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DISTRIBUTION-FREE CUMULATIVE SUM CONTROL CHARTS
USING BOOTSTRAP-BASED CONTROL LIMITS

BY SNIGDHANSU CHATTERJEE1 AND PEIHUA QIU2

University of Minnesota and University of Minnesota

This paper deals with phase II, univariate, statistical process control
when a set of in-control data is available, and when both the in-control and
out-of-control distributions of the process are unknown. Existing process con-
trol techniques typically require substantial knowledge about the in-control
and out-of-control distributions of the process, which is often difficult to ob-
tain in practice. We propose (a) using a sequence of control limits for the
cumulative sum (CUSUM) control charts, where the control limits are de-
termined by the conditional distribution of the CUSUM statistic given the
last time it was zero, and (b) estimating the control limits by bootstrap. Tra-
ditionally, the CUSUM control chart uses a single control limit, which is
obtained under the assumption that the in-control and out-of-control distribu-
tions of the process are Normal. When the normality assumption is not valid,
which is often true in applications, the actual in-control average run length,
defined to be the expected time duration before the control chart signals a
process change, is quite different from the nominal in-control average run
length. This limitation is mostly eliminated in the proposed procedure, which
is distribution-free and robust against different choices of the in-control and
out-of-control distributions.

1. Introduction. The problem of univariate, phase II statistical process con-
trol (SPC) may be described as follows: A sequence of independent random vari-
ables {Xn,n ≥ 1} on the real line is observed, such that X1, . . . ,Xt0 follow a given
distribution F (called an “in-control” distribution) and Xt0+1,Xt0+2, . . . follow an-
other distribution G (called an “out-of-control” distribution), where F �= G. The
major objective of SPC techniques is to detect such a distributional shift as soon
as possible.

The theory and methods of SPC have traditionally developed from industrial
statistics roots, such as quality specifications. In modern times, while quality en-
hancement still remains a major field of applications, SPC has found many other
applications. For instance, SPC is widely used in health care monitoring [Steiner,
Cook and Farewell (1999)], detection of genetic mutation [Krawczak et al. (1999)],
credit card and financial fraud detection [Bolton and Hand (2002)], and insider
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trading in stock markets [Meulbroek (1992)]. In such applications, process distri-
butions are often multimodal, skewed, or heavy tailed.

In traditional SPC, F is usually assumed to be a known Normal distribution, and
G is a different Normal distribution. When a shift in the mean of F is the major
concern, the minimax sequential probability ratio test known as the “Cumulative
Sum Control Chart” (CUSUM chart hereafter) is the dominant technique for de-
tecting such a shift [cf. Page (1954)]. To detect an upward shift, the CUSUM Cn

is defined by C0 = 0, and

Cn = max (Cn−1 + Xn − k,0) for n ≥ 1,(1)

where k ≥ 0 is a pre-specified allowance constant. The process is declared out-of-
control if Cn > h, where the control limit h is determined by setting the in-control
“average run length” (ARL) at a certain nominal level ARL0, and the in-control
ARL is defined to be the expected time to signal under F , that is,

ARL = EF inf{n > 0 :Cn > h}.(2)

This is similar to setting the probability of Type I error at a specific level in the
hypothesis testing context, with the null hypothesis being that the process is in
control. If δ is the amount of shift in mean from F to G, then choosing k = δ/2
in (1.1) is optimal under certain regularity conditions [see, e.g., Reynolds (1975),
Siegmund (1985)]. Similar CUSUMs exist in the literature for detecting downward
or two-sided shifts in mean, or shifts in variance; see Hawkins and Olwell (1998).

An issue with the conventional CUSUM is its sensitivity to the assumption that
both F and G are normal distributions with known in-control parameters. This fact
is further confirmed by our numerical studies reported in Section 4. Depending on
whether the true distribution F is left or right skewed, whether it is heavy tailed
or multimodal, the CUSUM may show two kinds of behavior. It may have very
short or very long actual in-control ARL, compared to the nominal in-control ARL
value. In a hypothesis testing context, this is similar to the case that the actual
probability of Type I error is larger or smaller than the nominal significance level
of the test. The situation when the actual in-control ARL value is much larger than
the nominal value ARL0 is clearly unacceptable in most applications, because in
such cases a process that is actually out of control would not be detected as such
for a long time. When the actual in-control ARL value is much smaller than ARL0,
the CUSUM would be too sensitive to random noise, resulting in a large number
of false alarms. Consequently, efficiency of the work related to the process being
monitored would be negatively affected. The closeness of the actual in-control ARL
value to ARL0 is related to the robustness of the CUSUM to various assumptions
behind it, which is not a well studied topic in SPC.

In the absence of explicit knowledge of F , the bootstrap may be used for cali-
bration of the control limit h, so that the actual in-control ARL value matches the
nominal value ARL0. In the past 25 years or so, bootstrap techniques [see, e.g.,
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Efron (1979), Efron and Tibshirani (1993), Shao and Tu (1995)] have been suc-
cessful in obtaining highly accurate confidence intervals, estimates of asymptotic
variances and other moments and probabilities, calibrations of different statistics,
and so forth.

By the bootstrap technique, we draw repeated samples with replacement from
observed data, and estimate the sampling distribution of a related statistic using
these resamples. Implementation of the bootstrap is algorithmic; it often works
under less stringent assumptions than classical asymptotics. In finite sample cases,
since it uses the observed data efficiently by resampling, it can obtain more ac-
curate results in many problems, compared to asymptotics-based classical tech-
niques. For detailed discussion and examples, see Efron and Tibshirani (1993).
However, the bootstrap is not always consistent; its properties depend on the prob-
lem and the statistic under consideration.

We performed a simulation experiment to study how well the bootstrap distrib-
ution of Cn approximates its actual distribution. Before describing the simulation
in Example 1.1 below, we introduce another statistic to facilitate the subsequent
discussion. Let

Tn =
{

0, if Cn = 0,
j, if Cn �= 0, . . . ,Cn−j+1 �= 0, Cn−j = 0; j = 1,2, . . . , n.(3)

Thus, Tn is the time elapsed since the last time the CUSUM Cn was zero, in view
of which we call Tn the sprint length. Note that Tn can be computed easily, and
(Cn,Tn) forms a Markov process.

EXAMPLE 1.1. We take F to be the standard Normal distribution N(0,1),
n = 10000, and the allowance constant k to be 0.5 which is optimal for de-
tecting shifts from F = N(0,1) to G = N(1,1). We first approximate the dis-
tributions of [Cn|Tn = j ], for j = 1, . . . ,10, by their empirical distributions,
obtained from a preliminary run of 100,000 independent replications for each
j = 1,2, . . . ,10. Then, for each j , another I = 1000 independent replications
of sampling X1, . . . ,Xn from F is performed. For each of these 1000 replica-
tions, we sample with replacement from the data and compute the CUSUM and
sprint length statistics from the resample to obtain B = 2000 independent val-
ues of [C∗

n |T ∗
n = j ]. The empirical distribution function of these 2000 values is

taken as the bootstrap estimate of the distribution of [Cn|Tn = j ]. The p-value,
corresponding to the Kolmogorov–Smirnov test for the null hypothesis that dis-
tributions of [Cn|Tn = j ] and [C∗

n |T ∗
n = j ] are the same, is then computed for

each of the 1000 replications. For each j , if the distribution of [C∗
n |T ∗

n = j ] ap-
proximates the distribution of [Cn|Tn = j ] well, then the 1000 p-values computed
above should roughly follow the Uniform distribution on (0,1). We perform an-
other Kolmogorov–Smirnov test for testing whether this is true. Table 1 reports the
p-value (in percent) of this second Kolmogorov–Smirnov test, for j = 1, . . . ,10.
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TABLE 1
The p-value (in percentage) of the Kolmogorov–Smirnov test, for comparing the distribution of the

p-value in testing equality of distributions of [Cn|Tn = j ] and [C∗
n |T ∗

n = j ], with the Uniform
distribution on [0,1]

j 1 2 3 4 5 6 7 8 9 10

p-value 47.94 98.81 75.07 73.60 82.00 91.51 86.77 79.23 61.52 87.20

From the table, it can be seen that the distribution of [C∗
n |T ∗

n = j ] is a good approx-
imation for that of [Cn|Tn = j ]. This broad conclusion holds when this experiment
is repeated with several other choices of F , n, k, I , B and some other measures of
closeness of distributions.

In this paper we propose a process control technique, using a sequence of con-
trol limits determined by the distributions of [Cn|Tn = j ], for different j . These
control limits are obtained using bootstrap approximations, supported by the nu-
merical study in Example 1.1. A motivation for considering the conditional dis-
tribution of [Cn|Tn = j ] in determining the control limits is that its distribution
is much simpler to study, compared to the conventional, unconditional distribution
of Cn. Under some regularity conditions, it can be checked that this conditional dis-
tribution depends only on j and the in-control distribution F , but not on n. If F is
known, a recursive formula can be used to obtain the distributions of [Cn|Tn = j ],
for j = 1, . . . . In such cases, determination of control limits {hj , j ≥ 1}, comput-
ing powers of the related tests, and handling certain other statistical issues are just
routine algebraic exercises. If F is unknown, as is generally the case in applica-
tions, then from in-control data the distributions of [Cn|Tn = j ] can be approxi-
mated using the bootstrap, at least for relatively small values of j . In this paper
we suggest estimating the control limits hj ’s using the bootstrap up to some value
jmax, after which a constant control limit is used.

Resampling techniques for SPC are of considerable recent interest in the litera-
ture. The bootstrap for assessing process capability was discussed by Franklin and
Wasserman (1992). Shewhart charts based on the bootstrap are discussed by sev-
eral authors, including Bajgier (1992), Seppala et al. (1995), Liu and Tang (1996)
and Willemain and Runger (1996). Apart from the fact that some of these boot-
strap methods are for Shewhart charts while we focus on the CUSUM, one major
difference between these papers and ours is that they use the bootstrap mainly for
estimating the distribution of the run length. In their methods the control limit h

is a constant and is chosen based on the assumption that F is a known Normal
distribution. When F is unknown, or misspecified, their results will not be reli-
able. In this paper we use the bootstrap for approximating the distribution of the
CUSUM statistic, conditional on Tn. We use these to obtain a sequence of control
limits. Our procedure is distribution-free and robust to the specification of F . Wu
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and Wang (1996) and Wood, Kaye and Capon (1999) also design bootstrap-based
control charts, though not for the CUSUM. Steiner (1999) suggests using time-
varying control limits in the framework of exponentially weighted moving average
(EWMA) control charts. In applications, a process may go out-of-control in a num-
ber of different ways; hence, controlling against broad alternatives is desirable. Our
bootstrap-based SPC procedure is an attempt in that direction, and requires fewer
and less restrictive assumptions than the conventional CUSUM. In particular, we
may drop the assumptions that (a) F is a Normal distribution, (b) G is a Normal
distribution, and (c) the in-control mean μ and the in-control standard deviation σ

are both known. Since our proposed method does not depend on G, it is robust
against a variety of out-of-control situations. The bootstrap CUSUM presented in
this paper is designed for detecting upward shifts in location parameters of F only,
which is similar to the conventional CUSUM (1). Other versions of the bootstrap
CUSUM for detecting downward or two-sided shifts can be defined in a similar
way.

In the literature efforts have been made to remove certain assumptions of the
conventional CUSUM. For instance, Hawkins and Olwell (1998) suggested us-
ing the self-starting CUSUM when both F and G are Normal but the in-control
distribution parameters are unknown. Several nonparametric CUSUMs have also
been proposed. See Chakraborti, van der Laan and Bakir (2001) for a review
of 1-dimensional methods, and Qiu (2008) and Qiu and Hawkins (2001, 2003)
for multivariate nonparametric CUSUMs. In Section 3 we describe a nonpara-
metric CUSUM by Bakir and Reynolds (1975) that we use for comparison with
our method. In Section 4 we consider some illustrative numerical examples where
the conventional CUSUM, the nonparametric CUSUM and the proposed bootstrap
CUSUM are compared. In Section 5 we apply these techniques to a real-data prob-
lem in the aluminum smeltering industry. In Section 6 we briefly summarize our
conclusions for this study.

2. The proposed SPC procedure. Statistical process control has two phases.
In Phase I a set of process data is gathered and analyzed. Any ‘patterns’ in this data-
set indicating a lack of statistical control would lead to adjustments and fine tuning
of the process. Once all such process calibration issues are addressed, a set of clean
data is obtained, gathered under stable operating conditions and illustrative of the
actual process performance. The techniques discussed in this paper are for Phase II
SPC, where the process is monitored to detect possible out-of-control behaviors. In
our study, we make use of the clean, in-control, Phase I data to set up our proposed
CUSUM procedure, as discussed below.

For simplicity of discussion, let Yj be a random variable having the distribution
of [Cn|Tn = j ]. For any positive integer jmax ≤ n, the distribution of Cn equals that
of

∑jmax
j=1 YjI{Tn=j} +Y ∗I{Tn>jmax}, where Y ∗ is a random variable with the distribu-

tion of [Cn|Tn > jmax]. Hence, when Tn = j (Tn > jmax), it is reasonable to choose
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the control limit hj (h∗) based on the distribution of Yj (Y ∗). At time point n, the
process is declared to be out-of-control if Tn = j and Cn > hj , for 1 ≤ j ≤ jmax,
or if Tn > jmax and Cn > h∗. The constants jmax and k are the two tuning para-
meters of this procedure, whose choice is up to the practitioner. Since the control
limits {hj ,1 ≤ j ≤ jmax;h∗} are obtained using the bootstrap, the choice of jmax is
limited by the in-control data, allowance constant k, and available computational
power. Our first step is to fix jmax as large as is convenient based on computational
considerations. Our simulations described in Section 4 show that a high jmax value
need not result in the most efficient bootstrap based SPC, for a given pair of in and
out-of-control distributions F and G. In the simulation problems we investigated,
the results seem to be fairly stable for jmax in the range 20–50, but not necessarily
so for smaller values of jmax.

Note that owing to the nonlinear and nonsmooth nature of Cn in (1), the control
limits {hj ,1 ≤ j ≤ jmax;h∗} and the distribution of Tn are intractable functions of
the allowance constant k. In conventional CUSUMs, selection of k is related to δ,
the shift size in the mean of F . Since we desire robustness against non-Normality
and the value of δ for our SPC method, we suggest selecting k based on the average
sprint length ETn. From expressions (1) and (3), it can be seen that, if k is chosen
larger, then Cn will have a larger chance to bounce back to 0. Consequently, ETn

would be smaller. Similarly, if k is chosen smaller, then ETn would be larger. In
the SPC literature it is already well demonstrated that larger k values are good for
detecting larger shifts, and vice versa. Therefore, selection of ETn should be an im-
portant issue. In our numerical examples presented in Sections 4 and 5, we consider
three choices for ETn, namely, ETn = 0.5jmax, ETn = 0.75jmax, and ETn = jmax,
to represent small, moderate, and large values of ETn.

Obtaining the value of k from ETn is a simple iterative computation, described
briefly below. Let kL, kU , and k0 be the lower-bound, upper-bound, and an ini-
tial value of k. Draw B bootstrap samples from the normalized in-control data
(i.e., having zero sample mean and unit sample variance). In the first iteration,
the CUSUM procedure uses allowance constant k0. Based on each bootstrap sam-
ple, we record the value of the first sprint length of the CUSUM; thus, B values
of the sprint length can be recorded from the B bootstrap samples. Then, ETn is
estimated by the sample mean of these B sprint length values. If the estimated
ETn is larger than the target ETn value, then we update k to be k1 = (kU + k0)/2,
and use k0 and kU as the new lower and upper bounds. Otherwise, update k to be
k1 = (kL + k0)/2, and use kL and k0 as the new lower and upper bounds. Go to the
next iteration after replacing k0 by k1. This process continues until the estimated
ETn value in an iteration is close enough to the target ETn value. In all our nu-
merical examples presented in Sections 4 and 5, we take kL, kU , and k0 to be the
first, third, and second quartiles of the in-control data, and B = 5000. The above
binary search procedure converges very fast, taking about 10 iterations to achieve
the pre-specified accuracy.
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Once jmax and k are fixed, the sequence of control limits {hj , j ≤ jmax;h∗} can
be determined from the in-control data using the bootstrap. These control limits are
related to certain tail probabilities of the in-control distribution F . In the literature
it has been demonstrated that, in such cases, it is better to first estimate F by F̂

using a density estimation procedure and then obtain the bootstrap samples from
F̂ (i.e., using the smoothed bootstrap), compared to drawing bootstrap samples
directly from the observed data [cf., e.g., Hall, DiCiccio and Romano (1989), Falk
and Reiss (1989)]. In this paper we construct a kernel smoothing density estimator
for the Phase I data, and then take the corresponding distribution as F̂ . The band-
width used in kernel smoothing is chosen by cross validation. Bootstrap samples
are then drawn from F̂ , using a procedure described in Silverman (1986).

Our algorithm for determining {hj , j ≤ jmax;h∗} consists of two steps. In
the first step the bootstrap is used for obtaining preliminary values {Mj, j ≤
jmax,M

∗}, such that Mj ≈ hj and M∗ ≈ h∗. Then, in the second step these val-
ues are calibrated using some more bootstrap steps to ensure that the resulting
in-control average run length, denoted as ARL, equals the nominal ARL0 up to a
certain level of accuracy.

The following algorithm describes how to obtain {Mj, j ≤ jmax,M
∗}. Let B

be the bootstrap Monte Carlo sample size, C∗
old = 0, T ∗

old = 0, and b = 0. For all
j ∈ {1, . . . , jmax + 1}, we implement the following:

Step 0. Set b = b + 1.
Step 1. Draw an observation X∗ from F̂ .
Step 2. Update C∗

old to C∗
new = max (C∗

old + X∗ − k,0). If C∗
new > 0, then compute

T ∗
new by T ∗

new = T ∗
old + 1. If C∗

new = 0, then set T ∗
new = 0.

Step 3. Check if T ∗
new = j . If so, then record Yj :b = C∗

new. If not, then set C∗
old =

C∗
new and T ∗

old = T ∗
new, and go to Step 1. If b < B , go to Step 0.

At the end of an execution of this algorithm, we would have B numbers
Yj :1, Yj :2, . . . , Yj :B . Define

α̂ = (p̂2ARL0)
−1,(4)

where p̂ denotes the proportion of observations in the in-control data that are larger
than k. Then, the B(1 − α̂)th ordered value from Yj :1, Yj :2, . . . , Yj :B is taken as
Mj , for j ≤ jmax. The B(1 − α)th ordered value from Y(jmax+1):1, . . . , Y(jmax+1):B
is taken as M∗. The formula (4) is based on some asymptotic approximations.

Next, we describe the algorithm to fine tune M1, . . . ,Mjmax and M∗ to obtain
h1, . . . , hjmax and h∗ so that the nominal ARL0 is reached. This algorithm is itera-

tive. In the first iteration, define h
(0)
j = Mj , for 1 ≤ j ≤ jmax, and h∗(0) = M∗. Let

C0 = 0, and T0 = 0. For n ≥ 1, generate Xn from F̂ , construct Cn = max{Cn−1 +
Xn − k,0}, and keep track of the corresponding sprint length Tn. If Tn = j and
Cn > h

(0)
j , then declare the process to be out-of-control and take the run length

as n. If Tn > jmax and Cn > h∗(0), we also declare the process to be out-of-control
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and take the run length as n. Repeat this N1 times (e.g., N1 = 100 in our numerical
examples reported in Section 4) and define the average of these N1 run lengths
as RL(0). If RL(0) < ARL0, then repeat the above procedure, after h

(0)
1 , . . . , h

(0)
jmax

and h∗(0) are replaced by h
(0)
1U = (1 + ε)M1, . . . , h

(0)
jmaxU

= (1 + ε)Mjmax and

h
∗(0)
U = (1 + ε)M∗, where ε > 0 is a parameter. The corresponding averaged run

length is denoted by RL(0)
U . Define

h
(1)
j = RL(0)

U − ARL0

RL(0)
U − RL(0)

h
(0)
j + ARL0 − RL(0)

RL(0)
U − RL(0)

h
(0)
jU , for j = 1, . . . , jmax,

(5)

h∗(1) = RL(0)
U − ARL0

RL(0)
U − RL(0)

h∗(0) + ARL0 − RL(0)

RL(0)
U − RL(0)

h
∗(0)
U .

Also, define h
(1)
jU = h

(0)
jU , h

(1)
jL = h

(0)
j for j = 1, . . . , jmax, and h

∗(1)
U = h

∗(0)
U ,

h
∗(1)
L = h∗(0). If RL(0) > ARL0, then run the CUSUM procedure using control

limits h
(0)
1L = (1 − ε)M1, . . . , h

(0)
jmaxL

= (1 − ε)Mjmax and h
∗(0)
L = (1 − ε)M∗; the

corresponding averaged run length is denoted as RL(0)
L . In this case, {h(1)

j ,1 ≤
j ≤ jmax, h

∗(1)} are defined similarly to those in (5), as linear interpolations of
{h(0)

j ,1 ≤ j ≤ jmax, h
∗(0)} and {h(0)

jL,1 ≤ j ≤ jmax, h
∗(0)
L }, with weights (ARL0 −

RL(0)
L )/(RL(0) − RL(0)

L ) and (RL(0) − ARL0)/(RL(0) − RL(0)
L ), respectively. Fur-

ther, we define h
(1)
jU = h

(0)
j , h

(1)
jL = h

(0)
jL for j = 1, . . . , jmax and h

∗(1)
U = h∗(0),

h
∗(1)
L = h

∗(0)
L .

The parameter ε should be chosen such that RL(0)
U > ARL0 and RL(0)

L < ARL0.

The second iteration is the same as the first iteration, except that {h(0)
j ,1 ≤ j ≤

jmax, h
∗(0)}, {h(0)

jL,1 ≤ j ≤ jmax, h
∗(0)
L }, and {h(0)

jU ,1 ≤ j ≤ jmax, h
∗(0)
U } need to be

replaced by {h(1)
j ,1 ≤ j ≤ jmax, h

∗(1)}, {h(1)
jL,1 ≤ j ≤ jmax, h

∗(1)
L }, and {h(1)

jU ,1 ≤
j ≤ jmax, h

∗(1)
U }. At the end of this iteration, we obtain {h(2)

j ,1 ≤ j ≤ jmax, h
∗(2)},

{h(2)
jL,1 ≤ j ≤ jmax, h

∗(2)
L }, and {h(2)

jU ,1 ≤ j ≤ jmax, h
∗(2)
U }, similar to those in the

first iteration. This iterative algorithm continues until the kth iteration in which the
exit condition |RL(k) −ARL0|/ARL0 < ε̃ is satisfied, where ε̃ > 0 is a pre-specified
small number. In our simulations reported in the next section, we took ε = 0.2 and
ε̃ = 0.02, and found that usually less than 5 iterations were required to satisfy the
exit condition.

Note that in the above procedure k is linked to jmax, which was not chosen
to be optimal for the problem at hand. A practitioner may skip the step of adap-
tively choosing k and use a fixed constant instead. However, our simulations (not
reported here) suggest the above method of choosing k adaptively leads to better
performance than using a fixed k ∈ [0,1]. Another reason for linking ETn, and
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hence k, to jmax is that the probabilities of the events {Tn = j} decrease sharply
with increase of either k or j . So beyond a data-dependent range of k and j val-
ues, the probability of observing the events (T ∗

new = j) in the above algorithm is
essentially zero. For instance, consider the scenario when Step 1 of the algorithm
is implemented by drawing X∗ randomly from the observed data X1, . . . ,Xm, in-
stead of from the smoothed density F̂ . In the extreme case when k > max1≤i≤m Xi ,
C∗

n does not have any positive jumps. Consequently, none of the hj ’s can be es-
timated. If k is between the top two order statistics of X1, . . . ,Xm, C∗

n can in-
crease only in steps of max1≤i≤m Xi − k, and the estimates of the hj would re-
flect this nonsmoothness. In addition to using smoothed bootstrap and calibrating
{Mj, j ≤ jmax;M∗}, using a relatively small k, or equivalently, a relatively large
ETn and jmax, would help in obtaining better estimates of {hj , j ≤ jmax;h∗}. On
the other hand, using large k helps in quickly detecting large shifts from F .

If k is taken to be a fixed constant, and one wants to reduce the number of
control limits used from jmax + 1 to j̃max + 1, one option is to leave the first j̃max
control limits unchanged and recompute h∗ only using the above calibration step.
This may be used even when k is adaptively chosen, but in that case the ETn/jmax
ratio is no longer preserved.

Let us list some shortcomings of the proposed method here. First, since its con-
struction does not depend on the out-of-control distribution G, it is expected to be
less sensitive to any specific choice of G, compared to a conventional CUSUM us-
ing certain prior information about G. For instance, in cases where both F and G

are Normal and the in-control mean and variance are known, the conventional
CUSUM (1) would outperform our proposed procedure. Second, our method de-
pends on how closely F̂ approximates F . We use a kernel smoothed density es-
timator in this paper, owing to its simplicity. Other choices of nonparametric dis-
tribution or density estimation may also be used, although an in-control phase I
data of moderate size is always required. Third, it requires considerable compu-
tation in setting up our method. For instance, in a typical case considered in our
numerical examples in Section 4, it requires about 20 seconds computing time to
determine the values of k and {hj ,1 ≤ j ≤ jmax;h∗} on our dual-processor Pen-
tium III PC with 800 MHz CPU. However, once these values are obtained, the
monitoring process is just routine.

3. Description of an existing nonparametric CUSUM. Some attempts have
been made in the literature to rectify the conventional CUSUM by overcoming
some of its obvious deficiencies. As mentioned in Section 1, there is a large body
of literature that attempts to substitute rank- and sign-based statistics in place of
the original observations. Among those existing nonparametric control charts, the
one by Bakir and Reynolds (1979) is classical and often used as a gold standard in
the nonparametric control charts literature [cf., e.g., Chakraborti, van der Laan and
Bakir (2001)]. In this section we briefly introduce this procedure. We will make
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some numerical comparisons between our proposed method and this method in
Section 4.

As in conventional phase II SPC, the mean of the in-control measurement dis-
tribution F is assumed known. Without loss of generality, it is assumed to be 0. By
Bakir and Reynolds’s method, the observed data is grouped into blocks of size g

each. Then, define Rij as the rank of the absolute value of the j th observation in
the ith block. That is, Rij is the rank of |Xij | among {|Xi1|, |Xi2|, . . . , |Xig|},
where i = 1,2 . . . . Then define Uij = sign(Xij )Rij and Vi = ∑g

j=1 Uij , and
construct a CUSUM based on the Vi . That is, we look at the process Sn =
max (0, Sn−1 + Vn − k). The process being monitored is declared to be out-of-
control if Sn > h.

A crucial assumption of this procedure is that F is a symmetric distribution.
There are several other features to be noted for this nonparametric CUSUM.
First, for fixed k, the distribution of Sn does not depend on that of X1, hence,
it is distribution-free. Second, by replacing the observations by their within-group
ranks, it appropriately scales for outliers. Third, since the procedure requires a
grouping, results may depend on the value of g selected. Fourth, the Vi’s take in-
teger values. While this ensures a certain amount of insensitivity to chance errors,
it also implies that there may not be a h value corresponding to a given value of
ARL0. In fact, Table 2a of Bakir and Reynolds (1979) confirms this fact rather dra-
matically, which presents some consecutive h values and the corresponding ARL0
values for certain fixed g and k, and the ARL0 values are widely apart. Fifth, if the
parameter k is to be chosen optimally, then a knowledge of F is essential, which
obviously defeats the purpose of having a distribution-free procedure. Sixth, the
procedure is insensitive to shifts in the scale parameter, but it is sensitive to shifts
in the location parameter. In many cases, it is unknown whether the shift in F is in
its location parameter only. Finally, there does not seem to be a satisfactory proce-
dure for computing h. Indeed, h appears to differ in cases with different F (and G),
which would also defeat the purpose of having a distribution-free procedure.

4. Simulation studies. In this section we present some numerical examples
for investigating the performance of the proposed procedure. Recall that there
are two major ideas in the proposed procedure: (i) using a set of control lim-
its {h1, . . . , hjmax, h

∗}, instead of a single control limit, and (ii) using the boot-
strap for estimating these control limits. In order to study the two ideas sepa-
rately, we first assume that the in-control distribution F is known. In such cases,
{h1, . . . , hjmax, h

∗} can be computed directly from F ; thus, bootstrapping is not
needed. When F is known, the conventional CUSUM is optimal if F is a normal
distribution and its mean and variance are both known. However, when F is not
a normal distribution, results from the conventional CUSUM could be mislead-
ing, since its true in-control average run length could be very different from the
nominal one ARL0. The proposed procedure, on the other hand, is still reliable in
such cases, because its control limits are computed from F . To see these facts, we
consider the following three cases:
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Case I F = N(0,1) and G = N(δ,1).
Case II F has the density function (1/6) exp(−x/3) when x ≥ 0 and (1/2) exp(x)

when x < 0, standardized to have mean 0 and variance 1. G is a location
shift of F with shift size δ. In this case, F is skewed to the right.

Case III F has the density (1/6) exp(x/3) when x < 0 and (1/2) exp(−x) when
x ≥ 0, standardized to have mean 0 and variance 1. G is a location shift
of F with shift size δ. In such cases, F is skewed to the left.

In the first part of the simulations we use the algorithm presented in Section 2
to generate our SPC procedure (denoted as B), but with F in place of F̂ , since F is
known. In the algorithm we choose B = 5000, jmax = 50, and ETn = 37.5. Other
parameters are chosen as those specified in Section 2. In all three cases we take δ

to be 0 or 0.5, and ARL0 = 200. We assume that δ is known when implementing
the classical CUSUM (denoted as C), and is unknown when implementing our
proposed CUSUM, hence, we bias the results in favor of the classical CUSUM.
For the classical CUSUM, we take the allowance constant to be k = 0.25. The
in- and out-of-control average run lengths over 1000 replications, along with the
standard errors of the average run lengths, of the two procedures are presented in
Table 2.

From Table 2, it can be seen that, in case I when the normal assumption is valid
and when the in-control mean and variance are known, the classical CUSUM C
performs well. Its actual in-control ARL is close to 200. The expected time to
detection after the process is out-of-control, denoted by ARL1, is relatively small,
as expected. In such a case, the proposed procedure B is comparable. However, in
cases II and III when F is skewed to the right or left, the actual in-control ARL
values of C are well above or below 200. In case II C would not detect a potential
shift as quick as we would expect, and it would provide a false signal of a process
change with a larger than expected probability in case III. In comparison, the actual
in-control ARL values of procedure B are not significantly different from 200 (e.g.,

TABLE 2
ARL values and their standard errors (in parentheses) of the classical CUSUM C and the proposed

CUSUM B in cases I–III. The nominal ARL0 is 200 in all cases

C B

Case δ = 0 δ = 0.5 δ = 0 δ = 0.5

I 202.49 19.66 201.16 19.13
(7.72) (0.32) (6.19) (0.47)

II 669.67 16.69 207.11 10.38
(30.82) (0.30) (8.32) (0.54)

III 119.84 22.62 194.79 31.43
(4.40) (0.48) (2.98) (0.88)
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in case II, its estimated in-control ARL value 207.11 is within 1 standard error
of 200), and its ARL1 values are reasonably small in these cases.

The above example shows that the classical CUSUM is sensitive to distrib-
utional assumptions. Our other numerical studies, which are not reported here,
suggest that it is also sensitive to the choice of the tuning parameters like the al-
lowance constant k when F is not Normal, and to the variability in estimates of
the mean and variance of F obtained from the Phase I data [see related discus-
sion in Jones, Champ and Rigdon (2004)]. In comparison, our proposed procedure
does not require prior information about both F and G; consequently, it is robust
to distributional assumptions. The above example also suggests that our method
is competitive to the optimal classical CUSUM in the Normal case (i.e., case I),
while it performs more reliably when the normality assumption does not hold (i.e.,
cases II and III).

Next, we consider the three cases described above without assuming F to be
known for our algorithm. We study the properties of six different procedures.
They are (i) the classical CUSUM (labeled as C), (ii) the nonparametric CUSUM
by Bakir and Reynolds (1979) when its parameters (g, k, h) are chosen to be
(10, 13, 24) (labeled as NP1), (iii) the nonparametric CUSUM by Bakir and
Reynolds when (g, k, h) are chosen to be (10, 21, 14) (labeled as NP2), and
(iv)–(vi) the bootstrap CUSUMs with allowance constants resulting from setting
ETn = 0.5jmax, ETn = 0.75jmax, and ETn = jmax, respectively (labeled as B1, B2,
and B3). By using the relationship between k and ETn, as discussed in Section 2,
the corresponding k values are respectively 0.028, 0.017, and 0.011 in procedures
B1, B2, and B3 when jmax = 50 in case I.

Let the location shift from F to G be denoted as δ. For C, we assume that δ

is known, and we use the optimal allowance constant k = δ/2. Its control limit h

is computed using a standard algorithm [cf. Hawkins and Olwell (1998), Chap-
ter 2]. Regarding the nonparametric CUSUM by Bakir and Reynolds, there seems
to be no simple algorithm for choosing its parameters (g, k, h) in a distribution-
free fashion, which makes it relatively inconvenient to use for many applications.
Bakir and Reynolds provide several tables listing in-control ARL values of their
procedure for many different combinations of g, k, and h. The two cases consid-
ered (i.e., labeled NP1 and NP2 in this paper) have ARL values close to 200. For
procedures B1, B2, and B3, parameters other than ETn and jmax are chosen as in
the previous example.

We studied these six procedures in various situations when the nominal ARL0
value is fixed at 200. First, δ is allowed to take the values 0, 0.50, and 1. The
case with δ = 0 is for studying the actual in-control ARL values of the related
SPC techniques. Second, in procedures B1, B2, and B3, jmax takes the value of 5,
30, 40, or 50, which allows us to investigate the possible effect of jmax on the
performance of the proposed bootstrap procedures. For each simulation, phase I
data of size m is generated from F , and phase II data is generated sequentially,
with the first n1 observations from F and the rest from G. In this paper we fix
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m = 1000 and n1 = 0. The estimated mean and variance from the Phase I data are
used in C. For the proposed bootstrap procedures, we found that results are already
quite satisfactory when m takes a value of about 100, although their performance
improves with larger m. On the other hand C is extremely variable when m is
small, due to the variability induced by the estimated mean and variance from the
Phase I data that are used for Phase II SPC.

In the ith simulation, we check the time point RLij when the j th CUSUM
technique sends an out-of-control signal. For the j th CUSUM technique, we
report the sample mean ARLj = I−1 ∑I

i=1 Rij and the associated standard er-

ror SERLj = I−1/2
√

1
I−1

∑I
i=1(RLij − ARLj )2 of all RLij values obtained from

I = 100 simulations. The standard error SERLj gives us an idea of the variability
associated with ARLj . Simulation results in cases I–III are presented in Tables 3–5,
respectively.

From Table 3, it can be seen that, in case I when the normality holds, the actual
in-control ARL values of C, and B1, B2, and B3 when jmax = 30,40, or 50 are
all within 1 standard error of the nominal ARL0 value of 200. The nonparametric
procedures NP1 and NP2 register low actual in-control ARL values. By compar-
ing different procedures with respect to their ARL1 values, it can be seen that the
optimal classical CUSUM generally performs well for all different δ values, and
the bootstrap procedures are just as good. In fact, in some cases (e.g., in cases
when δ = 1 and jmax = 30,40, or 50), the bootstrap procedures out-perform C,

TABLE 3
Average run lengths and their standard errors (in parentheses) of different SPC procedures in

case I. Nominal ARL0 value is 200

δ = 0 δ = 0.5 δ = 1

C 206.96 (25.86) 19.08 (1.39) 7.53 (0.47)
NP1 140.30 (13.49) 21.40 (1.23) 11.90 (0.42)
NP2 155.20 (16.67) 20.90 (1.32) 11.60 (0.40)

jmax = 5 B1 178.43 (20.03) 25.31 (0.97) 12.54 (0.57)
B2 173.78 (20.16) 18.37 (1.17) 7.94 (0.47)
B3 201.86 (24.73) 27.38 (2.14) 9.14 (0.87)

jmax = 30 B1 202.92 (18.96) 18.89 (1.45) 6.60 (0.46)
B2 194.44 (18.86) 18.68 (1.49) 6.43 (0.42)
B3 197.79 (17.81) 19.20 (1.56) 6.45 (0.42)

jmax = 40 B1 195.04 (21.04) 22.40 (1.72) 5.66 (0.46)
B2 198.98 (21.19) 20.52 (1.80) 5.70 (0.48)
B3 201.87 (22.66) 21.36 (1.80) 5.77 (0.48)

jmax = 50 B1 190.88 (25.66) 16.96 (1.61) 6.59 (0.59)
B2 199.35 (25.74) 18.73 (1.62) 6.84 (0.59)
B3 202.79 (28.53) 17.51 (1.60) 6.50 (0.54)
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TABLE 4
Average run lengths and their standard errors (in parentheses) of different SPC techniques in

case II. Nominal ARL0 value is 200

δ = 0 δ = 0.5 δ = 1

C 258.96 (28.76) 78.04 (7.45) 36.42 (3.25)
NP1 656.90 (67.97) 176.30 (16.12) 57.10 (4.57)
NP2 635.90 (60.52) 173.30 (15.15) 75.30 (6.99)

jmax = 5 B1 191.13 (18.55) 62.65 (3.50) 37.58 (1.57)
B2 191.86 (19.32) 58.09 (4.03) 23.27 (1.53)
B3 204.71 (20.22) 93.38 (9.68) 34.98 (3.30)

jmax = 30 B1 205.59 (21.63) 103.37 (8.66) 48.91 (2.80)
B2 204.24 (22.03) 100.32 (7.65) 48.38(2.61)
B3 207.31 (25.49) 99.21 (7.76) 48.21 (2.70)

jmax = 40 B1 203.95 (25.65) 112.21 (9.09) 52.72 (4.10)
B2 206.69 (24.74) 113.57 (9.11) 52.77(4.55)
B3 204.78 (23.22) 106.66 (7.87) 52.74 (4.55)

jmax = 50 B1 195.90 (19.85) 102.74 (8.19) 53.27 (3.93)
B2 195.42 (21.74) 98.09 (7.73) 53.55 (3.94)
B3 194.02 (20.83) 98.63 (8.16) 53.05 (3.88)

TABLE 5
Average run lengths and their standard errors (in parentheses) of different SPC techniques in

case III. Nominal ARL0 value is 200

δ = 0 δ = 0.5 δ = 1

C 232.61 (24.16) 82.74 (7.64) 57.25 (4.74)

NP1 51.50 (4.62) 31.90 (2.33) 26.10 (1.70)

NP2 55.20 (4.85) 33.70 (2.66) 25.20 (1.69)

jmax = 5 B1 199.38 (18.47) 73.38 (5.06) 40.09 (1.72)

B2 204.2 (26.4) 75.07 (13.46) 64.48 (5.16)

B3 216.17 (27.05) 116.85 (16.46) 79.67 (16.55)

jmax = 30 B1 199.51 (19.45) 54.59 (3.66) 28.17 (2.57)

B2 195.73 (21.69) 54.33 (3.66) 28.17 (2.55)

B3 190.03 (19.38) 55.34 (3.59) 28.59 (2.49)

jmax = 40 B1 202.34 (21.54) 49.62 (4.27) 22.67 (2.50)

B2 197.50 (21.50) 48.33 (4.33) 22.45 (2.48)

B3 184.37 (16.45) 48.22 (4.21) 21.91 (2.34)

jmax = 50 B1 197.15 (18.51) 45.53 (4.87) 18.93 (2.26)

B2 190.68 (20.61) 49.59 (5.17) 19.85 (2.35)

B3 193.50 (19.54) 50.88 (5.19) 17.50 (2.24)
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although some differences among the related ARL1 values are not large enough
to be significant at the 0.05 significance level. This can be explained by the facts
that the optimality of C is based on asymptotic theory [Lorden (1971)] and in the
sense of minimizing maxn1≥0 ARL1 where n1 is the true shift time [Moustakides
(1986)], while m and n1 are fixed in the current example. For the three bootstrap
procedures, it seems that their performance becomes quite stable when jmax ≥ 30.
When jmax is small (i.e., jmax = 5), their performance may not be stable, in the
sense that their actual ARL values could be quite different from ARL0 and their
ARL1 could be relatively large. Regarding the two NP procedures, although their
actual in-control ARL values are much less than 200, their ARL1 values are quite
large especially when δ is large (i.e., δ = 1). Therefore, in this case, they are not as
efficient as the other methods considered here for phase II SPC, which is expected
because of the loss of information by using ranks and grouped data.

From Table 4, it can be seen that, when F is right skewed, the conventional
CUSUM C has a quite large actual in-control ARL value. The two nonparametric
procedures NP1 and NP2 are misleading in this case because their actual in-control
ARL and ARL1 values are all very large. In comparison, the proposed bootstrap
CUSUMs perform reasonably well. Their actual in-control ARL values are within 1
standard error of 200 in all cases. It is worth mentioning that, in this case, the
proposed bootstrap CUSUMs seem to perform better when jmax is chosen smaller,
especially when δ = 1. This might be because, by our algorithm, the choice of a
small jmax results in large k, which makes detection of shifts easier. This requires
further investigation.

From Table 5, if F is left skewed, the nonparametric procedures register ex-
tremely small actual in-control ARL values. It can be seen that the actual in-control
ARL value of C is larger than 200, although their difference is only about 1.4 times
the standard error. The ARL1 values of C are large in both cases when δ = 0.5
and δ = 1. In comparison, the bootstrap procedures perform well, except when
jmax = 5. From the table, the bootstrap procedures seem to stabilize when they are
used for detecting the smaller shift δ = 0.5 and when jmax is chosen as large as 50.
When it is used for detecting the larger shift δ = 1, it seems that performance of
the bootstrap procedures still has room for improvement by using larger jmax val-
ues. This suggests that optimal selection of jmax may depend not only on the shape
of F , but also on the shift size.

It should be pointed out that ARL values from different procedures acting on
the same data are usually positively associated. Therefore, when we compare two
different methods based on their ARL1 values listed in the above tables, the actual
p-value would be less than the one obtained when they are assumed independent.
As an example, if we compare the 100 pairs of out-of-control run length values
corresponding to C and B1 in case I when δ = 1 and jmax = 50 (cf. the last column
in Table 3), the paired t-test for equality of means yields a p-value that is less
than 0.001. Similar tests conclude that B2 and B3 both outperform C significantly
in this case, and pairwise differences among B1, B2, and B3 are not significant in
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terms of their ARL1 values. More pairwise comparison results are available from
the authors upon request.

The general picture that emerges from the above simulations is that, if both F

and G are normal, then the conventional CUSUM C is a good performer. When
the normality does not hold, it can have a too high or too low actual in-control ARL
value. The nonparametric procedures NP1 and NP2 do not perform well in most
cases considered here, due to various reasons, some of which have been discussed
in Section 3. In comparison, the proposed bootstrap method does not require prior
information about F and G. Therefore, it performs reasonably well in all cases
considered, as long as jmax is not too small.

5. An application to aluminum smeltering data. In this section we con-
sider an example associated with the aluminum smeltering process. The data over
189 time units are on three variables: Silica (SiO2), Ferric Oxide (Fe2O3), and
Magnesium Oxide (MgO), which are denoted as x1, x2, and x3 below. All these
variables are affected by the raw materials, and are relevant to the operation of the
smelter. For effective extraction of aluminum, it is desirable that levels of these
variables remain stable over time.

Like many other phase II SPC procedures, our procedure assumes that obser-
vations at different time points are independent of each other. However, for this
dataset, we found that observations at different time points are actually correlated.
In the literature, there are several existing discussions regarding SPC procedures
in such cases [e.g., Lu and Reynolds (1999), Scariano and Hebert (2003), Zhang
(1998)]. A convention is to pre-whiten the observed data by removing the autocor-
relation, so that the pre-whitened data may be treated as nearly independent over
different time points. In particular, Lu and Reynolds (1999) showed that, for each
variable, the original observations have a shift in the mean at a given time point if
and only if the pre-whitened observations have a shift in the mean at the same time
point. When the autocorrelation involved in the data is relatively weak and the po-
tential shift is relatively small, Zhang (1998) suggested an exponentially weighted
moving average control chart that is appropriate for original correlated data.

In this example we pre-whiten the observed data by modeling the autocorrela-
tion for each variable with the following r th order autoregression model, using the
R function ar.yw():

x(i) − μ = α1
(
x(i − 1) − μ

) + · · · + αr

(
x(i − r) − μ

) + ε(i),(6)

where x(i) is the measure at the ith time point, μ is its mean, α1, . . . , αr are co-
efficients, and ε(i) is a white noise process with zero mean and variance σ 2

ε . The
default Akaike’s Information Criterion (AIC) is used for determining the value
of r . The results are summarized in Table 6. Residuals from the three fitted au-
toregression models (denoted as ε1, ε2, and ε3), corresponding to three original
variables x1, x2, and x3, are then monitored for possible changes in the distribu-
tions of x1, x2, and x3. Figure 1 presents the density curves of the residuals, along
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TABLE 6
Results from the autoregression modeling of the three variables

Variable μ r α1, . . . ,αr

x1 0.63 3 0.07, 0.12, 0.28
x2 24.81 2 0.30, 0.24
x3 12.97 1 0.55

with their Normal Q–Q plots. It can be seen that residuals for x1 are right-skewed,
those for x2 are a little right-skewed, and those for x3 are a little left-skewed with
several small modes besides a major mode around 0. We performed Shapiro–Wilk
tests [Shapiro and Wilk (1965)] on these variables to check for normality. The
p-values are respectively 10−16, 0.02, and 0.23. This suggests that only residuals
for x3 may be approximated with a Normal distribution, in which case we stand

FIG. 1. Panels (a), (b), and (c) present the residuals of the variables SiO2, Fe2O3, and MgO,
respectively, in the aluminum smeltering data, after autocorrelation of the variables were excluded
by a autocorrelation model. Panels (d), (e), and (f) show the corresponding density curves of the
residuals.
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FIG. 2. Panels (a), (b), and (c) present the control charts of the bootstrap CUSUM B2 for ε1, ε2,

and ε3. The solid line is the CUSUM, and the broken line in the plots denote control limits used at
the corresponding time points.

to ignore the multiple modes that are present in its density plot. Residuals of the
other two variables are significantly non-Normal.

From the simulation examples presented in Section 4, we notice that the boot-
strap CUSUM B2 performs reasonably well in all cases considered there. To
illustrate the use of this procedure in the present application, for each residual
variable, we used the first 50 data points as phase I data, and then monitored the
remaining observations for possible shifts in F . As discussed in Section 2, we first
estimated F by F̂ , from the phase I data, using kernel density estimation. Then
the sequence of control limits {hj , j = 1, . . . , jmax;h∗} were determined by the
algorithm described in Section 2, using the bootstrap, where h∗ is fixed at 50,
ARL0 = 200, and all other procedure parameters are specified as in Section 4.
Next, we tried to monitor the 51st–186th observations of each residual variable.
The control charts, up to the times when out-of-control was signaled, are shown
in Figure 2. From the plots, it can be seen that control limits in the proposed boot-
strap procedure at different time points could be different, and they are reset to zero
whenever the CUSUM statistic is zero. From the three plots of this figure, it can
be seen that we have signals of shifts in F at the 61st, 83rd, and 62nd time points,
respectively, for x1, x2, and x3. We also tried bootstrap CUSUMs B1 and B3. Their
results are similar. Analysis at subsequent time points show that the CUSUM for
silica is increasing almost with a linear trend, while those for Ferric Oxide and
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Magnesium Oxide are sometimes within the control limits, and sometimes out-
side. This suggests that there is a discernible pattern change in the silica content
of the aluminum ore; with changes in Ferric and Magnesium impurities also being
very likely.

Aluminum smelting is an energy intensive, continuous process, and a smelter
cannot easily be stopped and restarted. If the production is interrupted for
more than four hours, the metal in the pots solidify, often requiring an expen-
sive rebuilding process. See http://www.world-aluminium.org/About+Aluminium/
Production/Smelting/index.html for further details. In view of the possible lack of
Normality of the data, and considering the enormous cost of a process failure, it
is worthwhile to monitor for SPC using the proposed bootstrap based procedure.
Since the data are multivariate in nature, another possible approach to monitor this
data would be to use a multivariate distribution-free control chart, such as the ones
by Qiu (2008) and Qiu and Hawkins (2001, 2003).

6. Concluding remarks. In this paper we put forth two proposals: (i) use of
a sequence of control limits {hj } which depend on the conditional distributions
of {Cn|Tn = j}, and (ii) obtaining the control limits {hj } by bootstrap. These two
proposals result in SPC procedures that do not depend on the in-control distribu-
tion F and the out-of-control distribution G. Its control limits {hj } are obtained in
a data-driven way from a Phase I dataset. Simulation experiments in Section 4 and
a real-data example in Section 5 illustrate that it works reasonably well in various
cases.

In this paper we suggest choosing jmax from computational considerations, and
ETn by linking it to jmax, as a matter of convenience. The distribution of (Cn,Tn)

depends on (jmax, k) in a way that is poorly understood at present. Simulation
examples suggest that the best choice of jmax may depend on both F and G, how-
ever, the convenient choices of jmax used in this paper perform reasonably. More
research is required to provide guidelines on selection of jmax and k for bootstrap
based SPC.

In this paper we focus on detecting potential shifts in the mean of F . Studies are
needed on the ability of the proposed method in detecting shifts in variance or other
summary statistics of F . Also, after obtaining a signal from the proposed proce-
dure, we know that there is a potential shift in F ; but we do not know whether the
shift is in the mean, variance, or any other aspects of F . To further investigate this,
a possible approach is to apply a SPC procedure for detecting shifts in the mean
(e.g., the Shewhart chart), for instance, if we are interested in knowing whether
there is a shift in the mean, after obtaining a signal from the proposed method.
More research is needed for studying the theoretical and numerical properties of
such combined procedures, and for comparison between them and the combined
procedures of traditional CUSUMs and Shewhart charts that are commonly used
in practice. Extension of the proposed method to multidimensional cases is also a
future research topic.

http://www.world-aluminium.org/About+Aluminium/Production/Smelting/index.html
http://www.world-aluminium.org/About+Aluminium/Production/Smelting/index.html
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