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Abstract

Image registration is used in many fields for mapping one
image to another. In magnetic resonance imaging (MRI) ap-
plications, one of the main uses is for correction of motion-
induced artifacts so that subsequent image analysis would
be more reliable. This paper gives an introduction to some
image registration problems in MRI and functional MRI ap-
plications, describes certain commonly used image regis-
tration procedures, and discusses their major features. Two
potential research topics for improving current image reg-
istration procedures are also discussed.

1. Introduction

Image registration aims to geometrically match up im-
ages or image volumes for structure localization and differ-
ence detection. It has been widely used in medical diagnos-
tics, treatment planning and evaluation, disease and inter-
vention monitoring, image-guided surgery and therapy, and
so forth. A common application of this technique is to inte-
grate useful information from different sources (e.g., CT,
PET, SPECT, X-ray, ultrasound, and magnetic resonance
images [1],[2]), or to register images obtained at differ-
ent times [3]. In this paper, we introduce some commonly
used image registration procedures and their applicationsin
magnetic resonance imaging (MRI).

In MRI applications, one major purpose of image reg-
istration is to study image variations, ranging from inter-
subject anatomical comparisons of brain images [4],[5],
intra-subject monitoring of pathological development [6],
to matching an observed image with a reference tem-
plate [4],[5]. In cases of intra-subject or temporal varia-
tion registration, observed images could be a time series

acquired in a short period of time at one occasion, or a
time series acquired at several occasions. In the first case,
differences between the reference and consecutive images
are mostly object-related, since noise patterns and other
environment-related artifacts would be similar. However,
this may not be true in the second case. For instance, noise
patterns at different occasions could be different due to dif-
ferent acquisition settings. Such noise pattern variations
have not been well-addressed in image registration applica-
tions. Thus, image registration methods could be fortified if
such issues are handled properly.

In Section 2, a brief introduction about MRI, functional
MRI (fMRI), and aquisition artifacts is given. An overview
of some commonly used registration methods is presented
in Section 3. Section 4 discusses two potential research top-
ics for improving current image registration procedures

2. MRI, fMRI, and Aquisition Artifacts

MRI is a technique used mainly for assessing patholog-
ical or other physiological conditions in living tissues, by
visualizing the inside of living organisms [7]. In simple
terms, its methodological basis lies in: (i) different tissues
have different compositions and physical properties, such
as water molecule densities, from which the tissue type at a
given position can be determined, and (ii) these differences,
in water molecule density say, can be depicted as various
image contrasts using the MRI technique.

When a part (e.g., head) of a body is placed in a uni-
form magnetic field of a given direction, say, thez direction,
the hydrogen nuclei of water in that part would align them-
selves in parallel or anti-parallel with the field, creatinga net
magnetization, and rotate with the Larmor frequency of an-
gular velocityw0. The basis of MRI lies in manipulating the
local magnetic field such that the local resonant frequency



would differ at different locations, which is achieved by ap-
plying additional, small, linear magnetic field gradients.In
a MR scanner system, three orthogonally positioned gra-
dient coils would produce such magnetic fields that vary
linearly along their respective axes (e.g.,x, y, andz axes),
and these small fields are added to the main magnetic field.
Turning on the coils in any particular combination would
produce a field gradient along any desired direction. After
applying radiofrequency (RF) pulses transmitted by a sepa-
rate RF coil, emitted radiation is absorbed by nuclei. Conse-
quently, the net magnetization is tipped away from the main
z axis; the nuclei continue their rotation, and as the excited
nuclei relax back to the initial lower-energy alignment along
the main field, RF signals are re-emitted and received by a
RF receiver coil. Along thez direction, suppose a particu-
lar perpendicular slice of the body part atz = z0 is to be
imaged. Then, a RF pulse with frequency corresponding
to that slice position would excite the nuclei in that plane.
Considering only the proton density and spin relaxation, the
received signal can be expressed by

Sz0
(kx, ky) =

∫ ∫

Ωz0

m(x, y, z0) exp[i2π(kxx+kyy)]dxdy,

(1)
whereΩz0

denotes the 2-dimensional (2-D) region of the
slice, m(x, y, z0) is the density of hydrogen protons at
(x, y), and kx and ky are the frequency change rates
along thex andy directions of the local magnetic fields.
Note that some constant multipliers have been ignored on
the right-hand-side of (1) for simplicity. It can be seen
thatSz0

(kx, ky) is a Fourier transformation ofm(x, y, z0).
Therefore, if we have signalsSz0

(kx, ky) in frequency do-
main, for allkx, ky = 1, 2, . . . , n, thenm(x, y, z0) can be
determined in spatial domain atn×n regularly spaced pix-
els by the discrete inverse Fourier transformation (see [8],
Chapter 7), as demonstrated in Figure 1.

(a) (b)

Figure 1. (a) Signals in frequency domain.
(b) Corresponding image obtained by the dis-
crete inverse Fourier transformation of (a).

fMRI is a technique for measuring the hemodynamic
response related to neural activity in the brain or spinal
cord of humans or other animals. When neurons are ac-
tivated, blood supply to active regions would increase and

the supply of oxygenated hemoglobin to the regions would
be greater than the local oxygen consumption, which would
lead to local signal increases in active regions. By acquiring
a time series of brain images during some activation tasks,
such regional signal changes in the time series can be cor-
related with the activation tasks and the brain’s functional
structure can hence be studied [9],[10].

Equation (1) is only a theoretical model for describing
MRI image acquisition. In practice, there will be many dif-
ferent artifacts in the received signal due to various reasons,
including hardware imperfections, signal dropouts caused
by field inhomogeneity and susceptibility effects, move-
ment of the imaged object, and so forth. Some of these
artifacts are shown in Figure 2. In fMRI, brain activation
accounts for an additional source of intensity changes, apart
from pointwise noise and other artifacts. These activation-
related changes can be obscured by artifacts, and vice versa.
It is reported that motion-related intensity shifts of one-
tenth of a voxel can amount to a 2% signal change, which is
above the level of detected activation-related signal changes
by most clinical magnetic resonance (MR) systems [11].
Therefore, if artifacts are not treated properly, then fMRI
analysis could be misleading. On the other hand, activation-
related intensity changes can bias detection of artifacts,
yielding erroneous correction of such artifacts [12]. These
issues pose a challenge on MRI image registration.
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Figure 2. (a)-(d): Relatively clean images. (e)-
(h): Their contaminated versions.

3. Image Registration

Assume thatR(x, y) andM(x, y) are a reference image
and an image to register with, respectively. Then, the major
goal of image registration is to find a geometrical transfor-
mationT such thatM(T (x, y)) is as close toR(x, y) as
possible. Mathematically, the image registration problem
can be formulated as the following maximization problem:

Topt = arg max
T∈ΩT

S(R, M(T )), (2)



whereTopt denotes the optimal transformation,S is a se-
lected similarity metric, andΩT is the space of all possible
transformations. In (2), if a dissimilarity metric is used,then
“max” should be replaced by “min”.

In MR applications, a conventional registration process
consists of some of the following five steps: 1) image pre-
processing, 2) feature selection, 3) transformation specifica-
tion, 4) selection of a similarity or dissimilarity metric,and
5) optimization. As mentioned earlier, observed MR im-
ages often contain various artifacts. Image pre-processing
is mainly for deleting the artifacts so that image registration
would be more reliable. See [8] for a detailed introduction
about image pre-processing techniques.

One way to solve the maximization problem (2) is thatN

corresponding points are first selected in the two images and
then an optimal transformation is searched to best match
the two point sets in the two images. More specifically,
let (xi, yi), i = 1, 2, . . . , N and (Xi, Yi), i = 1, 2, . . . , N

be two point sets inR(x, y) and M(x, y), respectively.
Then, the task of mappingM to R becomes the problem
of finding a transformationT (x, y) such thatT (xi, yi) are
close to(Xi, Yi). This transformationT can be regarded
as a coordinate transformation, which transforms the coor-
dinates of theN points in the imageR to the coordinates
of the correspondingN points in the imageM . Thus, it is
often referred to as a coordinate transformation in the lit-
erature [13]. If it is required thatT (xi, yi) = (Xi, Yi), for
i = 1, 2, . . . , N , thenT is also called an interpolation trans-
formation [14].

Feature selection is mainly for thedirect matching algo-
rithms mentioned above. It entails extracting characteristics
to establish correspondence between two images to register.
Landmarks or control points, which are often the preferred
features, can be selected manually, or automatically by a
computer [15]. Lines or curves are often detected through
gradient-based methods. Regions, centroids or templates
are usually determined by ways of thresholding and seg-
mentation [16].

In certain applications, feature selection can be a very
complicated and challenging process. In such cases, rather
than selecting features to match, we can search a trans-
formation such thatR and M match each other the best
in terms of a similarity metric defined by image intensi-
ties. This type ofindirect registration procedures requires
no prior knowledge of correspondence between two sets of
selected features. Because of this flexibility, they have be-
come popular within MR applications. However, computa-
tion involved in such intensity-based procedures would be
relatively complex, compared to the feature-based matching
procedures.

Transformations can be divided into parametric or non-
parametric ones. In the context of motion detection in MR,
they often operate with three different motion types: rigid-

body, non-rigid body and affine models [17]. Rigid-body
transformations assume a global motion in which distance
between any two points on an object is unchanged during
motion. This model deals with translation and rotation only,
and hence has 3 parameters or degrees of freedom (2 for
translations and 1 for in-plane rotation) in 2D, and 6 param-
eters in 3D (3 for translations and 3 for rotations). Non-rigid
models are similarly defined, but on a local basis, see e.g.,
[17]. Affine transformations are sometimes considered as
extended rigid-body transformations, but are more versatile
in accounting for a larger extent of global deformation, by
incorporating scaling and shearing in addition to translation
and rotation, and by preserving line parallelism. A typi-
cal affine transformation has 12 degrees of freedom in 3D
cases [4].

Parametric transformations, such as the rigid-body and
affine motion models, generally include global motion as-
sumptions. The widely used linear transformation in 2D is:

{

X = α(x cos ∆φ + y sin ∆φ) + ∆x

Y = α(−x sin ∆φ + y cos∆φ) + ∆y
(3)

where (∆x, ∆y, ∆φ) are three motion parameters andα

is a parameter accounting for any scaling. Model (3) can
be easily extended to 3D cases, and in the case ofα =
1, it describes rigid-body motions. Such assumptions of
global translation and rotation have been applied in both
the feature-based direct matching algorithms, such as in the
Principal Axes approach[18], and the intensity-based reg-
istration methods. Model (3) has been commonly used in
applications [19]. A reason for this lies in the ease of im-
plementation and computation. Another advantage of this
transformation is its feature preservation property (e.g., a
line maps to a line), and hence it does not introduce addi-
tional distortions to the related images. On the other hand,
global motion assumptions are sometimes too restrictive to
describe real complex deformations well, although it has
been shown in the literature that model (3) can work well in
many applications.

Non-parametric transformations do not assume specific
parametric forms. Therefore, they are more flexible than
their parametric counterparts. They are mainly used in gen-
eral registration applications for directly matching known
corresponding features. Instead of imposing and apply-
ing a pre-specified parametric transformation onto data, a
non-parametric transformation is adaptive to data. To this
end, both interpolation and approximation methods have
been proposed for MR registration. Numerous interpola-
tion techniques exist in the general field of image registra-
tion, spanning from thin-plate splines to multiquadric meth-
ods [20]. In the MR literature, spline-based procedures
have been proposed for accommodating physical object
deformation[4],[13]. Approximation methods are widely
used for handling non-rigid motions. Many general regis-



tration techniques based on approximation have been ap-
plied to MR, including approaches such as the piecewise
linear or cubic approximations [21], [15], weighted mean
or weighted linear methods [21], and so forth. Instead of
fitting a model globally using all data points, approxima-
tion methods are often performed over sub-regions defined
by the data points. Compared to some interpolation-based
procedures, they are usually easier to implement and more
robust to noise and outliers. A drawback is that good accu-
racy is only obtained within the span of sub-regions.

No matter the choice of a registration method, its imple-
mentation is almost always closely linked to optimizing cer-
tain similarity (or, dissimilarity) measure for best matchbe-
tween two images. Finding a most suitable similarity mea-
sure has been and still is the subject of much research[22].
Numerous similarity metrics have been suggested in MR
registration. Some commonly used ones can be categorized
broadly into 3 groups, briefly discussed below.

The first group of similarity metrics requires that
the reference imageR(x, y) and the transformed image
M(T (x, y)), obtained by transforming imageM(x, y) us-
ing a proper transformationT , are as close to (or, correlated
with) each other as possible. Among such metrics, the fol-
lowing least-squares metric is the classical and most widely
employed one:

min
T∈ST

N
∑

i=1

[R(xi, yi) − M(T (xi, yi))]
2
, (4)

where{(xi, yi), i = 1, 2, . . . , N} are N points in R se-
lected for matching the two images. This metric is imple-
mented in many of the standard software packages used in
MR today, such as packages AIR and SPM. Another metric
is defined by the sample standard deviation of the ratios

r(xi, yi) =
M(T (xi, yi))

R(xi, yi)
, for i = 1, 2, . . . , N.

By this metric, a good transformationT should make this
sample standard deviation small, or minimize the variability
of the ratios defined above. More recent implementations
also include a group of measures based on statistical corre-
lations betweenR(x, y) andM(T (x, y)). A good transfor-
mationT should make such correlations large.

The second group of similarity metrics are entropy-
based. For a random variableξ with a discrete distribution
{pj, j = 1, 2, . . . , k}, the entropy of this distribution, de-
fined byH(ξ) = −

∑k

j=1
pj log pj , provides a measure of

uncertainty aboutξ. So, intuitively, ifT is a good transfor-
mation, then association betweenR(x, y) andM(T (x, y))
should be strong; consequently,

H(R) + H(M(T )) − H(R, M(T ))

should be large, whereH(R, M(T )) denotes the entropy
of the joint intensity distribution of(R, M(T )), because it

can be checked thatH(R) + H(M(T )) is the entropy of
the joint intensity distribution of(R, M(T )) whenR and
M(T ) are assumed independent. In the literature, there
are a number of different entropy-based similarity metrics.
One such metric isH(R − M(T )), which is the entropy
of R − M(T ). A good transformationT should make
H(R − M(T )) small. See [1] and [23] for more related
discussions.

The above two groups of similarity metrics are all quite
sensitive to noise and other artifacts. This would influence
the performance of registration and would even lead to mis-
registration in some cases. To overcome such limitations,
various robust metrics have been proposed in the literature.
A general robust measure can be described by

N
∑

i=1

ρ [R(xi, yi), M(T (xi, yi))] ,

whereρ is a loss function. In the literature, there are many
robustρ functions proposed. One seen in the registration
literature is the Geman-McClureρ, defined by

ρ(x, y) =
(x − y)2

c2 + (x − y)2

where the scale parameter c controls its ability to diminish
the possible effect of outliers. This function is commonly
used in MR applications, since it has certain robustness to
outliers, is relatively simple to compute and implement, and
is found to be more efficient than some other robust met-
rics [2], [24]. Another popular robust metric is defined by
(4) after replacing the summation by “median”, and the cor-
responding registration procedure is often referred to as the
least median squares procedure [2], [25].

Robust metrics are useful in applications when outliers
are a real issue. In fMRI applications, temporal image in-
tensity variations due to measured brain activity can be gen-
erally considered as “outliers”; thus, robust metrics are par-
ticularly important in such applications.

4. Discussions

We have discussed some commonly used image regis-
tration methods in MR applications. When matching fea-
tures are selected beforehand, existing methods either take
a parametric approach by specifying a parametric form for
the matching transformation, or search for a transformation
by interpolation or approximation without specifying any
parametric form. When matching features are not avail-
able, most existing methods take the parametric approach
using all available image intensities, although some meth-
ods specify the transformation more flexibly based on cer-
tain physical models[29]. In some applications, it might



be challenging to specify matching features, and paramet-
ric transformations may not describe differences among im-
ages well. In such cases, it would be good if we can propose
some nonparametric registration methods, without specify-
ing any parametric form on the transformation and without
selecting matching features beforehand.

As discussed in Section 3, existing registration methods
often pre-process images to minimize the effect of noise
and other artifacts before matching images. In the literature,
several image restoration procedures can be found for pre-
processing purposes [26],[27]. See [28] for an overview.
It should be noted that artifacts handled by these pre-
processing procedures are usually within a same observed
image, while artifacts and variations handled by most exist-
ing registration methods are between two or more images
to register. Quite often, when noise and other artifacts are
removed by a pre-processing procedure, some true image
structures (e.g., small edges, roofs/valleys) would also be
altered to a certain degree, making the subsequent image
matching less efficient. Therefore, it might be interesting
to combine image pre-processing and image matching in
a single procedure, or to suggest some image registration
methods which can accommodate artifacts within individ-
ual images.
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