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Abstract

Profile monitoring is an active research area in statistical process control (SPC) because it has

many important applications in manufacturing and other industries. Early profile monitoring

methods often impose model assumptions that the mean profile function has a parametric form

(e.g., linear), profile observations have a parametric distribution (e.g., normal), and within-

profile observations are independent of each other. These assumptions have been lifted in some

recent profile monitoring research, making the related methods more reliable to use in various

applications. One notoriously challenging task in profile monitoring research is to properly

accommodate serial data correlation among profiles observed at different time points, and this

task has not been properly addressed in the SPC literature yet. Serial data correlation is common
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in practice, and it has been well demonstrated in the literature that control charts are unreliable

to use if the serial data correlation is ignored. In this paper, we suggest a novel mixed-effects

model for describing serially correlated univariate profile data. Based on this model, a Phase I

profile monitoring chart is developed. This chart is flexible in the sense that it does not require

any parametric forms for describing the mean profile function and the profile data distribution.

It can accommodate both the within-profile and between-profile data correlation. Numerical

studies show that it works well in different cases.

Keywords: Data correlation; Local linear kernel smoothing; Mixed-effects modeling; Non-

parametric profile monitoring; Statistical process control; Between-profile data correlation.

1 Introduction

Statistical process control (SPC) charts provide a powerful statistical tool for monitoring production

lines in manufacturing industries for quality control and management purposes. In some applica-

tions, the quality characteristic of a product is reflected in the functional relationship between a

response variable and one or more explanatory variables. In these applications, we collect a set of

data points of these variables from the sampled product at a given time point. These data points

from a single product form a so-called profile, and the related process monitoring problem is called

profile monitoring in the SPC literature (Jin and Shi 1999, Kang and Albin 2000). This paper aims

to develop a flexible and effective new method for univariate profile monitoring.

Due to broad applications of profile monitoring, there have been many existing discussions

on this topic in the literature. Early profile monitoring research assumes that the related in-

control (IC) profile mean function has a linear form. In such cases, profile monitoring becomes

the monitoring of the estimated linear regression coefficients obtained from the individual profile

data (cf., Jensen et al. 2008, Kang and Albin 2000, Kim et al. 2003, Mahmoud et al. 2007,

Mahmoud and Woodall 2004, Stover and Brill 1998, Wang and Tsung 2005 and Zou et al. 2006).

Some researchers have generalized certain linear profile monitoring methods to different cases with

parametric nonlinear profiles. See, for instance, Ding et al. (2006), Jensen and Birch (2009),

2



Williams et al. (2007a,b), and Zou et al. (2007). Of course, the above-mentioned parametric

profile monitoring methods depend heavily on the assumed parametric models, and they would not

be reliable in cases when such parametric models are invalid. To overcome this limitation, some

nonparametric profile monitoring methods have been proposed in the literature. See, for instance,

McGinnity et al. (2015), Paynabar et al. (2016), Qiu and Zou (2010), Qiu et al. (2010), Wei et al.

(2012), and Zou et al. (2008, 2009). For an overview on profile monitoring, see Qiu (2014, Chapter

10).

In the literature, most existing profile monitoring control charts (e.g., Zou et al. 2008) require

a fundamental assumption that observations within a profile and between profiles are independent

of each other, which is often invalid in applications. Some methods can accommodate the within-

profile data correlation by using various mixed-effects or Gaussian process models for describing

the observed profile data (e.g., Abdel-Salam and Brich 2019, Abdel-Salam et al. 2013, Jensen

et al. 2008, Jensen and Birch 2009, Qiu et al. 2010, Zhang et al. 2014). But, the observed data

between different profiles were still assumed to be independent in all these methods. To handle some

different but related research problems, there are some existing discussions on monitoring correlated

data. One is about dynamic screening (DS), in which many different dynamic processes need to be

monitored separately (Li and Qiu 2016, Qiu and Xiang 2014, Qiu et al. 2018). The DS problem is

different from the current profile monitoring problem in that each dynamic process to monitor in

the former is a conventional univariate or multivariate process with scalar or vector observations at

different time points and thus its observations are not profiles. If each dynamic process in the DS

problem is regarded as a profile, then different profiles are always assumed to be independent in

the DS literature, although observations within each dynamic process could be correlated (Li and

Qiu 2016). Another related problem is spatio-temporal (ST) data monitoring (e.g., Colosimo et al.

2014, Wang et al. 2014, Yan et al. 2018, Yang and Qiu 2020, Zang and Qiu 2018). For monitoring

ST data, proper description and estimation of the spatial mean and variance/covariance structures

of the observed ST data are the key issues and they are often challenging to address. To simplify

the ST data monitoring problem, some existing methods assume that the observed ST data are
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independent both spatially and temporally (Yan et al. 2018, Zang and Qiu 2018), while some others

assume that the observed ST data follow the Gaussian process models (Colosimo et al. 2014, Wang

et al. 2014). These ST data monitoring methods are designed specifically for their own spatial

process monitoring problems, and might be appropriate for these specific applications. But, they

cannot be used for the current univariate nonparametric profile monitoring problem, because their

model assumptions (e.g., ST data independence or Gaussian process models) are invalid here and

some of them require a relatively large number of observations at each observation time which may

not be available in the current problem. So, we could not find any existing research on monitoring

univariate nonparametric profiles with both within-profile and between-profile data correlation in

the profile monitoring literature. In practice, however, serial data correlation is common. It has

been well demonstrated in the SPC literature that control charts could be unreliable to use if such

serial data correlation is not accommodated properly in their construction and design (e.g., Hawkins

and Olwell 1998, Qiu 2014). More specifically, it is well known that serial data correlation can cause

a dramatic increase or decrease in the false alarm rate of the related control charts when detecting

process distributional shifts (e.g., Apley and Lee 2003, Apley and Lee 2008, Li and Qiu 2020).

Therefore, it is critically important to address this issue when developing new profile monitoring

methods.

This paper aims to develop a Phase I univariate nonparametric profile monitoring chart for

monitoring serially correlated profiles, which is notoriously difficult partly because there are no cor-

responding methods in nonparametric longitudinal data analysis that can accommodate between-

profile data correlation (e.g., Chen and Jin 2005, Li 2011, Wu and Zhang 1992, Xiang et al. 2013).

To this end, a new mixed-effects model is first suggested for describing nonparametric univari-

ate profiles with both within-profile and between-profile data correlation. Based on this modeling

approach, a Phase I univariate nonparametric profile monitoring chart is developed. Besides the

flexibility that it can accommodate both within-profile and between-profile data correlation, this

chart does not impose any parametric forms on the IC mean profile function and the profile data

distribution. Thus, it should be appropriate to use in many univariate profile monitoring applica-
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tions.

The remaining parts of the article are organized as follows. The new mixed-effects model and

the proposed Phase I profile monitoring chart are described in detail in Section 2. Some simulation

studies are presented in Section 3 to evaluate their numerical performance. The proposed chart is

applied to a real-data application in Section 4. Several remarks conclude the article in Section 5.

2 Proposed Method

This section consists of two parts. In Subsection 2.1, a nonparametric mixed-effects model is

suggested for describing serially correlated univariate profile data. Based on this model, a Phase I

profile monitoring chart is suggested in Subsection 2.2.

2.1 Nonparametric mixed-effects modeling of serially correlated univariate pro-

file data

Assume that we have observed data of m IC profiles, denoted as {(xij , yij), j = 1, 2, . . . , ni, i =

1, 2, . . . ,m}, where y is a response variable and x is a predictor. To describe the possible within-

profile and between-profile data correlation, the following mixed-effects model is considered:

yij = g(xij) + ξi + γ(xij) + εij , for j = 1, 2, . . . , ni, i = 1, 2, . . . ,m, (1)

where g(x) is the population mean profile function of x that is assumed to be a continuous function,

ξi is a random-effects term for describing the variation of the ith profile from g(x), γ(x) is a random-

effects process that depends on x only for describing the between-profile data correlation at the

location x, and εij is the random error term. In Model (1), without loss of generality, it is assumed

that xij ∈ [0, 1], for all i and j. It is further assumed that the three random terms ξi, γ(xij) and εij

are all independent of each other, and they have mean 0 and variances σ2
ξ , σ

2
γ and σ2

ε , respectively.

Inclusion of the random-effects term ξi is for accommodating the within-profile data correlation (cf.,

Diggle et al. 2002). Similarly, inclusion of the random-effects process γ(x) is for accommodating

the between-profile data correlation. The idea to suggest the mixed-effects model (1) is motivated
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from the perspective of spatio-temporal data modeling, where i is related to the observation time

of the ith profile and thus denotes the time domain, and x denotes the space domain. The two

random-effects terms ξi and γ(x) describe the variation of the ith profile function from g in the

time and space domains, respectively. As far as we know, there are no nonparametric control charts

for monitoring spatio-temporal data that are based on spatio-temporal mixed-effects modeling yet.

So, our proposed method in this paper can fill this gap.

In Model (1), the design points {xij} are allowed to be different in all m profiles. Thus,

there could be many different values in the set of all design points. In the extreme case when

no two design points in the set {xij , j = 1, 2, . . . , ni, i = 1, 2, . . . ,m} are the same, the number

of random-effect terms in {γ(xij)} would be the same as the total number of observations. In

such a case, Model (1) would be inestimable. To overcome this difficulty and make the estimation

of Model (1) simpler, the following model approximation is suggested. Let N =
∑m

i=1 ni and

dq = q/p, for q = 1, 2, . . . , p− 1. Then, the design interval [0, 1] can be divided into p subintervals:

[0, 1] = [0, d1]
⋃
(d1, d2]

⋃
. . .
⋃
(dp−1, 1]. The number of subintervals, p, is chosen such that the

set of design points in each subinterval is not empty. In each subinterval, it is assumed that the

random-effect term γ(xij) is the same. Namely, when xij ∈ (dq−1, dq], this random-effect term is

denoted as ηq that depends on q only, for q = 1, 2, . . . , p, where d0 = 0 and dp = 1. In such cases,

Model (1) can be approximated by

yij = g(xij) + ξi + ηq + εij , for xij ∈ [dq−1, dq], q = 1, 2, . . . , p, j = 1, 2, . . . , ni, i = 1, 2, . . . ,m. (2)

In Model (2), it is further assumed that {ξi, i = 1, 2, . . . ,m} and {ηq, q = 1, 2, . . . , p} are both

independent and identically distributed, as in a conventional random-effects model (cf., Diggle

et al. 2002). Then, {ξi, i = 1, 2, . . . ,m} and {ηq, q = 1, 2, . . . , p} are for describing the within-

and between-profile data correlation, respectively. Obviously, the random process γ(x) has been

approximated by the step function
∑p

q=1 ηqI(x ∈ (dq−1, dq]) in (2), which is not continuous in x.

Because Model (2) is only used in the intermediate steps for constructing the proposed control chart

that will be discussed in the next subsection, this would not be a substantial issue. However, if the
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discontinuity of the step function is an issue in some other applications, then it can be replaced by

a continuous function that connects the consecutive points in {((dq−1 + dq)/2, ηq), q = 1, 2, . . . , p}.

The resulting function is the smoothing spline of order 1 (cf., Qiu 2005, Section 2.5). We can

also consider using smoothing splines of higher orders if a smoother approximation is desired in an

application.

It should be pointed out that the random-effects terms in Model (1) are kept simple in this

paper to describe the basic within-profile and between-profile data correlation. Actually, they can

both be generalized to describe a more complicated data correlation. For instance, the random-

effects term γ(xij) can be replaced by γ1(xij) + γ2(xij)xij or a higher-order polynomial of xij to

describe a complicated between-profile correlation, where (γ1(xij), γ2(xij))
T is a random-effects

coefficient vector. In such a more general model, γ1(xij) and γ2(xij) can still be approximated

by smoothing spline functions of xij , as discussed above about Model (2). Similarly, the random-

effects term ξi can be generalized to describe a more complicated within-profile data correlation.

For a systematic discussion about such general mixed-effects models, see the book Diggle et al.

(2002). Nonparametric profile modeling using such more complicated mixed-effects models will be

discussed in our future research.

Next, we discuss estimation of g(x), for x ∈ [0, 1], and other quantities in Model (2). To this end,

consider a neighborhood [s−h, s+h] of a given point s ∈ [0, 1] with the bandwidth h. Assume that

this neightborhood has non-empty intersections with p∗ subintervals in {(dq−1, dq], q = 1, 2, . . . , p},

and the corresponding p∗-dimensional vector of the random-effects terms in {ηq, q = 1, 2, . . . , p}

is denoted as η(s). Then, g(x) can be approximated by a linear function β0 + β1(x − s) in the

neighborhood [s−h, s+h], and g(xij) can be approximated by β0+β1(xij−s), for xij ∈ [s−h, s+h].

To estimate g(x), let us consider the following penalized local kernel least squares estimation

problem:

minβ,ξ,η
1

σ2
ε

m∑

i=1

(yi −Ziβ − ξi1ni
−Mi(s)η(s))

T Ki (yi −Ziβ − ξi1ni
−Mi(s)η(s)) (3)

+
m∑

i=1

ξ2i
σ2
ξ

+
1

σ2
η

η(s)Tη(s),
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where yi = (yi1, yi2, . . . , yini
)T , Zi = (ZT

i1,Z
T
i2, . . . ,Z

T
ini

)T , Zij = (1, xij − s)T , for j = 1, 2, . . . , ni,

Mi(s) is an (ni × p∗)-dimensional matrix whose (j, q)th element is 1 if xij is contained in the qth

subinterval that has non-empty intersection with [s− h, s+ h] and 0 otherwise, for j = 1, 2, . . . , ni

and q = 1, 2, . . . , p∗, 1ni
is an ni-dimensional vector with all elements being 1, β = (β0, β1)

T ,

ξ = (ξ1, ξ2, . . . , ξm)T , Ki = diag[Kh(xi1 − s),Kh(xi2 − s), . . . ,Kh(xini
− s)], for i = 1, 2, . . . ,m,

Kh(·) = K(·/h)/h, and K(·) is a kernel function with the support [−1, 1]. In the minimization

problem (3), the first summation is the weighted sum of squares of the estimation errors {yij −

[g(xij) + ξi + γ(xij)]}, after g(xij) is replaced by the linear approximation β0 + β1(xij − s) in the

small neighborhood [s− h, s+ h], and the weights are determined by the kernel function K(·). For

the two random-effects terms ξi1ni
and Mi(s)η(s) included in the summation, two penalty terms

m∑
i=1

ξ2i /σ
2
ξ and 1

σ2
η
η(s)Tη(s) have been used in (3) to regulate the random-effects. A similar penalized

local kernel least squares estimation procedure has been discussed in the longitudinal data analysis

literature in cases when within-profile data correlation exists but observations from different profiles

are assumed independent (Wu and Zhang 2002). The minimization problem (3) is a generalization

of the one discussed in Wu and Zhang (2002), where the latter considers only one random-effect

term to describe the within-profile data correlation while the former considers two random-effects

terms for describing both the within-profile and the between-profile data correlation.

For the minimization problem (3), the solutions to β, ξ and η(s) can be obtained by solving

the so-called mixed-model equation (cf., Zhang et al. 1998), and the solutions are

β̂ = [BE−1D −A]−1[BE−1F −C],

η̂(s) = [DA−1B −E]−1[DA−1C − F ], (4)

ξ̂i = pi(ui −LiZiβ̂ −LiMi(s)η̂(s)), for i = 1, 2, . . . ,m,

where B =
m∑
i=1

PiMi(s), Pi = ZT
i Ni, Qi = MT

i (s)Ni, Ni = Ki − piKi1ni
1Tni

Ki, Li = (Kh(xi1 −

s),Kh(xi2− s), . . . ,Kh(xini
− s)), pi = (wi+

σ2
ε

σ2

ξ

)−1, wi =
ni∑
j=1

Kh(xij − s), ui =
∑ni

j=1 yijKh(xij − s),

A =
m∑

i=1

PiZi, B =
m∑

i=1

PiMi(s), C =
m∑

i=1

Piyi,
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D =
m∑

i=1

QiZi, E =
m∑

i=1

QiMi(s) +
σ2
ε

σ2
η

In, F =
m∑

i=1

Qiyi.

In (3) and (4), the variances σ2
ξ , σ

2
η, and σ2

ε are assumed known. In practice, however, they are

usually unknown in advance. In such cases, model (2) can be regarded as a semiparametric model,

and we suggest the following iterative procedure for its estimation:

Step 1. At the given point s ∈ [0, 1] considered in (3), set the initial values for σ2
ξ , σ

2
η and σ2

ε ,

denoted as σ2
ξ (s)

(0)
, σ2

η(s)
(0)

and σ2
ε(s)

(0)
.

Step 2. In the kth iteration, for k ≥ 0, compute estimates of β, ξ and η(s) by (4), where the

values of σ2
ξ , σ

2
η and σ2

ε are specified as those obtained in the previous iteration. The resulting

estimates are denoted as β̂(k), η̂(k)(s) and ξ̂(k) = (ξ̂1
(k)

, ξ̂2
(k)

, . . . , ξ̂m
(k)

)T .

Step 3. Based on β̂(k), ξ̂(k) and η̂(k)(s), update the estimates of σ2
ξ , σ

2
η and σ2

ε by

σ̂2
ε(s)

(k)
=

1

m

m∑

i=1

1

ni − 1

(
yi −Ziβ̂

(k) − ξ̂
(k)
i 1ni

−Mi(s)η̂
(k)(s)

)T
×

Ki

(
yi −Ziβ̂

(k) − ξ̂
(k)
i 1ni

−Mi(s)η̂
(k)(s)

)
,

σ̂2
ξ (s)

(k)
=

1

m− 1
(ξ̂(k))T ξ̂(k),

σ̂2
η(s)

(k)
=

1

p− 1
(η̂(k)(s))T η̂(k)(s).

Step 4. Repeat Steps 2 and 3 until the following condition is met:

max
(
|σ̂2

ε(s)
(k) − σ̂2

ε(s)
(k−1)|, |σ̂2

ξ (s)
(k) − σ̂2

ξ (s)
(k−1)|, |σ̂2

η(s)
(k) − σ̂2

η(s)
(k−1)|

)
≤ ǫ,

where ǫ > 0 is a pre-specified small number (e.g., ǫ = 10−4).

From the above algorithm, we can obtain estimates of β, ξ,η(s), σ2
ξ , σ

2
η, and σ2

ε at the given

point s, denoted as β̂(s), ξ̂(s), η̂(s), σ̂2
ξ (s), σ̂

2
η(s) and σ̂2

ε(s). Based on these estimates, we can

define the final estimate of g(s) as

ĝ(s) = eT1 β̂(s) (5)
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where e1 = (1, 0)T . Similarly, the final estimates of σ2
ξ , σ

2
η, and σ2

ε can be defined as

σ̂2
ε =

1

m

m∑

i=1

1

ni

ni∑

j=1

σ̂2
ε(xij),

σ̂2
ξ =

1

m

m∑

i=1

1

ni

ni∑

j=1

σ̂2
ξ (xij), (6)

σ̂2
η =

1

m

m∑

i=1

1

ni

ni∑

j=1

σ̂2
η(xij).

After the final estimates σ̂2
ε , σ̂

2
ξ , and σ̂2

η are obtained, they can be pluged into (4) to obtain estimates

of ξ and η(s) at each s ∈ [0, 1], denoted as ξ̂(s) and η̂(s), respectively. Then, the final estimates of

ξ and η are defined as

ξ̂ =
1

m

m∑

i=1

1

ni

ni∑

j=1

ξ̂(xij)

η̂q =
1

Nq

Nq∑

l=1

η̂q(sq,l), for q = 1, 2, . . . , p,

where {sq,l, l = 1, 2, . . . , Nq} are all design points in {xij , j = 1, 2, . . . , ni, i = 1, 2, . . . ,m} whose

neighborhoods have non-empty intersections with the qth subinterval (dq−1, dq], Nq is the total

number of such design points, for q = 1, 2, . . . , p, and η̂ = (η̂1, η̂2, . . . , η̂p)
T .

In the minimization problem (3) and its estimation procedure described above, the kernel

function K(·) and the bandwidth h should be chosen in advance. Regarding K(·), it can be chosen

to be the Epanechnikov kernel function because of its good theoretical properties (Epanechnikov

1969). Namely, we choose K(x) = 0.75(1− x2)I(|x| ≤ 1). Regarding the bandwidth h, we suggest

using the following empirical formula, as discussed in Qiu et al. (2010):

h = cn−1/5
√
Var(x), (7)

where n and Var(x) are the average number of design points and the variance of the design points

within a profile, respectively, which can be estimated from an IC data, and c is a constant. From

Qiu et al. (2010), c can be chosen in the interval [1.0, 2.0]. In all numerical examples in Sections 3

and 4, we choose c = 1.5.
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2.2 Phase I monitoring of serially correlated univariate profiles

After the mixed-effects model (2) is estimated, we are ready to construct a control chart for Phase I

profile monitoring. Note that besides g(xij), the random-effect term ηq on the right-hand-side of (2)

also depends on the design points xij . Thus, to monitor the ith profile {(xij , yij), j = 1, 2, . . . , ni},

it is more reasonable to use 1
ni

∑ni

j=1[yij − ĝ(xij) − η̂q]
2 to measure the discrepancy between the

observed profile and the estimated profile, compared to 1
ni

∑ni

j=1[yij − ĝ(xij)]
2. Based on this

consideration, we suggest the following charting statistic for monitoring a total of m observed

profiles at the beginning of Phase I SPC:

STM = max
i=1,2,...,m

1

ni

ni∑

j=1

[yij − ĝ(xij)− η̂q]
2 , (8)

and the chart gives a signal when

STM ≥ CL, (9)

where CL > 0 is a control limit, and the subscript of STM denotes the fact that the mixed-effects

model (2) has two mixed-effects terms. This chart will be called TM chart hereafter.

To determine the control limit CL, we need to compute the empirical distribution of STM . To

this end, the following bootstrap procedure is considered, which is similar to the one discussed in

Chatterjee and Qiu (2009). First, let us define the residuals ε̂ij = yij − ĝ(xij) − ξ̂i − η̂q, for j =

1, 2, . . . , ni and i = 1, 2, . . . ,m. Then, we draw a sample of size N =
∑m

i=1 ni with replacement from

the set of the original residuals {ε̂ij , j = 1, 2, . . . , ni, i = 1, 2, . . . ,m}. The re-sampled residuals are

denoted as {ε̂∗ij}, based on which we define the bootstrap observations by y∗ij = ĝ(xij)+ ξ̂i+ η̂q+ ε̂∗ij ,

for j = 1, 2, . . . , ni and i = 1, 2, . . . ,m. From the bootstrap observations, we can compute the

bootstrap estimates of g(xij), ξi, and ηq by (4), denoted as ĝ∗(xij), ξ̂
∗

i , and η̂∗q , respectively, for all

i, j, and q. Based on these estimates, the value of the charting statistic STM can be computed by

(8), denoted as S∗

TM . The bootstrap re-sampling is then repeated for B times, and B values of

S∗

TM can be obtained accordingly. The (1−α)th quartile of the B values of S∗

TM can then be used

to approximate the control limit CL, where α is a given IC false alarm rate (FAR).

The entire proposed Phase I profile monitoring procedure is iterative and summarized below.
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• At the beginning, model (2) is estimated from a total of m profiles under monitoring. The

charting statistic STM is computed by (8). If (9) is not true, then the entire iterative procedure

for Phase I SPC stops and we claim that all m profiles are IC. Otherwise, the profile with

the largest value of 1
ni

∑ni

j=1 [yij − ĝ(xij)− η̂q]
2 is declared to be an outlier and deleted from

the subsequent profile monitoring.

• At the kth iteration, for k > 1, there are k − 1 profiles deleted in the previous iterations

and m − k + 1 profiles remaining for profile monitoring. Model (2) is estimated from these

m− k+1 profiles, and the control limit CL is computed from them as well by the bootstrap

procedure described above. Then, the charting statistic STM is computed by (8) based on

the m − k + 1 profiles. If (9) is not true, then the entire iterative procedure stops and we

claim that all m−k+1 profiles are IC. Otherwise, declare the profile with the largest value of

1
ni

∑ni

j=1[yij − ĝ(xij)− η̂q]
2 as an outlier and delete it from the subsequent profile monitoring.

• The iterative procedure continues until no outliers can be found.

3 Simulation Study

In this section, we study the numerical performance of the proposed TM chart (8)-(9), using different

simulation examples. Without loss of generality, assume that there are m = 25 profiles to monitor

in a Phase I monitoring, all profiles are defined in the design interval [0, 1], each profile has ni = 25

observations, for i = 1, 2, . . . ,m, and p = 20 in model (2). Also, the design points xij of the profiles

are generated from the distribution Uniform(0, 1), for all j = 1, 2, . . . , ni, i = 1, 2, . . . ,m. To study

the impact of within-profile and between-profile data correlation on the performance of the chart

(8)-(9), the following four cases are considered for specifying the three random terms in model (2):

for j = 1, 2, . . . , ni, i = 1, 2, . . . ,m, and q = 1, 2, . . . , p,

(I) ξi
i.i.d.∼ N(0, 0.52), σ2

γ = 0, and εij
i.i.d.∼ N(0, 0.52);

(II) σ2
ξ = 0, ηq

i.i.d.∼ N(0, 0.52), and εij
i.i.d.∼ N(0, 0.52);
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(III) ξi
i.i.d.∼ N(0, 0.12), ηq

i.i.d.∼ N(0, 0.52), and εij
i.i.d.∼ N(0, 0.12);

(IV) ξi
i.i.d.∼ t(3)/(10

√
3), ηq

i.i.d.∼ t(3)/(2
√
3), and εij

i.i.d.∼ t(3)/(10
√
3).

Case (I) represents a situation in which within-profile data correlation exists but between-profile

data correlation does not exist. Case (II) considers a situation in which within-profile data cor-

relation does not exist but between-profile data correlation exists. Cases (III) and (IV) consider

situations when both within-profile and between-profile data correlation exist but the random vari-

ables have different distributions. For the IC mean function g(x) in model (2), we consider the

following three cases:

Linear profile: g(x) = 1 + 2x,

Nonlinear profile 1: g(x) = 1 + 2x+ sin(2πx),

Nonlinear profile 2: g(x) = 1 + 2x+ 5x2 + sin(2πx).

Among the above three profiles, the first one is linear, the second one consists of a linear

component and a non-linear component, while the third one adds a quadratic term to the second

profile. These three cases are denoted as Linear, Nonlinear 1 and Nonlinear 2, respectively, in this

section. For evaluating the OC performance of the proposed method, we consider two types of

shifts: a step shift δ1 that can change among 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0, and a

shift δ2 in the profile slope which can also change among 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and

2.0. When a profile has a step shift δ1, its mean function changes from g(x) to g(x) + δ1. When a

profile has a slope shift δ2, its mean function changes from g(x) to g(x) + δ2x.

As discussed in Section 1, so far we cannot find any existing univariate nonparametric profile

monitoring methods that can accommodate between-profile data correlation. But, there are some

existing Phase II profile monitoring methods that can accommodate within-profile data correlation.

To compare our proposed method with some existing profile monitoring methods, in this section

we consider the following three representative Phase II profile monitoring methods that take into

account the within-profile data correlation and adapt them to Phase I profile monitoring. The first

13



existing method was proposed by Jensen et al. (2008) based on the following linear mixed-effects

(LM) model:

yi = Xiβ +Zibi + εi, (10)

where yi = (yi1, yi2, . . . , yini
)T , Xi is the design matrix of the ith profile, β is the regression

coefficient vector, Zi is a design matrix of r covariates for the random-effects term, bi ∼ Nr(0,D)

is the coefficient vector of the random-effects terms with the diagonal covariance matrix D, and εi

is the vector of the i.i.d. random errors with mean 0 and variance σ2
ε of the ith profile. In the above

model, we need to specify r covariates for defining the random-effects terms. To make it consistent

with the random-effects term in model (2), we specify Zi = (1, 1, . . . , 1)T . In such cases, bi is a

scalar random variable. Then, β can be estimated by

β̂ =

(
m∑

i=1

XT
i V

−1
i Xi

)
−1( m∑

i=1

XT
i V

−1
i yi

)
,

where Vi = XiDXT
i +σ2

εI. So, the charting statistic for Phase I profile monitoring can be defined

to be

SLM = max
i=1,2,...,m

1

ni

(
yi −Xiβ̂

)T (
yi −Xiβ̂

)
,

and the chart gives a signal when SLM exceeds a control limit. This chart will be labeled as LM,

denoting the fact that it is based on a linear mixed-effects modeling.

The second existing method considered here was originally proposed by Zhang et al. (2014),

which described the within-profile correlation by the following Gaussian process (GP) model:

yij = β0 + β1xij + θi(xij) + εij , for j = 1, 2, . . . , ni, i = 1, 2, . . . ,m, (11)

where θi(x) is a realization of a Gaussian process with mean 0 and covariance function cov(θi(x
′),

θi(x
′′)) = σ2

θKSE(rx′,x′′), for any x′, x′′ ∈ [0, 1], where σ2
θ is the signal variance, KSE(rx′,x′′) =

exp(−r2x′,x′′), and rx′,x′′ = |x′ − x′′|. The charting statistic for Phase I profile monitoring is defined

to be

SLGM = max
i=1,2,...,m

1

ni

ni∑

j=1

(
yij − β̂0 − β̂1xij

)2
,
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where β̂0 and β̂1 are the estimates of β0 and β1 defined in Zhang et al. (2014). This chart will

be labeled as LGM, denoting the fact that it is based on a linear Gaussian process mixed-effects

model.

The third existing method considered here was suggested by Qiu et al. (2010), which was based

on the following nonparametric mixed-effects modeling:

yij = g(xij) + fi(xij) + εij , for j = 1, 2, . . . , ni, i = 1, 2, . . . ,m, (12)

where fi(x) is a zero-mean random process for describing the difference between the population

profile mean function g(x) and the mean function of the ith profile. The charting statistic for Phase

I profile monitoring is defined to be

SNM = max
i=1,2,...,m

1

ni

ni∑

j=1

[yij − ĝ(xij)]
2 ,

where ĝ(x) is the estimate of g(x) defined in Qiu et al. (2010). This chart will be labeled as NM,

denoting the fact that it is based on a nonparametric mixed-effects modeling.

Among these three existing methods, both LM and LGM are for monitoring linear profiles

with possible within-profile data correlation, and NM is designed for monitoring nonparametric

profiles with possible within-profile data correlation. All these three methods assume that the

observed data from different profiles are independent of each other. So, they may not be able to

accommodate between-profile data correlation well.

3.1 Performance of the estimated model of (2)

First, we study the performance of the estimated model of (2) by the estimation procedure (3)-(6).

The performance is measured by

MSE =
1

N

m∑

i=1

ni∑

j=1

[g(xij)− ĝ(xij)]
2 .

In cases when ni = 25, m = 25, 50 or 100, and p = 5, 10, 15, 20, 25, 30 or 50, the MSE values of

the estimated model based on 100 replicated simulations are presented in Figure 1. From the plots

in the figure, it can be seen that (i) MSE values for estimating linear profile models are generally
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smaller than those for estimating nonlinear profile models, (ii) MSE values would become smaller

when m increases, and (iii) MSE values are generally smaller when p increases. The first conclusion

is intuitively reasonable because nonlinear profile models are generally more difficult to estimate

than their linear counterparts, and consequently the related MSE values for estimating nonlinear

profile models would be larger. The second conclusion implies that the estimated model would be

statistically consistent. The third conclusion is also intuitively reasonable because Model (2) is an

approximation of Model (1) (cf., the related discussion in Section 2), and the approximation would

be better if p is chosen larger. However, when p is chosen too large, the computation involved

in the model estimation would be extensive. Based on this and other simulation examples with

different sample sizes (not presented here), it seems that the estimated model of (2) would perform

reasonably well when p is chosen to be 20 or larger.

In cases when m = 25, ni = 25, for all i, p = 20, and the random terms of Model (2) belong to

case (II), the 95% pointwise confidence intervals for g(x) are presented in Figure 2 for monitoring

both the linear profile (1st panel) and the nonlinear profiles (2nd and 3rd panels). From the first

panel, it can be seen that the estimate ĝ(x) is almost identical to the true function g(x) when

g(x) is linear, and the 95% pointwise confidence intervals perform well too. From the 2nd and 3rd

panels, both the estimates ĝ(x) and the 95% pointwise confidence intervals of g(x) perform well

at all places except some places around the peaks and the valleys of the curves of g(x). Basically,

the peaks and the valleys of g(x) are smoothed out to a certain degree, which is well known in the

local smoothing literature (Qiu 2005, Chapter 2). Even in such cases, the 95% confidence intervals

cover g(x) at almost all places. Therefore, ĝ(x) provides a reasonably good estimate of g(x). The

confidence intervals in other cases reveal similar patterns, and thus are omitted.

3.2 IC performance of the chart (8)-(9)

In this part, we present some simulation results about the IC performance of the four Phase I profile

monitoring methods TM, LM, LGM and NM. To this end, their control limits are determined based

on 10, 000 replicated simulations with the nominal IC FAR value of α = 0.05 and the bootstrap
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Figure 1: MSE values of the estimated model of (2) in cases when ni = 25, m = 25 (1st column),

50 (2nd column), or 100 (3rd column), p = 5, 10, 15, 20, 25, 30 or 50, and the random terms are in

cases (I) (1st row), (II) (2nd row), (III) (3rd row), and (IV) (4th row).
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Figure 2: The 95% pointwise confidence intervals for g(x) when g(x) is the linear profile (1st panel),

the nonlinear profile 1 (2nd panel) or the nonlinear profile 2 (3rd panel), m = 25, ni = 25, for all

i, p = 20, and the random terms of model (2) belong to case (II).

sample size of B = 10, 000. Then, the actual IC FAR of each method, defined to be the proportion

of the repeated simulations in which at least one signal is obtained, is calculated based on 1, 000

replicated simulations. The actual IC FAR values of the four methods in different cases considered

are presented in Table 1. From the table, it can be seen that (i) the actual IC FAR values of LM,

LGM and NM are reasonably close to the nominal IC FAR value of α = 0.05 in case (I) when there

is no between-profile data correlation, (ii) the actual IC FAR values of LM, LGM and NM are far

away from α = 0.05 in cases (II), (III) and (IV) when there is a substantial between-profile data

correlation, and (iii) the actual IC FAR values of TM are reasonably close to α = 0.05 in all cases

considered. This example shows that the proposed method TM has a reliable IC performance when

a substantial between-profile data correlation is present, and the three alternative methods LM,

LGM and NM would not be reliable in such cases.
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Table 1: Actual IC FAR values of the charts TM, LM, LGM and NM in cases when α = 0.05,

m = 25, ni = 25, p = 5, 10 and 20, and the random terms of model (2) belong to cases (I), (II),

(III) and (IIV).

Linear Profile Nonlinear Profile 1 Nonlinear Profile 2

p LM LGM NM TM LM LGM NM TM LM LGM NM TM

(I) 0.049 0.048 0.046 0.045 0.058 0.057 0.047 0.053 0.061 0.060 0.049 0.056

5 (II) 0.210 0.201 0.223 0.061 0.252 0.250 0.206 0.060 0.258 0.256 0.193 0.062

(III) 0.314 0.316 0.314 0.071 0.322 0.320 0.264 0.072 0.332 0.332 0.257 0.076

(IV) 0.183 0.180 0.181 0.032 0.196 0.195 0.182 0.033 0.161 0.161 0.166 0.032

(I) 0.052 0.053 0.048 0.047 0.061 0.062 0.046 0.052 0.068 0.069 0.052 0.057

10 (II) 0.181 0.178 0.229 0.061 0.204 0.202 0.175 0.062 0.182 0.180 0.194 0.061

(III) 0.306 0.308 0.308 0.071 0.274 0.274 0.263 0.074 0.227 0.228 0.266 0.075

(IV) 0.160 0.159 0.189 0.030 0.151 0.152 0.147 0.032 0.141 0.143 0.141 0.031

(I) 0.056 0.055 0.053 0.046 0.065 0.063 0.047 0.054 0.078 0.075 0.052 0.055

20 (II) 0.119 0.119 0.186 0.065 0.167 0.166 0.175 0.061 0.178 0.177 0.161 0.061

(III) 0.214 0.232 0.300 0.074 0.263 0.260 0.228 0.075 0.230 0.231 0.218 0.078

(IV) 0.145 0.139 0.206 0.045 0.147 0.147 0.223 0.041 0.152 0.159 0.224 0.040
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3.3 OC performance

In this subsection, we investigate the OC performance of the related control charts. To evaluate

the OC performance of a Phase I control chart, it has been well discussed in the literature that

potential OC data can contaminate the design of the chart since some OC data could potentially be

used in determining the control limit of the chart (cf., Yeh et al. 2009). To overcome this difficulty

and objectively measure the OC performance of the chart, some authors suggested using multiple

OC performance measures. For instance, Yeh et al. (2009) and Zang and Qiu (2018) used the

following three criteria for measuring the OC performance of their suggested Phase I charts: alarm

probability (AP), fraction of correctly classified profiles (FCC), and false positive rate (FPR). AP

is defined to be the proportion of the repeated simulations in which at least one profile is detected

as OC. FCC is defined to be the proportion of all profiles that are correctly classified as IC or

OC by a control chart. FPR is defined to be the proportion of the detected OC profiles which are

actually IC. From their definitions, it is obvious that the larger the first two criteria or the smaller

the third criterion, the better. Also, if some OC profiles are used in determining the control limit

of a chart, then the chart would become more conservative in the sense that less OC profiles will

be detected. In such cases, AP and FPR would both tend to be smaller, and FPR could be larger

or smaller depending on the specific cases. Thus, at least one of these three measures (e.g., at least

AP) can catch this scenario. In this subsection, the three OC performance measures AP, FCC and

FPR are used, and we consider cases when ni = 25, for all i, m = 25, p = 20, α = 0.05, and the

number of OC profiles is 5. The OC profiles in a given set of m = 25 profiles for Phase I monitoring

are those at the 2nd, 4th, 6th, 8th, and 10th positions. In this study, because the results of LM

and LGM are almost identical in all cases considered, the results of LGM will not be presented.

In both the linear and nonlinear profile cases, we let each of the step shift δ1 and the slope shift

δ2 changes among 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0. To make the charts comparable, the

control limits of LM and NM have been adjusted in each case considered so that their actual IC

FAR values reach the level of α = 0.05. The calculated values of AP, FCC and FPR of the three
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charts TM, LM and NM in cases (I)-(IV) are presented in Figures 3-6, respectively, which are based

on 1,000 replicated simulations. From the figures, it can be seen that (i) the three methods perform

almost the same in case (I) when there is no between-profile data correlation, (ii) TM outperforms

LM and NM in cases (II)-(IV) when there is a substantial between-profile data correlation, and

(iii) NM and LM performs similarly for monitoring linear profiles and NM outperforms LM when

monitoring nonlinear profiles. So, this example shows that our proposed method TM outperforms

the two representative existing linear and nonparametric profile monitoring methods LM and NM

in cases when between-profile data correlation is present.

4 A Real Data Example

In this section, we illustrate the application of the proposed Phase I profile monitoring chart TM,

using the Vertical Density Profiles (VDP) dataset discussed in Walker and Wright (2002). This

dataset is about a manufacturing process of particle boards, whose density properties are critical to

their machinability and thus require careful control and monitoring. Density readings are collected

by a laser device at fixed vertical depths of a board. So, observations from a single board can be

regarded as a profile. In the dataset, there are 24 profiles. In each profile, design points are fixed

at xj = 0.002 × j inches, for j = 0, 1, . . . , 313. The original dataset is shown in the left panel

of Figure 7. A more detailed introduction about this dataset and the manufacturing of particle

boards can be found in Walker and Wright (2002) and Young et al. (1999). This dataset has

been analyzed previously by several authors. Walker and Wright (2002) compared multiple VDP

profiles using additive modeling and smoothing splines. Williams et al. (2007) focused on the

Phase I analysis using the nonlinear regression curve estimation. As indicated by these authors,

the VDP data exhibit a significant amount of within-profile positive autocorrelation, although they

have not considered such autocorrelation in their analysis. None of these papers consider the

possible between-profile data correlation. To explore the possible between-profile data correlation,

we present the observations of the 24 consecutive profiles at xj = 0.1, 0.3 and 0.5 in the right panel
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Figure 3: Calculated values of AP, FCC and FPR of the three charts TM, LM and NM in Case (I)

for detecting step shifts (first three rows) of size δ1 and slope shifts (last three rows) of size δ2 in

the linear (1st and 4th rows), nonlinear profile 1 (2nd and 5th rows), and nonlinear profile 2 (3rd

and 6th rows) models.
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Figure 4: Calculated values of AP, FCC and FPR of the three charts TM, LM and NM in Case

(II) for detecting step shifts (first three rows) of size δ1 and slope shifts (last three rows) of size

δ2 in the linear (1st and 4th rows), nonlinear profile 1 (2nd and 5th rows), and nonlinear profile 2

(3rd and 6th rows) models.
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Figure 5: Calculated values of AP, FCC and FPR of the three charts TM, LM and NM in Case

(III) for detecting step shifts (first three rows) of size δ1 and slope shifts (last three rows) of size

δ2 in the linear (1st and 4th rows), nonlinear profile 1 (2nd and 5th rows), and nonlinear profile 2

(3rd and 6th rows) models.
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Figure 6: Calculated values of AP, FCC and FPR of the three charts TM, LM and NM in Case

(IV) for detecting step shifts (first three rows) of size δ1 and slope shifts (last three rows) of size

δ2 in the linear (1st and 4th rows), nonlinear profile 1 (2nd and 5th rows), and nonlinear profile 2

(3rd and 6th rows) models.
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of Figure 7, where the y-axis denotes the density reading and the x-axis is the profile index. So,

for instance, the solid curve in the plot denotes the observed density readings of the 24 profiles at

the vertical depth of xj = 0.1 (i.e., j = 50). From the plot, it seems that there is some evidence of

autocorrelation (e.g., a data point on the solid curve tends to be relatively large if its previous data

point on the same curve is relatively large). To investigate autocorrelation of each curve numerically,

a total of 24 data points on the curve might be too small. To overcome this difficulty, we consider

the set of all pairs P = {(yi−1,j , yij), for all possible i, j}. Namely, for a given observation yij on

a specific profile, it is paired with the corresponding observation on the previous profile. Then,

we compute the Pearson’s correlation coefficient for P to be r = 0.799, which indicates a quite

strong positive correlation between yij and yi−1,j . The 95% confidence interval of the correlation

coefficient computed by a bootstrap re-sampling approach with the bootstrap sample size of 10,000

is [0.790, 0.808], which is completely above 0. Thus, it seems that between-profile data correlation

is quite significant in this VDP data.
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Figure 7: VDP data with 24 profiles of density readings at different vertical depths of particle

boards (left panel), and density readings of the 24 profiles at the vertical depths of 0.1, 0.3 and 0.5

inches (right panel).

From the left panel of Figure 7, it seems that the profile at the bottom is quite different from
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the other profiles, and the remaining profiles are quite similar. The profile at the bottom turns out

to be the 6th profile in the VDP data. So, the last 12 profiles in the data are used as an IC dataset

for IC model estimation and design of the related control charts, and the first 12 profiles are used

for testing. Then, model (2) is estimated from the IC data, in which m = 12 and ni = 314 for all i.

As suggested in the previous section, we choose p = 20. Then, the estimated mean profile function

ĝ(x) is shown in Figure 8 by the thin solid curve, along with the 95% pointwise confidence intervals

for g(x) that are shown by the shaded region around ĝ(x). The estimates of σ2
ξ , σ

2
η and σ2

ε are

computed by (6) to be 1.681, 1.772, and 0.548, respectively. Next, we use a bootstrap procedure

with the bootstrap sample size of B = 100, in which the bootstrap samples are generated in the way

as described in the paragraph immediately below the expression (9). Then, 100 bootstrap estimates

of σ2
η can be obtained from the 100 bootstrap samples. The 95% bootstrap confidence interval for

σ2
η is [1.574,2.010], which is completely above 0. So, we can conclude that σ2

η is significantly larger

than 0, or there is a significant between-profile data correlation. This result is consistent with the

test for the Pearson’s correlation coefficient discussed in the previous paragraph. The control limits

of the charts TM, LM, LGM and NM are computed by the bootstrap procedure with the bootstrap

sample size of B = 100 as well. They turn out to be 13.498, 21.991, 14.485 and 16.348, respectively.

Then, the four control charts are used to monitor the first 12 profiles in the VDP data that are

shown in Figure 8 by the gray curves. Both the TM and NM methods detect the 6th profile (bold

solid curve in the plot) as an outlier, and the LM and LGM methods detect both the 6th profile

and the 10th profile (bold dashed curve in the plot) as outliers. In this example, the results from

the TM and NM methods are the same, while both methods LM and LGM detect an extra outlier.

Because the methods LM and LGM assume that the population mean profile function is linear,

which is obviously invalid in this example, we believe that the results from TM and NM are more

reliable.
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Figure 8: The first 12 profiles in the VDP data. The 6th and 10th profiles are shown by the bold

solid and bold dashed curves, respectively. The estimate ĝ(x) is shown by the thin solid curve, and

the 95% pointwise confidence intervals for g(x) are shown by the shaded region around ĝ(x).

5 Concluding Remarks

Profile monitoring has many important applications. In practice, observed profile data often have

between-profile and within-profile data correlation. In the SPC literature, however, we could not

find any existing univariate nonparametric profile monitoring methods that can accommodate the

between-profile data correlation, although there are some existing nonparametric methods that

can accommodate within-profile data correlation. In the previous sections, we have described our

proposed new method for Phase I profile monitoring, which can accommodate both between-profile

and within-profile data correlation. Our new method is based on the nonparametric mixed-effects

modeling approach that is discussed in Section 2.1, in which between-profile data correlation is

described by a random-effect term that depends on the design points of a profile. Numerical

examples in Sections 3 and 4 show that the proposed method performs well in different cases

considered. As discussed in Section 2, the random-effects model (2) is kept simple, and there
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are many possible generalizations to describe more complicated within-profile and between-profile

data correlation. Also, the current paper focuses on Phase I monitoring of univariate profile data.

It might be possible for this method to be generalized for Phase II monitoring of univariate or

multivariate profiles when both between-profile and within-profile data correlation is present. The

current method depends on the parameter p in Model (2). Although an empirical guideline is

provided in Section 3.1 (cf., Figure 1) about its selection, a theoretical study about its dependence

on the curvature of the random-effects process γ(x) in Model (1) might be helpful. These issues

will be addressed in our future research.
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