter estimate of �. It is well-discussed in31

that the adaptive weightswk = 1∕|�̂k| can be chosen, where �̂ = (�̂1,… , �̂p)T is the estimate of � without using the penalty term.
The parameter 
 in the penalty term can be selected by the cross-validation procedure discussed by van Houwelingen et al33.

4 SIMULATION STUDIES

In this section, we present some simulation results to evaluate the proposed methods. In the simulation study, we choose n = 500,
p = 3, r = 2, and T = 1.0. Longitudinal data are generated under three different scenarios, described below. In scenario (I), the
population mean functions mi(t) = (mi1(t),… , mip(t))T are assumed to be linear

mik(t) = a
†
ik + b

†
ikt, (i = 1,… , m, k = 1,… , p)

where the intercepts (a†i1,… , a†ip)
T follow a multivariate normal distribution with mean 1p×1 and covariance matrix

⎡

⎢

⎢

⎣

1.0 0.1 0.1
0.1 1.0 0.1
0.1 0.1 1.0

⎤

⎥

⎥

⎦

and the slopes (b†i1,… , b†ip)
T follow multivariate normal distribution with mean 1p×1 and covariance matrix Ip×p. The error

covariance matrix in model (1) is specified to be �e(t) = 0.22 × Ip×p. Observation times tij follow the uniform distribution
in the interval [(j − 1)∕50, j∕50] until Ti. The survival data are generated following Cox’s proportional hazards model with
� = (0.4, 0.3, 0.2)T, �0(t) = 0.05I(t > 0.1), and Ci = T. In scenario (II), the population mean functionsmi(t) are nonlinear and
defined as

mik(t) = a
†
ik + b

†
ik exp

{

sin
[

!†ik
(

t − �†ik
)

�
]}

, (i = 1,… , n, k = 1,… , p)
where (a†i1,… , a†ip)

T are independent and follow a multivariate normal distribution with mean −2 × 1p×1 and covariance matrix

⎡

⎢

⎢

⎣

1.0 0.1 0.1
0.1 1.0 0.1
0.1 0.1 1.0

⎤

⎥

⎥

⎦

,

{b†ik} are iid with the distribution N(3, 0.52), {!†ik} are iid with the distribution N(3, 0.52), and {�†ik} are iid with the uniform
distribution in [0, 1]. The error covariance matrix in model (1) is specified to be �e(t) = Ip×p. In this scenario, the random-effect
terms a†ik are time-independent, and the trajectories of the longitudinal outcomes are periodic with bik,!

†
ik and�

†
ik controlling the

amplitude, frequency and phase of the related periodic functions, respectively. Observation times tij are assumed to follow the
uniform distribution in the interval [(j−1)∕100, j∕100] until Ti. The survival data are generated following the Cox proportional
hazards model with � = (0.4, 0.3, 0.2)T, �0(t) = 0.05I(t > 0.1), and Ci = T. In scenario (III), mi(t) has the following more
complicated form:

mik(t) = a
†
ik1 sin

[

!†ik1
(

t − �†ik1
)

�
]

+ a†ik2 log
{

2 + sin
[

!†ik2
(

t − �†ik2
)

�
]}

+ a†ik3 exp
{

sin
[

!†ik3
(

t − �†ik3
)

�
]}

,

where {a†ikl ∶ i = 1,… , m; k = 1,… , p; l = 1, 2, 3} are i.i.d. with the common N(1, 0.22) distribution, {�†ikl ∶ i =
1,… , m; k = 1,… , p; l = 1, 2, 3} are iid with the uniform distribution in [0, 1], !†ik1, !

†
ik2 and !

†
ik3 are iid with the uniform
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distributions in the intervals [1, 3], [3, 5] and [5, 7], respectively. In this scenario, the trajectories of the longitudinal outcomes
are combinations of several complex periodic functions, and a†ik, !

†
ik and �†ik control the amplitude, frequency and phase of

the related periodic functions, respectively. The error covariance matrix in model (1) is specified to be �e(t) = Ip×p. Observa-
tion times tij are assumed to follow the uniform distribution in the interval [(j − 1)∕100, j∕100] until Ti. The survival data are
generated from the Cox proportional hazards model with � = (0.4, 0.3, 0.2)T, �0(t) = 0.05I(t > 0.1), and Ci = T.
In all simulation studies, we compare the proposed methods with two existing joint modeling methods that use the linear

functions to describe the longitudinal trajectories1,34, and the linear combinations of cubic B-spline basis functions to describe
the longitudinal trajectories4,5,35. These two methods are denoted as “Linear” and “B-spline”, respectively. For the B-spline
method, Brown et al4 and Yao5 suggested using evenly-spaced knots for the B-spline basis functions. In such cases, the only
tuning parameter in the model is the number of basis functions q. When q ≥ 5, the basis functions are the cubic B-splines with
equally spaced knots in [0,T], and when q = 2, 3, 4, the basis functions are linear, quadratic or cubic polynomial basis functions.
By following the suggestions in Yao5 and Park and Qiu36, the tuning parameter q is selected by minimizing the AIC criterion
defined to be −2 logL(c,�b,�e, �) + 2[pq + pq(pq + 1)∕2 + p(p + 1)∕2 + p], where the quantity in the square brackets is the
number of parameters in the related model. The proposed methods by the local EM algorithm and the local PQL procedure
are denoted as “Local EM” and “Local PQL”, respectively. In these two methods, the bandwidth parameter ℎ is selected by the
method described in Section 3.2, where the conditional expectation is taken with respect to the longitudinal data only to reduce
the computational burden.
We evaluate the performance of the related methods based on 1,000 replicated simulations. The tuning parameters q in B-

spline and ℎ in Local EM and Local PQL are selected based on the first 20 simulated datasets. In Table 1, the mean of the
estimated coefficients � = (�1,… , �p)T are presented, alongwith their corresponding relative biases and standard errors. In Table
2, we present the MSE (i.e., mean squared error) for �̂ and the MISE (mean integrated squared error) for both m̂i(t) and �̂c(t)
under the three scenarios. Here, the MSE for �̂ is defined by E

[

‖�̂−�‖2
]

, the MISE for m̂i(t) is defined by E
[
∑m
i=1 ∫

Ti
0 ‖m̂i(t)−

mi(t)‖2 dN(t)
]

, and the MISE for �̂c(t) is defined by E
[

∫ T

0 ‖�̂c(t)−�c(t)‖2 dN(t)
]

. From the tables, we can have the following
conclusions. In Scenario (I), B-spline correctly identifies the linearity of trajectories by tuning the selected parameter q using
AIC, and thus yields the same results as those by Linear. For the two proposedmethods, a large bandwidth parameter ℎ is selected
by the proposed bandwidth selection procedure, reducing the local polynomial mixed-effects model to a global polynomial
mixed-effects model. Thus, the MSE values of �̂ are all similar for the four methods, while Linear and B-spline are slightly
better in terms of MISE for m̂i(t) and �̂c(t). In Scenarios (II) and (III), Linear performed markedly worse than the other three
nonparametric methods, as the assumed linear model is inadequate to describe the nonlinear trajectories of the longitudinal
data. In terms of MSE of �̂, Local EM performs the best among the four methods, and Local PQL is slightly worse than the
other two nonparametric models. The compromised performance of Local PQL models in estimation of � can be explained
by the estimation bias of the PQL methods, which is a phenomenon that has been discussed in the literature25,22. In terms
of MISE for mi(t) and �̂c(t), the two local likelihood methods, Local PQL and Local EM outperform the B-spline method.
This simulation study shows that the proposed local likelihood methods are more flexible in describing the trajectories of the
longitudinal outcomes. For the four methods, we also recorded their computation times, and the results are presented in Figure 1.
From the plots in the figure, it can be seen that in Scenario (I) when the longitudinal trajectories are linear, the B-spline method
is as computationally efficient as the Linear method, the Local PQL method is nearly as computationally efficient as the Linear
method, and the Local EM method tends to be time-consuming. In Scenario (II) and (III) when the true longitudinal trajectories
are nonlinear, Linear is still computationally efficient, but its performance is poor, as shown in Table 1. In these two scenarios,
B-spline is the most time-consuming among the four methods because it needs more basis functions to describe the longitudinal
trajectories reasonably well. In comparison, Local EM and Local PQL take much less computing times. In particular, Local
PQL is substantially faster than Local EM and B-spline, and comparable with Linear.
Next, we use a simple example to evaluate the performance of the proposed joint modeling methods with the LASSO variable

selection component (cf., Section 3.3). In the example, the dimension of the longitudinal outcomes is set to be p = 10, 15, or 20.
Due to the large dimension of the random-effects in the joint model, the Local PQL method is considered in this example, since
it is more computationally efficient than the Local EM method, as shown in Figure 1. The true coefficients in the Cox model (2)
is set to be � = (0.5, 0.4, 0.3, 0.0,… , 0.0)T, which implies that only the first three longitudinal outcomes are associated with the
survival outcome. The population mean functions mi(t) are assumed to be

mik(t) = b
†
ik sin

[

2�
(

!†ikt − �
†
ik

)]

,
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Scenario (I)

0 1000 2000 3000

Local EM

Local PQL

B−spline

Linear

Scenario (II)

0 2000 4000 6000 8000 10000

Scenario (III)

0 4000 8000 12000 16000

CPU Time in Seconds

FIGURE 1 Boxplots of the computing times of the four methods Linear, B-spline, Local PQL, and Local EM in the example
of Table 1.

where b†ik follow the N(3, 0.52) distribution, !ik follow the N(1, 0.12) distribution, and �†ik follow the uniform distribution in
[0, 1]. The error covariance matrix is set to be �e(t) = 0.52 × Ip×p. The observation times tij are generated from the uniform
distribution in the interval [(j − 1)∕100, j∕100] with upper bound of Ti. Other settings are the same as those in the previous
example. The performance of the proposed method is evaluated by the MSE of the estimated coefficients �̂ with and without
using the LASSO variable selection. The results are presented in Table 3, where relative efficiency is defined to be the ratio of
“MSE without LASSO” and “MSE with LASSO”.
When the dimension of the longitudinal outcomes p increases, the proportion of non-zero coefficients in � decreases. From

Table 3, it can be seen that (i) the relative efficiency values are above 1 in all cases considered, and (ii) the relative efficiency
is larger when p is larger. Thus, this example shows that the LASSO variable selection can indeed improve the efficiency of the
estimated model, and the improvement is more significant when the proportion of non-zero coefficients in � gets smaller.

5 CASE STUDY

In this section, we demonstrate the proposed methods by applying them to a real dataset obtained from the Framingham Heart
Study. The data set contained the systolic and diastolic blood pressure readings of m = 1055 patients, among which 27 patients
had strokes at the last follow-up times. The last follow-up times range between 23 and 30 years, and their average is 26.23
years. In this example, the blood pressure data are used as the longitudinal outcomes and the occurrence of strokes is used as
the event to define the survival outcomes. Each patient was followed 7 times, and the blood pressure readings were obtained at
each follow-up time. The mean baseline systolic and diastolic blood pressures are 120.13 (SD=14.07) and 77.82 (SD=9.87),
respectively. The observation times for different patients are aligned by patients’ ages in this study. Since patients entered the
study at different ages, we need to modify the definition of the risk setR(t) to account for left truncation in the data analysis. Let
Ei be the age at which the ith patient entered the study, and we defineR(t) = {i ∶ Ei ≤ t ≤ Ti}. The original dataset is displayed
in Figure 2. Before the data analysis, the systolic and diastolic blood pressure data are scaled to have the sample mean of 0 and
the sample variance of 1. To justify the use of the proposed methods, the Cox proportional hazards assumption is tested using
the test discussed in Park and Qiu36, which extended the test statistics by Grønnesby and Borgan37 and May and Hosmer38 to
a joint modeling setting. To use this testing method, we first define the integrated martingale residual of the ith patient by

ri = Δi −

Ti

∫
Ei

�̂0(t) exp{�̂
T
m̂i(t)} dt,

where �̂, m̂i(t) and �̂0(t) are the estimated parameter values of the joint model. Then, all patients are divided into 10 groups of
similar sizes based on the ranks of the estimated baseline risks {�̂

T
m̂i(Ei), i = 1,… , m}. Let Hk be the sum of ri in the kth

group. Then, the following test statistic should approximately follow a �2-distribution with 9 degrees of freedom under Cox’s
proportional hazards assumption

TPH = (H1,… ,H9)�−1H (H1,… ,H9)T,
where �H is an estimate of the covariance matrix of (H1,… ,H9) whose formula can be found in Grønnesby and Borgan37 and
the supplementary materials. In the above expression,H10 is omitted since

∑10
k=1Hk = 0. This test gives a test statistic value of

TPH = 7.376 with the p-value of 0.598. So, the Cox proportional hazards assumption cannot be rejected by this test.
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FIGURE 2 Readings of the systolic blood pressure and the diastolic blood pressure in the stroke dataset from the Framingham
Heart Study. Gray thin dashed lines represent the observed data of the stroke patients, while gray thin solid lines represent data
of the non-stroke patients. Black dashed bold curves and black solid bold curves in each plot are the estimated mean curves of
the blood pressure trajectories among stroke and non-stroke patients, respectively.
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The four differentmethods Linear, B-spline, Local PQL, and Local EMare then applied to the dataset. Similar to the simulation
study, the bandwidth ℎ in the two local approaches is selected by the PTCV criterion where the approximation discussed in
Section 3.2 is used to reduce the computational burden, and the number of basis functions q in B-spline is selected by the AIC.
The selected ℎ is 21 years and the selected q is 4 in this example. In Figure 3, the fitted longitudinal trajectories of all patients by
the four different methods are displayed, along with the fitted trajectories of 8 randomly selected patients. From the plots in the
figure, we can see that Linear suffers from the shortcoming of overly simplifying the longitudinal trajectories in certain cases
and thus cannot provide a good fit to the observed data. Among the three nonparametric methods B-spline, Local PQL, and
Local EM, the last two methods exhibit better flexibility in fitting the longitudinal data. To evaluate the longitudinal fits of the
four different methods, we further compared their cross-validated mean squared prediction errors (CVMSPE) of the longitudinal
outcomes. To this end, for each i and j (1 ≤ i ≤ m and 1 ≤ j ≤ ni), we define m̃

−(ij)
i (tij) to be the predicted values of mi(tij)

when the observation yij is excluded from the model fitting. The CVMSPE value is then defined by

CVMSPE =
m
∑

i=1

ni
∑

j=1

‖

‖

‖

yij − m̃
−(ij)
i (tij)

‖

‖

‖

2
.

The CVMSPE values by Linear, B-spline, Local PQL, and Local EM are 1.0694 (0.0192), 1.0304 (0.0189), 1.0236 (0.0190),
1.0071 (0.0186), respectively, where the values in parentheses are the corresponding standard errors. Thus, in terms of CVMSPE,
Linear performs worse than the three nonparametric methods. Among the three nonparametric methods, Local EM performs
slightly better than the other two methods.
To evaluate the survival fit, we compare the mean squared integrated martingale residuals of the four different meth-

ods. To this end, for each i, a model is fitted from the data without the ith patient. Then, we define r−(i)i = Δi −
∫ Ti
Ei
�̂−(i)0 (t) exp{�̂

−(i)T
m̂−(i)
i (t)} dt as the integrated martingale residual of the ith patient, where �̂−(i)0 (t), �̂

−(i)
and m̂−(i)

i (t) are the
fitted values of �0(t), � andmi(t) from the estimated model without using the observations of the ith patient. The mean squared
integrated martingale residuals 1

m

∑m
i=1{r

−(i)
i }2 by Linear, B-spline, Local PQL, and Local EM are 0.02516 (0.00429), 0.02482

(0.00424), 0.02495 (0.00424), and 0.02397 (0.00438), respectively, where the numbers in parentheses are the standard errors. It
can be seen that Local EM has the smallest mean squared martingale residuals value, while Linear has the largest value. These
results also suggest that Local EM provides a better fit to the observed survival data, compared to the other three methods,
though the differences among the four methods are quite small, due to a small number of events in this dataset.
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6 DISCUSSION AND CONCLUDING REMARKS

In this paper, we propose a local kernel smoothing method for joint modeling of multivariate nonparametric longitudinal data
and survival data, where a multivariate local polynomial mixed-effects model is used for describing the longitudinal data, and
the Cox’s proportional hazards model is used to describe the association between the longitudinal and the survival outcomes.
Two estimation procedures, i.e., the local EM algorithm and the local penalized quasi-likelihood estimation procedure, are
suggested to estimate the joint model. Theoretical properties of the estimated models are provided and practical guidelines for
implementing the proposed methods are provided. Through some simulation studies and a real data application, the numerical
performance of the proposed methods has been evaluated. It has been confirmed by these numerical studies that the proposed
methods perform better than some representative existing methods in most cases considered, since the proposed methods are
more flexible in model fitting. In this paper, the proposed methods are based on the standard Cox’s proportional hazards model
(2), which can be generalized in several different ways. For instance, we may want to include some time-independent covariates
(e.g., patients’ demographic or baseline information in the stroke example discussed in Section 5) in that model. That model can
also be generalized to a recurrent-events model or a competing-risk model in cases when there are recurrent survival outcomes
or multiple survival outcomes. There are some other possibilities to explore in future research. For instance, this paper focuses
on cases with continuous longitudinal outcomes only. In some applications, however, there could be a mixture of continuous
numerical, discrete numerical, or even categorical longitudinal outcomes. It requires much future research to accommodate
such cases in the proposed methods. Furthermore, dynamic prediction models have been popular recently in the joint modeling
research, where the future survival of a subject can be predicted using the history data39. Such dynamic prediction models should
have important applications for disease screening. However, due to the local nature of the proposed methods, the relationship
between longitudinal outcomes at two different time points is not estimated directly, and thus future research is needed to modify
the proposed methods properly to predict future trajectories given the history data.
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TABLE 1 Estimated coefficients, their relative biases, empirical standard errors, and model-based standard errors by the four
methods “Linear”, “B-spline”, “Local PQL” and “Local EM” in Scenarios (I)–(III). The true regression coefficients are �1 = 0.4,
�2 = 0.3, and �3 = 0.2.

Estimate Relative Bias Monte Carlo SE Model-Based SE
Method �1 �2 �3 �1 �2 �3 �1 �2 �3 �1 �2 �3
Scenario (I)
Linear 0.3998 0.3041 0.1995 0.0004 0.0137 0.0025 0.0028 0.0027 0.0029 0.0863 0.0861 0.0862
B-spline 0.3998 0.3041 0.1995 0.0004 0.0137 0.0025 0.0028 0.0027 0.0029 0.0863 0.0861 0.0862
Local PQL 0.4002 0.3044 0.1998 0.0006 0.0147 0.0009 0.0028 0.0027 0.0029 0.0863 0.0862 0.0863
Local EM 0.3998 0.3041 0.1996 0.0006 0.0135 0.0020 0.0028 0.0027 0.0029 0.0863 0.0861 0.0862

Scenario (II)
Linear 0.5575 0.4124 0.2747 0.3937 0.3748 0.3735 0.0018 0.0018 0.0019 0.0381 0.0383 0.0385
B-spline 0.4168 0.3099 0.2056 0.0421 0.0331 0.0282 0.0009 0.0009 0.0008 0.0264 0.0249 0.0241
Local PQL 0.4523 0.3380 0.2247 0.1307 0.1266 0.1233 0.0011 0.0010 0.0009 0.0281 0.0262 0.0252
Local EM 0.4106 0.3070 0.2039 0.0266 0.0234 0.0194 0.0009 0.0009 0.0008 0.0263 0.0249 0.0242

Scenario (III)
Linear 0.5657 0.4314 0.2835 0.4144 0.4379 0.4173 0.0087 0.0090 0.0090 0.1696 0.1697 0.1699
B-spline 0.4137 0.3113 0.2074 0.0341 0.0376 0.0368 0.0028 0.0027 0.0026 0.0731 0.0729 0.0728
Local PQL 0.4634 0.3520 0.2328 0.1586 0.1734 0.1638 0.0031 0.0030 0.0028 0.0772 0.0771 0.0771
Local EM 0.4104 0.3117 0.2062 0.0259 0.0389 0.0312 0.0027 0.0026 0.0025 0.0731 0.0731 0.0732

TABLE 2MSE values for �̂, and MISE values for m̂i(t) and �̂c(t) in Scenarios (I)–(III) for the four different methods “Linear”,
“B-spline”, “Local PQL” and “Local EM”. Numbers in parentheses are the corresponding standard errors.

Method MSE for �̂ MISE for m̂i(t) MISE for �̂c(t)
Scenario (I)
Linear 2.355 × 10−2 (0.060 × 10−2) 4.780 × 10−3 (0.007 × 10−3) 3.676 × 10−6 (0.067 × 10−6)
B-spline 2.355 × 10−2 (0.060 × 10−2) 4.780 × 10−3 (0.007 × 10−3) 3.676 × 10−6 (0.067 × 10−6)
Local PQL 2.362 × 10−2 (0.060 × 10−2) 4.908 × 10−3 (0.007 × 10−3) 5.260 × 10−6 (0.087 × 10−6)
Local EM 2.354 × 10−2 (0.060 × 10−2) 4.897 × 10−3 (0.007 × 10−3) 5.260 × 10−6 (0.087 × 10−6)

Scenario (II)
Linear 53.053 × 10−3 (0.707 × 10−3) 15.620 × 100 (0.010 × 100) 64.357 × 10−3 (0.589 × 10−3)
B-spline 2.776 × 10−3 (0.079 × 10−3) 1.009 × 100 (0.001 × 100) 1.873 × 10−3 (0.024 × 10−3)
Local PQL 7.875 × 10−3 (0.200 × 10−3) 1.041 × 100 (0.001 × 100) 1.066 × 10−3 (0.010 × 10−3)
Local EM 2.439 × 10−3 (0.067 × 10−3) 0.996 × 100 (0.001 × 100) 1.068 × 10−3 (0.010 × 10−3)

Scenario (III)
Linear 28.947 × 10−2 (0.716 × 10−2) 34.945 × 10−1 (0.017 × 10−1) 51.323 × 10−4 (0.499 × 10−4)
B-spline 2.124 × 10−2 (0.056 × 10−2) 3.680 × 10−1 (0.002 × 10−1) 7.551 × 10−4 (0.096 × 10−4)
Local PQL 3.410 × 10−2 (0.086 × 10−2) 3.819 × 10−1 (0.002 × 10−1) 2.977 × 10−4 (0.023 × 10−4)
Local EM 2.057 × 10−2 (0.052 × 10−2) 3.628 × 10−1 (0.002 × 10−1) 3.048 × 10−4 (0.024 × 10−4)

TABLE 3 MSE and relative efficiency of the penalized versus unpenalized estimates of �. Numbers in parentheses are the
corresponding standard errors.

p MSE without LASSO MSE with LASSO Relative Efficiency

10 0.0226 (0.0005) 0.0182 (0.0005) 1.2424 (0.0065)
15 0.0361 (0.0007) 0.0215 (0.0005) 1.6777 (0.0122)
20 0.0497 (0.0009) 0.0278 (0.0006) 1.7898 (0.0105)



YOU AND QIU 17

FIGURE 3 Fitted longitudinal trajectories of all patients (1st column) by Linear, B-spline, Local PQL, and Local EM, along
with the fitted longitudinal trajectories of 8 randomly selected patients (columns 2-9). The dark dots in the plots on columns 2-9
are the observed blood pressure readings.
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