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ABSTRACT

Regression analysis when the underlying regression function has jumps is a research

problem with many applications. In practice, jumps often represent structure changes of a

related process. Hence, it is important to detect them accurately from observed noisy data.

In the literature, there are some jump detectors proposed, most of which are based on local

constant or local linear kernel smoothing. For a given application, which method is more

appropriate to use? Will local quadratic or local higher-order polynomial kernel smoothing

provide a better jump detector in certain cases? All these practical questions have not been

well addressed yet. To answer these questions, in this paper, we study both theoretical and

numerical properties of jump detectors based on various local polynomial kernel smooth-

ing, and provide certain guidelines on their practical use.Besides a simulation study, two

real data examples are presented for demonstrating cases when two specific jump detectors

are more appropriate to use, compared to other methods.
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1 INTRODUCTION

Regression analysis provides a major statistical tool for building a functional relationship

between response variables and explanatory variables. In certain applications, such a func-

tional relationship has jumps at some unknown positions, representing structural changes

of a related process. For instance, stock indices would haveabrupt changes after certain

unexpected events of great social or economic impact. It hasbeen demonstrated that sea-

level pressures observed by a Bombay weather station in India have a jump around the

year 1960 (Qiu and Yandell 1998). In these examples, jumps are an important part of the

underlying regression function; accurate detection of them is important for understanding

the structural changes of the process and for estimating theregression function properly.

This paper focuses on jump detection in regression curves.

In the literature, a number of jump detectors have been proposed. Many of them are

based on local constant kernel smoothing (e.g., Qiu 1991, Qiu et al. 1991, Müller 1992, Wu

and Chu 1993, Qiu 1994, Gijbelset al. 1999, Qiu 1999), or local linear kernel smoothing

(e.g., Loader 1996, Qiu and Yandell 1998, Grégoire and Hamrouni 2002). A recent jump

detector by Joo and Qiu (2009) is based on local quadratic kernel smoothing. Other jump

detectors include the partial smoothing spline method by Shiau (1987), the method based

on comparison of three local linear estimators by Hall and Titterington (1992), the semi-

parametric method by Eubank and Speckman (1994), the wavelet transformation method

by Wang (1995), the robust jump detector by Müller (2002), the method for handling time

series data by Wu and Zhao (2007), among others. Jump-preserving curve estimation based

on local linear kernel smoothing is discussed by Qiu (2003),Gijbelset al. (2007), and the

references cited therein. See Chapter 3 of Qiu (2005) for a detailed introduction about jump

detection and jump-preserving curve estimation.

For a real application, should we use a jump detector based onlocal constant kernel

smoothing, or a method based on local linear kernel smoothing? Would local quadratic or

local higher-order polynomial kernel smoothing provide a better jump detector in certain

cases? These practical questions have not been well addressed in the literature. In this pa-

per, we study jump detection based on local polynomial kernel smoothing systematically.

By investigating both theoretical properties and numerical performance of such edge de-

tectors, certain practical guidelines are provided about their use. Basically, we conclude

that (i) it depends on the curvature of the true regression curve to choose local constant,

local linear, or local quadratic kernel smoothing for jump detection, (ii) lower order local

polynomial kernel smoothing should be used when the curvature is smaller, and (iii) local
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polynomial kernel smoothing of order 3 or higher would hardly provide good results in

most cases.

The rest part of the paper is organized as follows. In next section, jump detection based

on general local polynomial kernel smoothing is described in detail. Theoretical properties

of the corresponding jump detectors are discussed in Section 3. Selection of procedure

parameters is discussed in Section 4. A simulation study is presented in Section 5, where

we compare various jump detectors in many different cases. Two real data examples are

presented in Section 6. Some concluding remarks are given inSection 7. Proofs of several

theorems are provided in the Appendix.

2 Jump Detection by Local Polynomial Kernel
Smoothing

LetD = {(Xi ,Yi), i = 1,2, · · · ,n} ben observations from the following regression model:

Yi | Xi = f (Xi)+ σ(Xi) εi , i = 1,2, · · · ,n, (2.1)

wheref is the unknown regression function,σ(Xi) is the standard deviation of the response

variableY atXi, {εi} are independent and identically distributed random errorswith E(εi)=

0 andVar(εi) = 1, {Xi} are[0,1]-valued design points, and{Xi} and{εi} are independent

of each other. The regression functionf is assumed to be

f (x) = g(x)+
J

∑
j=1

d j I(x > sj ), x∈ [0,1], (2.2)

whereg is a continuous function in the design interval[0,1], I(u) is an indicator function

taking the value of 1 whenu =“true” and 0 otherwise,J denotes the number of jumps inf ,

{sj , j = 1,2, · · · ,J} are jump locations, and{d j , j = 1,2, · · · ,J} are the corresponding jump

magnitudes. In model (2.1) and (2.2),σ, g, J, {sj , j = 1,2, · · · ,J} and{d j , j = 1,2, · · · ,J}

are all assumed unknown.

To detect a jump at a given pointx, we consider two one-sided neighborhoods(x,x+hn]

and[x−hn,x) with bandwidthhn. Then, we construct estimators of the right and left limits

of f atx (denoted asf+(x) and f−(x)) by the following local polynomial kernel smoothing

in (x,x+hn] and[x−hn,x), respectively:

min
β0,β1,··· ,βp

n

∑
i=1

[
Yi −

p

∑
j=0

β j(Xi −x) j

]2

Kl

(
Xi −x

hn

)
, l = 1,2, (2.3)
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wherep is the order of the local polynomial,β js are coefficients, andK1 andK2 are two

density kernel functions with supports(0,1] and[−1,0), respectively. The solutions toβ0

of the minimization problem (2.3) whenl = 1,2 are denoted aŝf +
p,hn

(x) and f̂−p,hn
(x). They

are the localp-th-order polynomial kernel estimators off+(x) and f−(x).

By some routine algebraic manipulations,f̂ +
p,hn

(x) and f̂−p,hn
(x) have the following ex-

pressions:

f̂ +
p,hn

(x) =
n

∑
i=1

∑p
j=0(w

(1)
j , hn

)∗(Xi −x) j

|W(1)|
YiK1

(
Xi −x

hn

)
,

f̂−p,hn
(x) =

n

∑
i=1

∑p
j=0(w

(2)
j , hn

)∗(Xi −x) j

|W(2)|
YiK2

(
Xi −x

hn

)
, (2.4)

where

W(l) =





w(l)
0, hn

w(l)
1, hn

· · · w(l)
p, hn

w(l)
1, hn

w(l)
2, hn

· · · w(l)
p+1, hn

...
...

. . .
...

w(l)
p, hn

w(l)
p+1, hn

· · · w(l)
2p, hn




,

(
w(l)

j , hn

)∗
= (−1)( j+1)

∣∣∣∣∣∣∣∣∣∣∣∣

w(l)
1, hn

· · · w(l)
j , hn

w(l)
j+2, hn

· · · w(l)
p+1, hn

w(l)
2, hn

· · · w(l)
j+1, hn

w(l)
j+3, hn

· · · w(l)
p+2, hn

...
. . .

...
...

. . .
...

w(l)
p, hn

· · · w(l)
j+p−1, hn

w(l)
j+p+1, hn

· · · w(l)
2p, hn

∣∣∣∣∣∣∣∣∣∣∣∣

,

for l = 1,2, j = 0,1, · · · , p, and

w(l)
j , hn

=
n

∑
i=0

(Xi −x) jKl

(
Xi −x

hn

)
, for j = 0,1,2, . . . ,2p, l = 1,2.

A natural jump detection criterion is then defined by

Mp(x) = f̂ +
p,hn

(x)− f̂−p,hn
(x). (2.5)

If x is a jump point, then|Mp(x)| would be relatively large. Otherwise, it would be rel-

atively small. Whenp = 0, M0(x) (or, similar quantities) is the jump detection criterion

discussed in references, such as Qiuet al. (1991), Müller (1992), Wu and Chu (1993),

Qiu (1994), and Gijbelset al. (1999), which detect jumps based on local constant kernel
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smoothing. Whenp = 1, M1(x) (or, similar quantities) is the jump detection criterion dis-

cussed by several authors, including Loader (1996), Qiu andYandell (1998), and Grégoire

and Hamrouni (2002), who suggest detecting jumps based on local linear kernel smooth-

ing. Because|Mp(x)| is based on one-sided localp-th-order polynomial kernel smoothing,

k-th-order trend inf , for k = 1,2, . . . , p, would have little effect on|Mp(x)|. For instance,

when f is continuous atx with a large slope,|M1(x)| would still be small, which is one

major advantage of jump detection based on local linear kernel smoothing, compared to

jump detection based on local constant kernel smoothing (cf., Qiu 1999). Similarly, jump

detection based on|M2(x)| might be more appropriate whenf has large curvature at cer-

tain places. In the next two sections, we will investigate both theoretically and numerically

whether jump detection based on|Mp(x)| would always be improved whenp increases.

When the number of jumpsJ is known, jump positions can be estimated as follows. Let

s∗j be the maximizer of|Mp(x)| over the rangex∈ [hn,1−hn]\(
S j−1

r=1[s
∗
r −hn,s∗r +hn]), for

j = 1,2, . . . ,J. The order statistics of{s∗j , j = 1,2, · · · ,J} are denoted ass∗(1) < s∗(2) < · · · <

s∗(J). Then, estimators of the jump positions and jump magnitudescan be defined by

ŝj = s∗( j), d̂ j = Mp(s
∗
( j)), for j = 1,2, · · · ,J.

When the number of jumpsJ is unknown, jump detection becomes much more chal-

lenging. In such cases, some existing methods (e.g., Qiu 1994) use the strategy that only

those design points whose signal-to-noise ratio values areabove a thresholdCn are flagged

as jump points. Based on the fact thatMp(x) is a linear combination of independent obser-

vations and on Theorem 1 in Section 3, we know thatMp(x) has the following asymptotic

distribution

N

(
f+(x)− f−(x) ,

2σ2∑2p
j=0K j ,2K̃∗

j ,1

nhn|K |2

)
,

whereK j ,2, K̃∗
j ,1, and|K | are constants depending on the kernel functionK. Then, it is

natural to chooseCn such thatP(|Mp(x)| ≥Cn) ≤ αn, which results in

Cn = Zαn/2

√
2σ̂2 ∑2p

j=0K j ,2K̃∗
j ,1

nhn|K |2
, (2.6)

whereαn is a significance level and̂σ2 is a consistent estimator ofσ2. By usingCn in (2.6),

x would be detected as a jump point if|Mp(x)| ≥Cn, or equivalently,

|Mp(x)|/σ̂ > Zαn/2

√

2
∑2p

j=0K j ,2K̃∗
j ,1

nhn|K |2
,
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where|Mp(x)|/σ̂ can be regarded as an estimated signal-to-noise ratio atx. If x is a true

jump point with jump magnitudedx, then the probability that it is detected as a jump point

is asymptotically

P





∣∣∣∣∣∣

√
2σ2 ∑2p

j=0K j ,2K̃∗
j ,1

nhn|K |2
Z+dx

∣∣∣∣∣∣
> Cn



 ,

whereZ denotes a random variable with a standard normal distribution. Note that, in the

above expression, both
√

(2σ2 ∑2p
j=0K j ,2K̃∗

j ,1)/(nhn|K |2) andCn would converge to 0 when

n increases, under some regularity conditions given in Section 3. So,x would be detected

with probability 1.

When the number of jumpsJ is unknown, in finite sample cases, certain false jump

points would be detected around true jump points if a threshold value, such asCn in (2.6),

is used in jump detection. To delete those false jump points,Qiu (1994) proposed a modi-

fication procedure, briefly described below. Let{x∗i , i = 1,2, . . . ,m} be the set of detected

jump points satisfying

|Mp(x
∗
i )| ≥Cn, for i = 1,2, . . . ,m.

If there arer1 < r2 such that the distance between any two consecutive points in{x∗r1
,x∗r1+1,

. . . ,x∗r2
} is smaller than or equal tohn, x∗r1

−x∗r1−1 > hn, andx∗r2+1−x∗r2
> hn, then we say

that{x∗r1
,x∗r1+1, . . . ,x

∗
r2
} forms a tie in{x∗i , i = 1,2, . . . ,m} and the entire tie set is replaced

by its central point(x∗r1
+x∗r2

)/2 for estimating the jump positions. After this modification,

the detected jump points and the corresponding jump magnitudes are denoted as

ŝj , andd̂ j = Mp(ŝj), for j = 1,2, . . . , Ĵ. (2.7)

3 Statistical Properties of Jump Detection byMp(x)

This section discusses certain properties of the jump detection criterionMp(x) and its de-

tected jumps (cf., expressions (2.5) and (2.7)). Theorem 1 below shows thatMp(x) would

not be affected by the firstp derivatives of the true regression functionf .

Theorem 1. In regression model (2.1), assume that f has right and left(p+ 1)-st-

order derivatives at the jump points{sj}, and that f is(p+ 1)-st-order differentiable at

any other points in[0,1]. The bandwidth hn satisfies the conditions that hn = o(1) and

1/(nhn) = o(1). The two one-sided kernel functions satisfy the condition that K1(x) =
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K2(−x), for x ∈ (0,1], and they are both Lipschitz-1 continuous in their supports. Let

Kt1,t2 =
R 1

0 ut1Kt2
1 (u)du, for t1, t2 = 0,1, . . . , and

K =





K0,1 K1,1 · · · Kp,1

K1,1 K2,1 · · · Kp+1,1
...

...
. . .

...

Kp,1 Kp+1,1 · · · K2p,1




.

Then, if x is a true jump point, we have

E(Mp(x))

= ( f+(x)− f−(x)) +
(

f (p+1)
+ (x)− f (p+1)

− (x)
) ∑p

j=0K∗
j ,1Kp+ j+1,1

(p+1)!|K |
hp+1

n + o(hp+1
n ),

and

Var(Mp(x)) =
2σ2(x)∑2p

j=0K j ,2K̃∗
j ,1

nhn|K |2
+o

(
1

nhn

)
,

where

K∗
j , 1 = (−1)( j+1)

∣∣∣∣∣∣∣∣∣∣∣∣

K1, 1 . . . K j , 1 K j+2, 1 . . . Kp+1, 1

K2, 1 . . . K j+1, 1 K j+3, 1 . . . Kp+2, 1
...

. . .
...

...
. . .

...

Kp, 1
. . . K j+p−1, 1 K j+p+1, 1 . . . K2p, 1

∣∣∣∣∣∣∣∣∣∣∣∣

, for j = 0,1, . . . , p,

and

K̃∗
j ,1 = ∑

j1+ j2= j
j1, j2=0,1,2,···,p

K∗
j1,1K∗

j2,1.

Corollary 3.1. Under the assumptions of Theorem 1, ifx∈ (0,1) is a continuity point of

f , then

(i) E(Mp(x)) = O(hp+1
n ), and Var(Mp(x)) =

2σ2(x)∑2p
j=0 K j ,2K̃∗

j ,1

nhn|K |2
+o
(

1
nhn

)
;

(ii) when hn ∼ n−
1

2p+3 , the mean squared error (MSE) ofMp(x) converges to 0 with the

optimal rateO(n−
2p+2
2p+3 ).
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From result (i) of Corollary 3.1, it seems that it is better touse higher-order local poly-

nomial smoothing in jump detection, because E(Mp(x)) is much smaller whenp is larger.

However, this is a large-sample result and it is based on the assumption that a same band-

width is used inMp(x) when p varies. Under this assumption, when the sample size is

finite, Var(Mp(x)) can actually change a lot. For instance, whenK1 is chosen to be the

Epanechnikov kernel functionK1(x) = 1.5(1− x2), for x ∈ (0,1], and whenp = 0,1,2,3,

we have

Var(M0(x)) =
2.40σ2(x)

nhn
+o

(
1

nhn

)
, Var(M1(x)) =

4.49σ2(x)
nhn

+o

(
1

nhn

)
,

Var(M2(x)) =
8.89σ2(x)

nhn
+o

(
1

nhn

)
, Var(M3(x)) =

22.86σ2(x)
nhn

+o

(
1

nhn

)
.

Thus, in practice, we still need to choosep carefully for different data sets. To this end,

some practical guidelines will be provided in the next section, based on a large simulation

study.

The next two theorems establish strong consistency off̂ +
p, hn

(x), f̂−p, hn
(x), and the de-

tected jumps (cf., expressions (2.4) and (2.7)). First, we state some assumptions.

Assumption A: Letν be a positive number and{βn}
∞
n=1 be a series of positive numbers

such that1/βn = o(1).

Assumption B: The bandwidth hn is chosen such that hn = o(1), and1/(nhn) = o(1).

Assumption C: ν, βn, and hn satisfy the conditions thatn
2ν

nβnhn
= O(1), and nν−1/2

h2
nβn logn

=

o(1).

Assumption D: The design points{xi, i = 1,2, . . . ,n} satisfy the condition thatmax1≤i≤n+1 |xi−

xi−1| = O(1/n) , where x0 = 0 and xn+1 = 1.

Assumption E: For 1≤ i ≤ n, E(σ2(Xi)ε2
i ) < M, where M is a positive number.

Assumption F:
Zαn/2

(nhn)1/2 = o(1) and h
1/2
n βn log(n)

Zαn/2nν−1/2 = o(1).

Theorem 2. Under Assumptions A – E, if f is(p+ 1)-th-order differentiable in[0,1]

and the other conditions in Theorem 1 hold, then

nν

βn log(n)
sup

x∈[hn/2,1]

∣∣∣ f̂ +
p, hn

(x)− f (x)
∣∣∣= o(1) a.s., (3.1)

nν

βn log(n)
sup

x∈[0,1−hn/2]

∣∣∣ f̂−p, hn
(x)− f (x)

∣∣∣= o(1) a.s.. (3.2)
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Theorem 3. Under Assumptions A – F and all conditions in Theorem 1, we have

lim
n→∞

Ĵ = J a.s., (3.3)

lim
n→∞

ŝj = sj a.s., for j = 1,2, . . . ,J , (3.4)

lim
n→∞

Mp(ŝj ) = d j a.s., for j = 1,2, · · · ,J . (3.5)

4 Bandwidth Selection

In the jump detection procedure (2.3)–(2.7), there are two parametershn andαn to choose.

In this section, we propose a bootstrap procedure for that purpose. For a given observed

datasetD = {(x1,Y1),(x2,Y2), . . . ,(xn,Yn)} and given parametershn andαn in (2.3)–(2.7),

assume that the estimated jumps areŜ= {ŝj , j = 1,2, . . . , Ĵ} and the estimated jump magni-

tudes are{d̂ j , j = 1,2, . . . , Ĵ}. The Hausdorff distance betweenŜand the set of true jumps

S is

dH(S, Ŝ;hn,αn) = max

{
sup
s1∈S

inf
s2∈Ŝ

|s1−s2|, sup
s1∈Ŝ

inf
s2∈S

|s1−s2|

}
.

Bandwidth Selection Procedure

• Step 1:Define new observations

Ỹi = Yi −
Ĵ

∑
j=1

d̂ j I(xi > ŝj ), for i = 1,2, . . . ,n.

Estimategby local linear kernel smoothing with bandwidthhest from data{(xi ,Ỹi), i =

1,2, . . . ,n}, and the estimator is denoted asĝ. Then, define residuals

ε̂i = Yi − ĝ(xi)−
Ĵ

∑
j=1

d̂ j I(xi > ŝj), for i = 1,2, . . . ,n.

• Step 2:ObtainB batches of resampled residuals from{ε̂i , i = 1,2, . . . ,n}, by random

selection with replacement; each batch hasn values. For theb-th batch of resampled

residuals, denoted as{ε̂∗i , i = 1,2, . . . ,n}, define pseudo-data as follows.

Y∗
i = ĝ(xi)+

Ĵ

∑
j=1

d̂ j I(xi > ŝj)+ ε̂∗i , for i = 1,2, . . . ,n.
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• Step 3: Apply the jump detection procedure (2.3)–(2.7) with parametershn andαn

to theb-th pseudo-data, and the set of detected jumps is denoted asŜb. Then, the

Hausdorff distancedH(S, Ŝ;hn,αn) is estimated by

d̂H(S, Ŝ;hn,αn,hest) =
1
B

B

∑
b=1

dH(Ŝ, Ŝb;hn,αn,hest),

wheredH(Ŝ, Ŝb;hn,αn,hest) denotes the Hausdorff distance betweenŜandŜb, which

depends on parametershn,αn, andhest.

• Step 4:Parametershn andαn are approximated by the solution of

min
hn>0

min
αn∈[0,1]

[
min

hest>0
d̂H(S, Ŝ;hn,αn,hest)

]
.

In the literature, Gijbels and Goderniaux (2004) has discussed bootstrap bandwidth

selection for jump detection. Our proposed procedure modifies theirs in several aspects.

First, Gijbels and Goderniaux use the same bandwidth for jump detection and for estimat-

ing g. In our procedure, two different bandwidthshn andhest are used for the two purposes.

Based on our numerical experience, the bandwidth for jump detection should be chosen

smaller than the bandwidth for curve estimation. Therefore, this modification should im-

prove jump detection performance. Second, Gijbels and Goderniaux discuss bandwidth

selection in cases when the number of jumps is fixed, and they propose an estimator of the

number of jumps using cross-validation. In our proposed procedure, bandwidth selection

is discussed in the general case when the number of jumps is unknown, which simplifies

its execution.

It should be pointed out that, in the above bandwidth selection procedure, we resample

residuals when constructing the bootstrap estimator of theHausdorff distancedH(S, Ŝ;hn,αn),

which has been shown effective in the literature (e.g., Gijbels and Goderniaux 2004) in

cases when the error terms in model (2.1) are homogeneous. Incases when the error

terms are heterogeneous, it might be more reasonable to resample original observation

pairs{(xi ,Yi), i = 1,2, . . . ,n}.

5 A Simulation Study

In this section, we present some simulation results regarding jump detection byMp(x)

discussed in the previous sections. In model (2.1), for simplicity, we setσ(Xi) = σ. The
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regression functionf takes one of the following three forms:

f1(x) =






2/3−2x 0 < x < 1/3

1 1/3≤ x < 2/3

−2(x−2/3)(x−2) 2/3≤ x≤ 1

f2(x) =






10−30x 0 < x < 1/3

−360(x−1/2)2 +11 1/3≤ x < 2/3

exp[15(x−2/3)/2]−1 2/3≤ x≤ 1

f3(x) =






72(x−1/3)2 0 < x < 1/3

8sin(15πx)+1 1/3≤ x < 2/3

25[log(x+1/6)− log(5/6)] 2/3≤ x≤ 1.

Threeσ values 0.1, 0.25, and 0.5, and fourn values 100, 200, 500, and 1000 are considered.

The two one-sided kernel functions used in (2.3) are chosen to be

K1(z) = 1.5(1−z2)I(−1 < z< 0), K2(z) = 1.5(1−z2)I(0 < z< 1).

Whenn= 100 andσ = 0.5, one realization of observations from model (2.1) with thethree

regression functions is shown in Figure 1. From the figure, wecan see that each of the three

regression functions has two jumps atx = 1/3 andx = 2/3, and they have quite different

curvature, withf1 being linear in continuity regions,f2 being curved in certain regions, and

f3 having large curvature in most part of the design interval.

We then apply the jump detection procedure (2.3)–(2.7) to this example. The procedure

parametershn andαn are chosen by the bootstrap procedure discussed in Section 4. Tables

1–3 present averaged Hausdorff distances between the set ofdetected jumpŝSand the set of

true jumpsS, averaged from 100 replications, and the corresponding selected bandwidths

(in parentheses), by the jump detection criterionMp(x) with p = 0,1,2, and 3 in various

cases. We also considered cases whenp > 3. But results in such cases were found not to

be the best in any of the scenarios considered. Therefore, they are not presented here.

From Table 1, we can see thatM0(x) performs the best in all cases whenf = f1. There-

fore, it seems reasonable to conclude that, whenf is quite straight in continuity regions,

jump detection using local constant kernel smoothing wouldbe a good choice. Table 2

shows that, in the case whenf = f2, M2(x) performs the best whenσ is relatively small

or whenn is relatively large (i.e., whenσ = 0.1, or whenσ = 0.25 andn≥ 200, or when
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Figure 1: One realization of observations from model (2.1) with the three regression func-
tions whenn = 100 andσ = 0.5. (a) f1, (b) f2, and (c)f3.

σ = 0.5 andn ≥ 500). Otherwise,M1(x) performs well. These results imply that, when

f has quite large curvature in certain small regions and is straight in majority part of the

continuity regions, we can consider usingM1(x) or M2(x), depending on the sample size

and the noise level. If the noise level is low or the sample size is large, thenM2(x) often

performs better thanM1(x). Otherwise,M1(x) would be a good choice. From Table 3,

it can be seen that, whenf has large curvature in majority part of the continuity regions,

M2(x) or M3(x) would be good for jump detection. In such cases, ifσ is small orn is large,

thenM3(x) could be used. Otherwise,M2(x) would be a good choice.

6 Applications

In this section, we apply the jump detection procedure (2.3)–(2.7) to two real data sets. The

first data consist of thickness measures of two US pennies foreach year from 1945 to 1989,

which are shown in Figure 2(a). The second dataset, shown in Figure 2(b), includes weekly

values of the Dow Jones Index Open Price from September 2000 to August 2002. From the

plots, it can be seen that penny thickness measure has two jumps around years 1959 and

1975, which was confirmed by Gijbels and Goderniaux (2004), and the Dow Jones Index

Open Price has a dramatic jump around the 56-th week, which isthe week immediately

after September 11, 2001 when the airplane suicide attacks by Al-Qaeda greatly hurt the

US and world markets and the Dow Jones Industrial Average index fell 684 points, or 7.1%,

on September 17, 2001.

In the jump detection procedure (2.3)–(2.7), parametershn andαn are chosen by the

12



Table 1: Averaged Hausdorff distances between the set of detected jumpŝS by jump de-
tection criteriaMp(x), for p = 0,1,2, and 3, and the set of true jumpsS in the case when
f = f1. Numbers in parentheses denote selected bandwidths.

n=100 n=200 n=500 n=1000

σ=0.1 M0(x) 0.0033 (0.04) 0.0015 (0.02) 0.0016 (0.01) 0.0009 (0.002)

M1(x) 0.0271 (0.14) 0.0168 (0.14) 0.0131 (0.14) 0.0144 (0.14)

M2(x) 0.0279 (0.14) 0.0192 (0.10) 0.0173 (0.09) 0.0129 (0.14)

M3(x) 0.0354 (0.16) 0.0177 (0.11) 0.0103 (0.06) 0.0089 (0.07)

σ=0.25 M0(x) 0.0135 (0.01) 0.0044 (0.04) 0.0091 (0.04) 0.0026 (0.01)

M1(x) 0.0489 (0.18) 0.0559 (0.17) 0.0369 (0.15) 0.0223 (0.15)

M2(x) 0.0996 (0.47) 0.0349 (0.23) 0.0206 (0.10) 0.0208 (0.14)

M3(x) 0.2406 (0.41) 0.0734 (0.36) 0.0189 (0.21) 0.0142 (0.10)

σ=0.5 M0(x) 0.0839 (0.32) 0.0341 (0.23) 0.0111 (0.06) 0.0076 (0.03)

M1(x) 0.1376 (0.36) 0.0705 (0.27) 0.0500 (0.16) 0.0581 (0.16)

M2(x) 0.3499 (0.57) 0.1624 (0.56) 0.0703 (0.43) 0.0308 (0.16)

M3(x) 0.3643 (0.85) 0.2694 (0.82) 0.1712 (0.43) 0.0522 (0.34)

bootstrap procedure described in Section 4. The detected jumps byMp(x) whenp = 0,1,

and 2 are listed in Table 4. From the table, we can see that, forthe penny thickness data

which are quite straight in continuity regions,M0(x) performs well and bothM1(x) and

M2(x) miss one jump. These results are consistent with those from Table 1. The Dow

Jones Open Price data look curved in the entire 2-year (i.e.,104-week) range. For this data,

jump detection byM2(x) identifies one jump at the 56-th week, while jump detection by

M0(x) andM1(x) identifies two and four jumps, respectively, at certain other places. After

checking the data carefully, we think that jump detection byM2(x) might be more reliable

in this case.

7 Concluding Remarks

Jump detection in regression curves is important for certain applications. In the literature,

a number of jump detectors have been proposed, among which jump detectors based on

13



Table 2: Averaged Hausdorff distances between the set of detected jumpŝS by jump de-
tection criteriaMp(x), for p = 0,1,2, and 3, and the set of true jumpsS in the case when
f = f2. Numbers in parentheses denote selected bandwidths.

n=100 n=200 n=500 n=1000

σ=0.1 M0(x) 0.2902 (0.04) 0.2705 (0.03) 0.2637 (0.02) 0.0397 (0.002)

M1(x) 0.0213 (0.16) 0.0256 (0.15) 0.0329 (0.14) 0.0390 (0.13)

M2(x) 0.0153 (0.15) 0.0116 (0.12) 0.0134 (0.09) 0.0165 (0.05)

M3(x) 0.0218 (0.16) 0.0152 (0.14) 0.0098 (0.07) 0.0678 (0.05)

σ=0.25 M0(x) 0.1946 (0.05) 0.2896 (0.05) 0.2962 (0.04) 0.0721 (0.006)

M1(x) 0.0230 (0.17) 0.0260 (0.16) 0.0245 (0.16) 0.0289 (0.16)

M2(x) 0.0249 (0.16) 0.0155 (0.16) 0.0103 (0.15) 0.0110 (0.11)

M3(x) 0.0304 (0.24) 0.0304 (0.19) 0.0167 (0.17) 0.0123 (0.13)

σ=0.5 M0(x) 0.0625 (0.03) 0.2555 (0.06) 0.2735 (0.05) 0.0818 (0.01)

M1(x) 0.0194 (0.17) 0.0220 (0.16) 0.0299 (0.16) 0.0296 (0.16)

M2(x) 0.0871 (0.19) 0.0505 (0.18) 0.0242 (0.17) 0.0118 (0.16)

M3(x) 0.2082 (0.28) 0.1399 (0.27) 0.0351 (0.25) 0.0254 (0.24)

one-sided local constant kernel smoothing and one-sided local linear kernel smoothing are

the major ones. In this paper, we discuss jump detection based on the general framework

of one-sided local polynomial kernel smoothing. Based on both theoretical and numerical

arguments, different jump detectors under this framework are compared, and some practical

guidelines are provided. We conclude that (i) when the underlying regression functionf is

quite straight in continuity regions, jump detection usingM0(x) is recommended, (ii) when

f has quite large curvature in certain small regions and is straight in majority part of the

continuity regions, jump detection usingM1(x) or M2(x) is recommended, depending on

the sample size and the noise level (if the noise level is relatively low or the sample size

is large, thenM2(x) often performs better thanM1(x); otherwise,M1(x) would be a good

choice), and (iii) whenf has large curvature in majority part of the continuity regions,

M2(x) or M3(x) would be good for jump detection.

In this paper, procedure parameters are chosen to be the samein the entire design in-

terval, which may not be ideal for certain applications. Intuitively, in regions where the
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Table 3: Averaged Hausdorff distances between the set of detected jumpŝS by jump de-
tection criteriaMp(x), for p = 0,1,2, and 3, and the set of true jumpsS in the case when
f = f3. Numbers in parentheses denote selected bandwidths.

n=100 n=200 n=500 n=1000

σ=0.1 M0(x) 0.1213 (0.03) 0.2102 (0.03) 0.1402 (0.02) 0.1116 (0.015)

M1(x) 0.1755 (0.04) 0.1710 (0.04) 0.1475 (0.03) 0.1715(0.03)

M2(x) 0.0913 (0.09) 0.0992 (0.09) 0.0876 (0.09) 0.0638 (0.02)

M3(x) 0.1762 (0.08) 0.0955 (0.05) 0.0172 (0.04) 0.0075 (0.04)

σ=0.25 M0(x) 0.2061 (0.05) 0.1950 (0.04) 0.1668 (0.03) 0.1594 (0.027)

M1(x) 0.1679 (0.05) 0.1427 (0.04) 0.1710 (0.05) 0.1714 (0.04)

M2(x) 0.0458 (0.09) 0.0294 (0.09) 0.0345 (0.09) 0.0688 (0.03)

M3(x) 0.0650 (0.16) 0.0713 (0.06) 0.0300 (0.06) 0.0159 (0.05)

σ=0.5 M0(x) 0.2085 (0.07) 0.2118 (0.06) 0.1603 (0.02) 0.1778 (0.035)

M1(x) 0.1752 (0.06) 0.1609 (0.05) 0.1714 (0.05) 0.1461 (0.04)

M2(x) 0.0388 (0.09) 0.0233 (0.09) 0.0252 (0.09) 0.0266 (0.09)

M3(x) 0.0359 (0.17) 0.0275 (0.16) 0.0254 (0.16) 0.0861 (0.16)

underlying regression curve has relatively large curvature, the bandwidth, for instance,

should be chosen relatively small to reduce possible estimation bias, and it should be cho-

sen relatively large in regions where the regression curve is quite flat. Selection of variable

procedure parameters requires much future research. Also,we did not discuss jump de-

tection in boundary regions[0,hn) and(1− hn,1] in this paper. When the sample size is

limited, this boundary jump detection problem could be important, which also requires

much future research effort.
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Figure 2: (a) The penny thickness data. (b) The weekly Dow Jones Open Price data.

Table 4: Detected jumps byMp(x) whenp = 0,1, and 2 for the penny thickness data and
the weekly Dow Jones Open Price data.

M0(x) M1(x) M2(x)

Penny thickness data 1959, 1975 1975 1974

Dow Jones Open Price data50, 80 34, 60, 78, 89 56

APPENDIX

A Proof of Theorem 1

In Section 3, we defineKt1,t2 =
R 1

0 ut1Kt2
1 (u)du=

R 0
−1ut1Kt2

2 (u)du, for t1,t2 = 0,1, . . .. By

integration approximation with summations, fort1,t2 = 0,1,2, . . . ,2p, we have

1
nhn

n

∑
i=0

(
Xi −x

hn

)t1

Kt2
1

(
Xi −x

hn

)
=

1
nhn

n

∑
i=0

(
Xi −x

hn

)t1

Kt2
2

(
Xi −x

hn

)
= Kt1,t2 +o(1).
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ForE( f̂ +
p,hn

(x)), by some routine algebraic manipulations and the above results, we have

E( f̂ +
p,hn

(x)) =
n

∑
i=1

∑p
j=0(w

(1)
j , hn

)∗(Xi −x) j

|W(1)|
K1

(
Xi −x

hn

)
f (Xi)

= |K |−1
n

∑
i=1

p

∑
j=0

(K j ,1)
∗

(
1

nhn

)(
Xi −x

hn

) j

K1

(
Xi −x

hn

)
f (Xi)

= |K |−1
p

∑
j=0

(K j ,1)
∗

[
n

∑
i=1

(
1

nhn

)(
Xi −x

hn

) j

K1

(
Xi −x

hn

)
f (Xi)

]

= |K |−1
p

∑
j=0

(K j ,1)
∗

[
n

∑
i=1

(
1

nhn

)(
Xi −x

hn

) j

K1

(
Xi −x

hn

)

×

(
p+1

∑
s=0

f (s)
+ (x)

s!
(Xi −x)s+o((Xi −x)p+1)

)]

= |K |−1
p

∑
j=0

[
(K j ,1)

∗
p+1

∑
s=0

f (s)
+ (x)
s!

(hn)
s

n

∑
i=1

1
nhn

(
Xi −x

hn

)( j+s)

K1

(
Xi −x

hn

)]

+o(hp+1
n )

= |K |−1
p

∑
j=0

(K j ,1)
∗

[
p+1

∑
s=0

f (s)
+ (x)
s!

(hn)
sK j+s,1

]
+o(hp+1

n )

= |K |−1
p+1

∑
s=0

f (s)
+ (x)(hn)

s

s!

[
p

∑
j=0

(K j ,1)
∗K j+s,1

]
+o(hp+1

n )

= f+(x)+ f (p+1)
+ (x)

∑p
j=0K∗

j ,1Kp+ j+1,1

(p+1)!|K |
hp+1

n +o(hp+1
n ).

(A.1)

Notice that the last equation holds because it is not difficult to check that

p

∑
j=0

(K j ,1)
∗K j+s,1 =





0, if 1 ≤ s≤ p

|K |, if s= 0.

Similarly, we have

E( f̂−p,hn
(x)) = f−(x)+ f (p+1)

− (x)
∑p

j=0K∗
j ,1Kp+ j+1,1

(p+1)!|K |
hp+1

n +o(hp+1
n ). (A.2)

Therefore, by (A.1) and (A.2),

E(Mp(x))= ( f+(x)− f−(x)) + ( f (p+1)
+ (x)− f (p+1)

− (x))
∑p

j=0K∗
j ,1Kp+ j+1,1

(p+1)!|K |
hp+1

n + o(hp+1
n ).
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To prove the result aboutVar(Mp(x)), we rewriteMp(x) = ∑n
i=1CiYi , where

Ci =
∑p

j=0(w
(1)
j , hn

)∗(Xi −x) j

|W(1)|
K1

(
Xi −x

hn

)
−

∑p
j=0(w

(2)
j , hn

)∗(Xi −x) j

|W(2)|
K2

(
Xi −x

hn

)
.

Then,

[E(Mp(x))]
2 =

n

∑
i=1

C2
i f 2(Xi)+

n

∑
i, j=1

CiCj f (Xi) f (Xj) ,

E
[
(Mp(x))

2]=
n

∑
i=1

C2
i f 2(Xi)+

n

∑
i=1

C2
i σ2(Xi)+

n

∑
i, j=1

CiCj f (Xi) f (Xj ) .

Thus,

Var(Mp(x)) = [E(Mp(x))]
2−
[
(Mp(x))2

]
= ∑n

i=1 σ2(Xi)C2
i

=
n

∑
i=1

σ2(Xi)





(
∑p

j=0(w
(1)
j , hn

)∗(Xi −x) j
)2

|W(1)|2
K2

1

(
Xi −x

hn

)

+

(
∑p

j=0(w
(2)
j , hn

)∗(Xi −x) j
)2

|W(2)|2
K2

2

(
Xi −x

hn

)

−2
∑p

j=0(w
(1)
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)∗(Xi −x) j

|W(1)|
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(
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= 2
n

∑
i=1

σ2(Xi)





(
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j=0(w
(1)
j , hn

)∗(Xi −x) j
)2

|W(1)|2
K2

1

(
Xi −x

hn

)




= 2
n

∑
i=1

σ2(Xi)

∑2p
j=0

[
K2

1(Xi−x
hn

)(Xi −x) j

(
∑ j1+ j2= j

j1, j2=0,1,2,···,p
(w(1)

j1,hn
)∗(w(1)

j2, hn
)∗
)]

|W(1)|2

= 2
n

∑
i=1

[σ2(x)+o(Xi −x)]·

∑2p
j=0

[
K2

1(Xi−x
hn

)(Xi −x) j

(
∑ j1+ j2= j

j1, j2=0,1,2,···,p
(w(1)

j1,hn
)∗(w(1)

j2, hn
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|W(1)|2

=
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1
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B Proof of Theorem 2

Here, we only prove equation (3.1). Equation (3.2) can be proved in a similar way. From

equation (2.4), by the Taylor’s expansion off (Xi) at x, we have

E[ f̂ +
p,hn

] =
n

∑
i=1

∑p
j=0(w

(1)
j , hn

)∗(Xi −x) j

|W(1)|
f (Xi)K1

(
Xi −x

hn

)

=
n

∑
i=1

∑p
j=0(w

(1)
j , hn

)∗(Xi −x) j

|W(1)|
K1

(
Xi −x

hn

)(p+1

∑
s=0

f (s)
+ (x)
s!

(Xi −x)s+o((Xi −x)p+1)

)

= f (x)+ f (p+1)(x)
n

∑
i=1

∑p
j=0(w

(1)
j , hn

)∗w(1)
p+ j−1, hn

(p+1)!|W(1)|
h(p+1)

n +o(h(p+1)
n ).

The second equation follows from the facts that∑p
j=0(w

(1)
j , hn

)∗w(1)
t+ j−1, hn

= 0, for 1≤ t ≤ p,

and the definition

w(l)
j , hn

=
n

∑
i=0

(Xi −x) jKl

(
Xi −x

hn

)
, j = 0,1,2, . . . ,2p, l = 1,2.

So,

E[ f̂ +
p,hn

]− f (x) = f (p+1)(x)
n

∑
i=1

∑p
j=0(w

(1)
j , hn

)∗w(1)
p+ j−1, hn

(p+1)!|W(1)|
h(p+1)

n +o(h(p+1)
n ) . (B.1)

Define

v(1)
j =

Z 0

−1
x jK1(x)dx, for j = 0,1,2, · · · , p+1.

Then, it is easy to check that

w(1)
j , hn

nhj+1
n

= v(1)
j +o(1) . (B.2)

Now, define

ε̃i = σ(Xi)εi I(i
1/2−|σ(Xi)εi |), i = 1,2, · · · ,n,

gn(x) =
n

∑
i=1

K1

(
Xi −x

hn

) ∑p
j=0(w

(1)
j , hn

)∗(Xi −x) j

|W(1)|
σ(Xi)εi ,

g̃n(x) =
n

∑
i=1

K1

(
Xi −x

hn

) ∑p
j=0(w

(1)
j , hn

)∗(Xi −x) j

|W(1)|
ε̃i ,

g̃n(i) = K1

(
Xi −x

hn

) ∑p
j=0(w

(1)
j , hn

)∗(Xi −x) j

|W(1)|
ε̃i .
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Then, by the exponential form of Chebyshev inequality, for any ε, we have

P

(
nν

βn logn
[g̃n(x)−E(g̃n(x))] > ε

)

≤ exp( logn−εβ1/2
n )E

(
n

∏
i=1

exp(
nν

β1/2
n

[g̃n(i)−E(g̃n(i))])

)

≤ n−εβ1/2
n exp

(
n2ν

βn

n

∑
i=1

Var(g̃n(i))

)
. (B.3)

By results (B.2) and Assumption E, it is easy to check that

n

∑
i=1

Var(g̃n(i)) ≤ M
n

∑
i=1

K2
1

(
Xi −x

hn

)

∑p
j=0(w

(1)
j , hn

)∗(Xi −x) j

|w(1)|




2

=
M
nhn

C1(K1),

whereM andC1(K1) are constants. By assumption C, we have

P

(
nν

βn logn
[g̃n(x)−E(g̃n(x))] > ε

)
= O(n−εβ1/2

n ), (B.4)

which is uniformly true for allx∈ [hn/2, 1]. We now defineDn = {x : |x| ≤ n1/δ +1,x∈R}

for someδ > 0. LetEn be the smallest subset of{i/n2 : i = 1,2, . . . ,n2} such that, for any

x ∈ Dn, there exists someZ(x) ∈ En satisfying|x− Z(x)| ≤ n−2. Then,En has at most

Nn = [2n2(n1/δ +1)]+1 elements, where[x] denotes the integer part ofx. Clearly, we can

write
nν

βn logn
||g̃n−E(g̃n)||[hn/2, 1]

T

Dn ≤ S1n+S2n+S3n, (B.5)

where

S1n =
nν

βn logn
sup

x∈[hn/2, 1]
T

Dn

|g̃n(x)− g̃n(Z(x))|

S2n =
nν

βn logn
sup

x∈[hn/2, 1]
T

Dn

|g̃n(Z(x))−E(g̃n(Z(x)))|

S3n =
nν

βn logn
sup

x∈[hn/2, 1]
T

Dn

|E(g̃n(Z(x)))−E(g̃n(x))| .

(B.6)

From (B.4) and (B.6), we have

P(S2n > ε) = o

(
Nnn−εβ1/2

n

)
.

By the Borel-Cantelli Lemma,

lim
n→∞

S2n = 0, a.s. (B.7)
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Now,
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∣∣∣∣∣
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|W(1)|

]∣∣∣∣∣

≤
nν+1/2

βn logn
sup

x∈[hn/2, 1]
T

Dn

∣∣∣∣∣
1
hn

n

∑
i=1

[
K1

(
Xi −x

hn

)
H (x)−K1

(
Xi −Z(x)

hn

)
H (Z(x))

∣∣∣∣∣

≤
nν+1/2

βn logn
C2(K1)

n2hn

whereC2(K1) is a constant, andH (x) = ∑p
j=0(w

(1)
j , hn

)∗(Xi −x) j/|W(1)|. Therefore

lim
n→∞

S1n = 0 a.s. (B.8)

Similarly,

lim
n→∞

S3n = 0 a.s. (B.9)

By (B.7) – (B.9), we have

nν

βn logn
||g̃n−E(g̃n)||[hn/2, 1]

T

Dn = o(1), a.s. (B.10)

Now,

||gn−E(gn)||[hn/2, 1] ≤ ||gn− g̃n||[hn/2, 1] + ||g̃n−E(g̃n)||[hn/2, 1] + ||E(g̃n)−E(gn)||[hn/2, 1].

By Assumption E, there exists a full setΩ0 such that for eachω ∈ Ω0 there exists a finite

positive integerNω such that, fori ≥ Nω, εi(ω) = σ(Xi)ε̃i(ω). So, for alln≥ Nω,

| gn(x)− g̃n(x)| ≤
1

nhn

Nω

∑
i=1

K1

(
Xi −x

hn

)∣∣∣∣ L (x)(σ(Xi)εi − ε̃i)

∣∣∣∣≤
C(Nω)

nhn
, (B.11)

whereL (x) is a continuous function. Therefore,

nν

βn logn
||g̃n− g̃n||[hn/2, 1] = o(1), a.s. (B.12)
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Similarly,
nν

βn logn
||E(g̃n)−E(gn)||[hn/2, 1] = o(1), a.s. (B.13)

By (B.10), (B.12) and (B.13), we have

nν

βn logn
||gn−E(gn)||[hn/2, 1] = o(1), a.s. (B.14)

Thus, by (B.1) and (B.14), we have

nν

βn logn
|| f̂ +

p,hn
− f ||[hn/2, 1] = o(1), a.s.

C Proof of Theorem 3

First, by Theorem 2, we have

nν

βn log(n)
||Mp||[hn,1−hn]\

Sp
j=1[sj−hn,sj+hn]

= 0, a.s.

This result and assumption F imply that, whenn is large enough, none of the detected

jumps (cf., Section 2) would fall into continuity regions[hn,1−hn]\
Sp

j=1[sj −hn,sj +hn].

On the other hand, it is easy to check, based on Theorems 1 and 2, that

lim
n→∞

Mp(sj ) = d j , for j = 1,2, · · · , p, a.s.

Therefore, for a given true jumpsj , the design point that is closest tosj among all design

points would be detected as a jump point. In the interval[sj −hn,sj + hn], there might be

multiple detected jumps; but, they would form a tie (cf., discussion at the end of Section

2) and be replaced by the central point of the tie. After the modification procedure, there

would be one and only one detected jump in[sj −hn,sj +hn]. After combining the above

results, conclusions (3.3)–(3.5) in Theorem 3.3 can be obtained.
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