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Abstract

This paper considers statistical process control (SPC) of univariate processes when the para-

metric form of the process distribution is unavailable. Most existing SPC procedures are based

on the assumption that a parametric form (e.g., normal) of the process distribution can be speci-

fied beforehand. In the literature, it has been demonstrated that their performance is unreliable

in cases when the pre-specified process distribution is invalid. To overcome this limitation, some

nonparametric (or distribution-free) SPC control charts have been proposed, most of which are

based on the ordering information of the observed data. This paper tries to make two contri-

butions to the nonparametric SPC literature. First, we propose an alternative framework for

constructing nonparametric control charts, by first categorizing observed data and then apply-

ing categorical data analysis methods to SPC. Under this framework, some new nonparametric

control charts are proposed. Second, we compare our proposed control charts with several rep-

resentative existing control charts in various cases. Some empirical guidelines are provided for

users to choose a proper nonparametric control chart for a specific application. This article has

supplementary materials online.

Key Words: Categorical data; Categorization; Discrete data; Distribution-free; Non-Gaussian

data; Nonparametric procedures; Ranks.

1 Introduction

Statistical process control (SPC) charts are widely used in industry for monitoring the stability

of certain sequential processes (e.g., manufacturing processes, health care systems, internet traffic

flow, and so forth). In practice, SPC is generally divided into two phases. In Phase I, a set of

process data is gathered and analyzed. Any unusual “patterns” in the data lead to adjustments

and fine tuning of the process. Once all such assignable causes are accounted for, we are left with a

clean set of data, gathered under stable operating conditions and illustrative of the actual process
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performance. This set is then used for estimating the in-control (IC) distribution of the process

response. In Phase II, the estimated IC distribution of the response from a Phase I data is used,

and the major goal of this phase is to detect changes in the response distribution after an unknown

time point. Performance of a Phase II SPC procedure is often measured by the average run length

(ARL), which is the average number of observations needed for the procedure to signal a change in

the response distribution. The IC ARL value of the procedure is often controlled at a given level.

Then, the procedure performs better if its out-of-control (OC) ARL is shorter, when detecting

a given distributional change. See, e.g., Hawkins and Olwell (1998) for related discussion. This

paper focuses on Phase II monitoring of univariate processes in cases when a parametric form (e.g.,

normal) of the process response distribution is unavailable.

In the literature, many Phase II SPC charts have been proposed, including different versions

of the Shewhart chart, the cumulative sum (CUSUM) chart, the exponentially weighted moving

average (EWMA) chart, and the chart based on change-point detection (cf., e.g., Hawkins and

Olwell 1998, Hawkins et al. 2003). Design and implementation of these control charts usually

requires the assumption that the process response distribution follows a parametric form (e.g.,

normal). In practice, however, process observations may not follow the pre-specified parametric

distribution. In such cases, it has been demonstrated in the literature that results from these

charts using the pre-specified distribution in their design may not be reliable (cf., Amin et al.

1995, Hackl and Ledolter 1992, Lucas and Crosier 1982). As a demonstration, Figure 1 shows the

actual IC ARL values of the conventional CUSUM chart based on the assumption that the IC

response distribution is N(0, 1), in cases when the allowance constant of the chart (see introduction

in Section 3.1) is 0.5, the assumed IC ARL value equals 500 and the true response distribution is

the standardized version (with mean 0 and variance 1) of the chi-square (plot (a)) or t (plot (b))

distribution. The actual IC ARL values of the conventional CUSUM chart are much smaller than

the nominal IC ARL value when the df is small, which implies that the related process would be

stopped too often by the control chart when it remains IC and consequently a considerable amount

of time and resource would be wasted in such cases.

Figure 1 suggests it is desirable to develop appropriate control charts that do not require

specifying the parametric form of the response distribution beforehand. To this end, a number of

distribution-free or nonparametric control charts have been developed. See, for instance, Albers and

Kallenberg (2004, 2009), Albers et al. (2006), Amin et al. (1995), Amin and Searcy (1991), Amin
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Figure 1: Actual IC ARL values of the conventional CUSUM chart in cases when the nominal IC
ARL value is 500, and the true response distribution is the standardized version (with mean 0 and
variance 1) of the chi-square (plot (a)) or t (plot (b)) distribution with degrees of freedom changing
from 1 to 60 in plot (a) and from 3 to 60 in plot (b).

and Widmaier (1999), Bakir(2004, 2006), Bakir and Reynolds (1979), Chakraborti et al. (2000,

2004, 2009), and Chakraborti and Eryilmaz(2007). Chakraborti et al. (2001) gives a thorough

overview on existing research in the area of univariate distribution-free SPC. In multivariate cases,

see Qiu and Hawkins (2001, 2003) and Qiu (2008) for related discussion.

Most existing nonparametric SPC charts mentioned above are based on the ordering or rank-

ing information of the observations obtained at the same or different time points. Some require

multiple observations at each time point (i.e., cases with batch or subgrouped data). We suggest

an alternative method to handle the univariate SPC problem with unknown response distribution.

By the proposed method, observed data are first categorized, and then certain statistical proce-

dures for categorical data analysis are used for constructing nonparametric SPC charts. Major

considerations behind this method are as follows: First, statistical tools for describing and ana-

lyzing non-normal numerical data are limited; but, there are a considerable amount of statistical

tools for handling categorical data (cf., Agresti 2002). Second, while both data ranking and data

categorization result in a loss of information, the amount of lost information due to categorization

can be controlled by the number of categories used. The bigger the number of categories used,

the less information would be lost. In comparison, the information loss due to ranking is fixed.

Furthermore, the proposed method does not require multiple observations at a single time point.

It also does not require observations to be numerical. Methods based on ranking are generally

3



difficult to use with non-numeric data.

For a given application with unknown response distribution, it is difficult to choose an appropri-

ate control chart from all the existing ones. To address this issue, a numerical study is performed to

compare our proposed control charts with certain existing control charts. Some practical guidelines

are provided for users to choose a proper control chart for a specific application. This comparative

study shows that our proposed control charts perform favorably in the cases considered.

Phase II monitoring of categorized (or grouped) data has been discussed in the literature by

Steiner et al. (1996) and Steiner (1998). In their papers, Steiner and co-authors consider the case

when the IC distribution has a known parametric form (e.g., normal), individual observations may

not be completely known, instead, it is known that they belong to certain given intervals. In such

cases, a CUSUM chart based on the likelihood ratio formulation and an EWMA chart have been

proposed. Obviously, the motivation of the current research is different. In the current research,

we consider the case when the parametric form of the IC distribution is unavailable; thus, the

regular likelihood ratio formulation is unavailable. Categorization of the observed numerical data

overcomes this difficulty, leveraging existing statistical methods for categorical data analysis.

The remainder of the paper is organized as follows. Our proposed nonparametric control charts

are described in Section 2. A numerical study to evaluate their performance in comparison with

several existing control charts is presented in Section 3. An application is discussed in Section 4 to

demonstrate the use of the proposed methods in a real world setting. Some remarks conclude the

article in Section 5. A number of numerical examples are presented in an online supplementary file.

2 Proposed Nonparametric Control Charts

As described in Section 1, our proposed nonparametric control charts can monitor processes with

either categorical or numerical observations. For simplicity, we focus on cases with continuous

observations first. Cases with discrete or categorical observations can be handled similarly, and

will be briefly discussed at the end of this section. Like some existing nonparametric control charts

(e.g., Chakraborti et al. 2009), our charts do not assume that the IC process response cumulative

distribution function (cdf) F0 is known. Instead, we assume that an IC dataset has been collected

in the Phase I analysis, and it can be used for estimating certain IC parameters. Note that, in

practice, it is still an issue how to do Phase I analysis in cases when F0 is nonparametric and
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unknown (cf., Jones-Farmer 2009), although such Phase I analysis is not our focus.

Let X(n) = (X1(n), X2(n), . . . , Xm(n))′ be m observations obtained at the nth time point

during Phase II process monitoring. In the literature, such data are often called subgrouped or

batch data, and m is the batch size. When m = 1, the data are sometimes called single-observation

data. The first step of our proposed method to construct nonparametric control charts is to

categorize the observed data as follows. Let I1 = (−∞, q1], I2 = (q1, q2], . . . , Ip = (qp−1,∞) be a

partition of the real line, where −∞ < q1 < q2 < · · · < qp−1 <∞ are p− 1 boundary points of the

partitioning intervals. Define

Yjl(n) = I(Xj(n) ∈ Il), for j = 1, 2, . . . ,m, l = 1, 2, . . . , p, (1)

and Yj(n) = (Yj1(n), Yj2(n), . . . , Yjp(n))
′, where I(a) = 1 if a =“True” and 0 otherwise. Then,

Yj(n) has one and only one component being 1, the index of the component being 1 is the index

of the partitioning interval that contains Xj(n), and this index has a discrete distribution with

probabilities fl = P (Xj(n) ∈ Il), for l = 1, 2, . . . , p. For simplicity, f = (f1, f2, . . . , fp)
′ is also called

the distribution of Yj(n) in this paper. Let f (0) = (f
(0)
1 , f

(0)
2 , . . . , f

(0)
p )′ be the IC distribution of

Yj(n), and f (1) = (f
(1)
1 , f

(1)
2 , . . . , f

(1)
p )′ be its OC distribution. For the distribution of Yj(n), it can

be checked that, if the support of the IC distribution F0 of the process observations contains at least

one of the boundary points {q1, q2, . . . , qp−1} and p ≥ 2, then any mean shift in X(n) would result

in changes in the distribution f . It should be pointed out that the conditions used in this result are

weak. For instance, the supports of most commonly used continuous numerical distributions (e.g.,

normal, t, χ2, uniform, exponential distributions) are connected intervals on the number line. For

these distributions, any reasonable set of boundary points {q1, q2, . . . , qp−1} should have at least

one point contained in their supports. Otherwise, there must exist one partitioning interval that

contains all observations, which is contradictory to the purpose of categorization. By the above

result, under some mild regularity conditions, f (1) would be different from f (0) if there is a mean

shift in X(n). Therefore, detection of a mean shift in X(n) is equivalent to detection of a change

in the distribution of Yj(n) in such cases.

To define Yj(n) by (1), we should choose {q1, q2, . . . , qp−1} beforehand. For that purpose,

existing research in categorical data analysis demonstrates that it would help detect shifts from f (0)

if they are chosen such that the expected counts under F0 in the partitioning intervals are roughly

the same (cf., e.g., Agresti 2002, Section 1.5). Therefore, we suggest choosing ql to be the l/p-th

quantile of F0, for l = 1, 2, . . . , p − 1. In such cases, f (0) = (1/p, 1/p, . . . , 1/p)′. In practice, ql can
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be estimated by the l/p-th sample quantile of the IC dataset.

To test whether the distribution of Yj(n) equals its IC distribution f (0), the Pearson’s chi-

square test is a natural choice. Let

gl(n) =
m∑

j=1

Yjl(n), for l = 1, 2, . . . , p, n = 1, 2, . . . , (2)

and g(n) = (g1(n), g2(n), . . . , gp(n))
′. Then, gl(n), for l = 1, 2, . . . , p, denotes the number of

observations at the n-th time point that fall into the l-th interval Il. The Pearson’s chi-square test

statistic at the n-th time point is defined by

X̃2(n) =

p∑

l=1

[
gl(n)−mf

(0)
l

]2

mf
(0)
l

,

which measures the discrepancy between the observed counts g(n) and the expected counts mf (0)

in the p partitioning intervals at the n-th time point. However, this statistic uses observations at

a single time point only; it may not be effective to detect persistent changes in the distribution of

Yj(n), as demonstrated in the literature (cf., Hawkins and Olwell 1998, Section 1.3). To overcome

this limitation, we suggest the following CUSUM chart, which adopts the structure of Crosier’s

(1988) multivariate CUSUM scheme, although the two charts are for different purposes. Let Sobs
0 =

S
exp
0 = 0 be two p× 1 column vectors, and





Sobs
n = 0, if Cn ≤ kP

S
exp
n = 0, if Cn ≤ kP

Sobs
n = (Sobs

n−1 + g(n))(Cn − kP )/Cn, if Cn > kP

S
exp
n = (Sexp

n−1 +mf (0))(Cn − kP )/Cn, if Cn > kP

where

Cn =
{(

Sobs
n−1 − S

exp
n−1

)
+
(
g(n)−mf (0)

)}
′
(
diag(Sexp

n−1 +mf (0))
)
−1 {(

Sobs
n−1 − S

exp
n−1

)
+
(
g(n)−mf (0)

)}
,

kP ≥ 0 is the so-called allowance parameter, diag(A) denotes a diagonal matrix with its diagonal

elements equal to the corresponding elements of the vector A, and the superscripts “obs” and “exp”

denote observed and expected counts, respectively. Define

un,P =
(
Sobs
n − Sexp

n

)′
(diag(Sexp

n ))−1
(
Sobs
n − Sexp

n

)
.

Then, a mean shift in X(n) is signaled if

un,P > hP , (3)
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where hP > 0 is a control limit chosen to achieve a given IC ARL level. Chart (3) is called

P-CUSUM chart hereafter, to reflect the fact that it is from the Pearson’s chi-square test.

When kP = 0, it is not difficult to check that Sobs
n is a frequency vector with its l-th element

denoting the cumulative observed count of observations in the l-th interval Il as of the time point

n, for l = 1, 2, . . . , p, and S
exp
n equals nmf (0) which is the vector of the corresponding cumulative

expected counts. Therefore, in such cases, un,P is the conventional Pearson’s chi-square test statistic

that measures the difference between the cumulative observed and expected counts as of the time

point n. Further, it can be checked (cf., Appendix C, Qiu and Hawkins 2001) that

un,P = max(0, Cn − kP ).

Therefore, the charting statistic un,P is defined in the way that the CUSUM chart can be repeatedly

restarted when there is little evidence of distributional shift in Yj(n).

For the P-CUSUM chart (3), the control limit hP can be determined easily by a numerical

algorithm as follows. First, choose an initial value for hP . Then, compute the IC ARL value

of the P-CUSUM chart based on a large number (e.g., 10000) of replicated simulation runs in

which the IC multinomial observations Yj(n) are sequentially generated from the IC distribution

f (0) = (1/p, 1/p, . . . , 1/p)′. If the computed IC ARL value is smaller than the nominal IC ARL

value, then increase the value of hP . Otherwise, choose a smaller hP value. The above process is

repeated until the nominal IC ARL value is reached within a desired precision. In this process,

some numerical searching schemes, such as the bisection search, can be applied (cf., Qiu 2008).

Determination of hP does not require any information about the IC distribution F0 of the process

response. Instead, it only depends on the nominal IC ARL value, the allowance constant kP , the

batch size m, and the number of categories p. In this sense, the P-CUSUM chart is distribution-

free. For some commonly used values of the nominal IC ARL, kP , m, and p, we compute the hP

values and the results are presented in Table 2 in Section 3.3.

As a remark, due to the fact that the charting statistic un,P takes discrete values on the

positive number line, certain pre-specified nominal IC ARL values cannot be reached within a

desired precision. This phenomenon is common when handling discrete data (cf., Hawkins and

Olwell 1998, Section 5.2). In actual implementation of the proposed control chart, it should be

appropriate to use an IC ARL value that the chart can reach. However, when comparing different

control charts, it is often desirable to let all of them have a common IC ARL value. To overcome
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this technical difficulty, in this paper, we propose the following simple but efficient modification

of the charting statistic un,P . Let bj(n) be a sequence of i.i.d. random vectors generated from

the distribution Np(0, s
2Ip×p), where s

2 is a small positive number and Ip×p is the p × p identity

matrix. Then, when computing un,P , we suggest replacing Yj(n) by Yj(n) + bj(n). Namely,

we add a small random number to each component of Yj(n) to alleviate the discreteness of the

charting statistic un,P . Based on our numerical study (not reported here but available from the

authors), as long as s is chosen small, the OC behavior of the P-CUSUM chart is little affected by

this modification. However, most nominal IC ARL values can be reached within a desired precision

after the modification, which can be seen from some numerical results reported in Section 3 (cf.,

Table 1). In all the numerical examples presented in this paper, we use s = 0.01.

To detect changes in the distribution of Yj(n), besides the Pearson’s chi-square test (cf., X̃
2(n)

defined above), another popular test is based on the likelihood ratio statistic

G̃2(n) = 2

p∑

l=1

gl(n) log

(
gl(n)

mf
(0)
l

)
.

Then, a CUSUM chart can be constructed similarly to (3) as follows. Let S̃obs
n and S̃

exp
n be quantities

defined in the same way as Sobs
n and S

exp
n used in chart (3), except that the allowance parameter

kP is replaced by another constant kL, and Cn is replaced by

C̃n = 2
(
S̃obs
n−1 + g(n)

)′
log

(
S̃obs
n−1 + g(n)

S̃
exp
n−1 +mf (0)

)
,

where a/b denotes a vector obtained by component-wise division of the vector a by the vector b,

and log(a/b) similarly denotes a componentwise operation. Define

un,L = 2
(
S̃obs
n

)′
log

(
S̃obs
n

mf (0)

)
.

Then a mean shift in X(n) is signaled if

un,L > hL, (4)

where the control limit hL > 0 can be chosen similarly to hP to achieve a given IC ARL level.

Control chart (4) based on the likelihood ratio test will be called the L-CUSUM chart.

In categorical data analysis, there is much discussion about the relationship between the two

tests based on X̃2(n) and G̃2(n), respectively (cf., Agresti 2002, Section 1.5.5). The two tests

are asymptotically equivalent, and the distribution of X̃2(n) converges to a chi-square distribution
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faster than that of G̃2(n), when the observed counts in g(n) increase. In SPC, however, asymptotic

properties are usually irrelevant because the related control chart should be stopped immediately

after a signal of mean shift is obtained. Therefore, relationship between the P-CUSUM and L-

CUSUM charts still needs to be studied, which will be discussed in Section 3.2.

From the construction of the charts (3) and (4), we notice that the partitioning intervals

{I1, I2, . . . , Ip} are ordered on the number line; but, both the charting statistics un,P and un,L ignore

such ordering information contained in the observed counts {g1(n), g2(n), . . . , gp(n)} completely.

In the nonparametric statistics literature, a popular test that takes into account the ordering

information among observations when testing a potential change in the observation distribution is

the Kolmogorov-Smirnov goodness-of-fit test (cf., Chakravarti et al. 1967). To apply this test here

for detecting potential shifts from the IC process response distribution F0, the test statistic can be

written as

D(n) = max
1≤j≤m

(
F̂0

(
X(j)(n)

)
−
j − 1

m
,
j

m
− F̂0

(
X(j)(n)

))
,

where {X(j)(n), j = 1, 2, . . . ,m} are order statistics of {Xj(n), j = 1, 2, . . . ,m}, and F̂0 is the

empirical IC cdf constructed from the IC data. Based on D(n), a CUSUM chart can be constructed

as follows. Let u0,K = 0, and for n ≥ 1,

un,K = max (0, un−1,K + (D(n)−D0)− kK) ,

where D0 denotes the IC mean of D(n) which can be estimated from the IC data, and kK is an

allowance constant. Then, a mean shift in X(n) is signaled if

un,K > hK , (5)

where hK > 0 is the control limit. Chart (5) is called K-CUSUM chart hereafter. It should

be pointed out that the K-CUSUM chart (5) is constructed from the original observations X(n),

instead of from their categorized version {Yj(n), j = 1, 2, . . . ,m}. Although this chart can also be

constructed from {Yj(n), j = 1, 2, . . . ,m}, this approach is not recommended due to the reasons

that (i) chart (5) based on X(n) is already nonparametric, and (ii) chart (5) based on {Yj(n), j =

1, 2, . . . ,m} would lose efficiency when detecting potential mean shifts in X(n).

The above discussion focuses on cases when process observations are continuous. Situations

when observations are discrete or categorical can be handled similarly. For instance, when process

observations are categorical, then the categorization step (cf., equation (1)) can be skipped when
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constructing the proposed control charts P-CUSUM and L-CUSUM (note: chart K-CUSUM can

only be used in cases with numerical observations). When process observations are discrete and

the number of different observation values is quite small, we can use each possible observation

as a single category, and construct the three charts as usual. In cases when process observations

are discrete but the number of different observation values is quite large, proper combination of

certain observation values might be necessary when defining the categories. To this end, practical

guidelines provided in the paragraph before (2) and the guidelines given in Section 3.3 regarding

construction of the partitioning intervals should be helpful.

3 Numerical Study

In this section, we present some numerical examples to evaluate the performance of the charts

P-CUSUM, L-CUSUM and K-CUSUM, in comparison with certain existing control charts. The

existing control charts considered here are briefly introduced in Section 3.1. Then, the related

control charts are compared in various cases in Section 3.2. From the comparison, we can see that

the P-CUSUM chart has a favorable performance in different cases. To use this chart, the number

of categories p should be properly chosen beforehand. This and other issues of the P-CUSUM chart

are discussed in Section 3.3.

3.1 Some representative existing control charts

The traditional CUSUM chart is a standard tool for monitoring univariate processes in practice.

Its charting statistics of the two-sided version are defined for n ≥ 1 by

u+n,N = max
(
0, u+n−1,N +X(n)− kN

)
,

u−n,N = min
(
0, u−n−1,N +X(n) + kN

)
,

where u+0,N = u−0,N = 0, kN is an allowance constant, X(n) = 1
m

∑m
j=1Xj(n), and the subscript

“N” denotes the fact that this method is based on the normal-distribution assumption. Then, a

mean shift in X(n) is signaled if

u+n,N > h+N or u−n,N < −h−N (6)

where the control limits h+N , h
−
N > 0 are chosen to achieve a given IC ARL level. When the IC

process distribution is symmetric (e.g., normal or t), then we can set h+N = h−N . For skewed IC
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process distributions, different h+N and h−N can be chosen as follows. As demonstrated by Hawkins

and Olwell (1998, Section 3.3), when n is large enough (e.g., n ≥ 50), the distributions of the

charting statistics u+n,N and u−n,N become stable (the steady-state phenomenon). When the IC

process distribution is known, we can determine the steady-state distributions of u+n,N and u−n,N

by simulation and choose h+N and h−N such that P (u+n,N > h+N ) = P (u−n,N < −h−N ) and the pre-

specified IC ARL value is achieved. When the IC process distribution is unknown but an IC dataset

is available, the steady-state distributions of u+n,N and u−n,N can be estimated using bootstrap

samples drawn from the IC data, as in Chatterjee and Qiu (2009), and then h+N and h−N can be

determined in a similar way to that when the IC process distribution is known. The chart (6) is

called N-CUSUM chart hereafter.

When the process distribution is not normal, Borror et al. (1999) showed that a properly

designed EWMA chart is robust to departures from normality. More specifically, the EWMA

charting statistic is defined by

vn = λX(n) + (1− λ)vn−1,

where v0 = 0, λ ∈ [0, 1] is a weighting parameter, and X(n) = 1
m

∑m
j=1Xj(n). Then, a mean shift

in X(n) is signaled if

|vn| ≥ hR,

where hR > 0 is a control limit chosen to achieve a pre-specified IC ARL level under the normality

assumption. Borror et al. (1999) showed that when λ = 0.05 this chart performed reasonably well

in various cases when the IC process distribution was actually non-normal. This EWMA chart

with λ = 0.05 is called R-EWMA chart hereafter.

A distribution-free control chart by Chakraborti and Eryilmaz (2007) is also considered in our

numerical study. The chart originally proposed by Chakraborti and Eryilmaz (2007) is a Shewhart-

type chart, based on the statistic

ψ(n) = 2W+
n −

m(m+ 1)

2
, for n ≥ 1,

where W+
n is the Wilcoxon signed-rank statistic of X(n), defined to be the sum of the ranks of

{|Xj(n) − θ0|, j = 1, 2, . . . ,m} over all positive components of {Xj(n) − θ0, j = 1, 2, . . . ,m}, and

θ0 is the IC median of the process distribution which can be estimated from the IC data. As well

demonstrated in the literature (e.g., Hawkins and Olwell 1998, Section 1.3), CUSUM charts are

more favorable for detecting persistent shifts, compared to Shewhart-type charts. For that reason,
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we construct a CUSUM chart based on ψ(n) as follows. Let u+0,S = u−0,S = 0, and for n ≥ 1

u+n,S = max
(
0, u+n−1,S + (ψ(n)− ψ0)− kS

)
,

u−n,S = min
(
0, u−n−1,S + (ψ(n)− ψ0) + kS

)
,

where kS is an allowance constant, and ψ0 is the IC mean of ψ(n) which can be estimated from the

IC data. Then, the CUSUM chart signals a mean shift in X(n) if

u+n,S > hS or u−n,S < −hS , (7)

where the control limit hS is chosen to achieve a given IC ARL level. The chart (7) is called

S-CUSUM chart hereafter.

As described in Section 1, Steiner et al. (1996) proposed a CUSUM chart for grouped data. To

use this control chart, we need to assume that the process response distribution has a parametric

cdf F (x, θ), where θ is a parameter. When the process is IC, θ = θ0. After the process becomes OC,

θ shifts to θ1. Assume that the data are grouped into s intervals: (−∞, t1], (t1, t2], . . . , (ts−1,∞).

For j = 1, 2, . . . , s, let

π+j (θ) = F (tj , θ)− F (tj−1, θ), l+j = log
(
π+j (θ1)/π

+
j (θ0)

)
, w+

j = round
(
Q+l+j

)
,

where t0 = −∞, ts = ∞, round(a) rounds a to the nearest integer, and Q+ = 50/[max(l+1 , . . . , l
+
s )−

min(l+1 , . . . , l
+
s )]. Then, to detect the shift in θ from θ0 to θ1, the charting statistic is defined to be

T+
n = max


0, T+

n−1 +
s∑

j=1

m+
j (n)l

+
j


 ,

where T+
0 = 0, and m+

j (n) denotes the number of observations that belong to the interval (tj−1, tj ]

at the n-th time point, for j = 1, 2, . . . , s. Then, the chart gives a signal of shift if

T+
n > hSt,

where hSt > 0 is a control limit chosen to achieve a given IC ARL value. In this paper, we choose F

to be the cdf of N(θ, 1), θ0 = 0, and s = 5. As suggested by Steiner et al. (1996), {tj , j = 1, 2, . . . , s}

are chosen to be the optimal CUSUM gauge points listed in Table 2 of their paper that are scaled

by θ1. The control chart using T
+
n is one-sided; but, all other control charts considered in the paper

are two-sided. To make the chart comparable, we modify it to a two-sided control chart as follows.

For j = 1, 2, . . . , s, let

π−j (θ) = F (−tj−1, θ)− F (−tj , θ), l−j = log
(
π−j (−θ1)/π

−
j (θ0)

)
, w−

j = round
(
Q−l−j

)
,
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and

T−
n = min


0, T−

n−1 −
s∑

j=1

m−
j (n)l

−
j


 ,

where Q− = 50/[max(l−1 , . . . , l
−
s )−min(l−1 , . . . , l

−
s )], and m

−
j (n) denotes the number of observations

that belong to the interval (−tj ,−tj−1] at the n-th time point, for j = 1, 2, . . . , s. Then, the two-

sided control chart gives a signal of shift if

T+
n > hSt or T−

n < −hSt,

where hSt is chosen to achieve a given IC ARL value. This chart is called St-CUSUM chart hereafter.

In cases when the IC process response distribution is normal, CUSUM chart (6) with h+N =

h−N = hN and kN chosen to be half of a given mean shift has optimality properties for detecting

the given mean shift (Page 1954). This chart is also considered here as a gold standard when

comparing different control charts, and is denoted as I-CUSUM where “I” represents the “ideal”

CUSUM chart. When the IC process response distribution is t(d), the charting statistics of the

I-CUSUM (cf., Hawkins and Olwell 1998, Section 6.2.9) for detecting a mean shift from µ = 0 to

µ = µ1 is

Z+
n = max

(
0, Z+

n−1 +
d+ 1

2
log

(
d+X2

n

d+ (Xn − µ1)2

))

Z−
n = min

(
0, Z−

n−1 −
d+ 1

2
log

(
d+X2

n

d+ (Xn + µ1)2

))
,

and a mean shift is signaled if

Z+
n > hI or Z−

n < −hI ,

where hI > 0 is a control limit chosen to achieve a desired IC ARL value.

3.2 Numerical comparison of the control charts

In this subsection, we compare the two control charts P-CUSUM and L-CUSUM that are both

based on categorization of the process observations with six alternative charts K-CUSUM, N-

CUSUM, R-EWMA, S-CUSUM, St-CUSUM, and I-CUSUM. The IC distribution is chosen to

be the standardized version with mean 0 and standard deviation 1 of one of the following four

distributions: N(0, 1), t(4), χ2(1) and χ2(4). The t(4) represents symmetric distributions with

heavy tails, and χ2(1) and χ2(4) represent skewed distributions with different skewness. The I-

CUSUM chart is only considered in cases when the IC distribution is N(0, 1) or the standardized
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version of t(4), because we do not know how to construct an appropriate I-CUSUM chart when

the IC distribution is chi-square. It is also assumed the pre-specified IC ARL value is 500, and the

batch size of Phase II observations at each time point is m = 5. We fix p = 5 in the P-CUSUM

and L-CUSUM charts.

First, we compute the actual IC ARL values of the eight control charts, based on 10,000

replicated simulations, for each of the four actual IC process distributions described above. For

the charts P-CUSUM, L-CUSUM, K-CUSUM, N-CUSUM, and S-CUSUM, their control limits are

determined based on 500 IC observations when their allowance constants are chosen to be 0.1. The

control limit of the chart R-EWMA is chosen when λ = 0.05 and the IC distribution is assumed

normal. For the chart St-CUSUM, it is assumed that the IC process response distribution is normal

in all cases, as described in Section 3.1, and the OC mean θ1 = 0.6. For the I-CUSUM chart, the

IC distribution is assumed known, kN = 0.1 when the IC distribution is N(0, 1), and µ1 = 0.2 when

the IC distribution is the standardized version of t(4).

The actual IC ARL values are shown in Table 1. The actual IC ARL values of the charts

P-CUSUM, L-CUSUM, and K-CUSUM are close to 500 in all cases, as expected. The actual

IC ARL values of the charts N-CUSUM and R-EWMA are quite different from 500 when the

actual IC process distribution is non-normal. For the chart S-CUSUM, its actual IC ARL values

are moderately different from 500 due to the discreteness of its charting statistic, as shown in

Chakraborti and Eryilmaz (2007). Because the chart St-CUSUM is constructed using a normal

likelihood, its actual IC ARL value is close to 500 when the actual IC process distribution is N(0, 1);

but, its actual IC ARL values are far from 500 in the other three cases. The actual IC ARL values

of the chart I-CUSUM are close to 500 in the two cases considered, as expected.

Next, we compare the OC performance of the related control charts in cases when the IC

sample size M = 500. In order to make the comparison more meaningful, we intentionally adjust

the parameters of the charts N-CUSUM, R-EWMA, and St-CUSUM so that their actual IC ARL

values equal 500 in all cases considered. For the chart S-CUSUM, we use the same modification

procedure as the one described in Section 2 for the P-CUSUM chart to overcome the difficulty

caused by the discreteness of their charting statistics, and the actual IC ARL value of its modified

version can reach 500 in all cases considered. In this study, 10 mean shifts ranging from -1.0 to

1.0 with step 0.2 are considered, representing small, medium and large shifts. Due to the fact that

different control charts have different parameters (e.g., kP in the chart P-CUSUM, kN in the chart
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Table 1: The actual IC ARL values and their standard errors (in parentheses) of the eight control
charts when the nominal IC ARL values are fixed at 500 and the actual IC process distribution is
the standardized version of N(0, 1), t(4), χ2(1) and χ2(4).

N(0, 1) t(4) χ2(1) χ2(4)

P-CUSUM 501.9 (5.51) 503.3 (5.55) 504.8 (5.46) 501.1 (5.45)
L-CUSUM 498.1 (4.96) 495.3 (5.02) 504.2 (5.13) 497.4 (5.06)
K-CUSUM 499.0 (4.48) 499.7 (4.47) 504.4 (4.61) 496.4 (4.46)
N-CUSUM 498.9 (4.35) 156.0 (1.13) 321.4 (2.63) 371.5 (3.27)
R-EWMA 502.2 (6.24) 578.2 (20.87) 605.5 (8.65) 533.7 (6.57)
S-CUSUM 497.3 (5.22) 532.2 (5.57) 544.5 (5.88) 518.3 (5.63)
St-CUSUM 499.5 (4.87) 3037.7 (27.33) 9316.6 (20.46) 1862.2 (18.08)
I-CUSUM 499.8 (4.84) 499.8 (4.92) – –

N-CUSUM, and λ in the chart R-EWMA), and that the performance of different charts may not

be comparable if their parameters are pre-specified, we use the following two approaches to set up

their parameters. One is that all their parameters are chosen to be the optimal ones for detecting a

given shift (e.g., the one of size 0.6), by minimizing the OC ARL values of the charts for detecting

that shift while their IC ARL values are all fixed at 500, and the chosen parameters are used in

all other cases as well. The second approach is to compare the optimal performance of all the

charts when detecting each shift, by selecting their parameters to minimize the OC ARL values for

detecting each individual shift, while their IC ARL values are all fixed at 500. The second approach

for comparing different control charts has been used in the literature. See, for instance, Qiu and

Hawkins (2001). The second approach is explored in the supplementary materials.

Based on 10,000 replications, the OC ARL values of the related control charts by the first

approach when the procedure parameters are chosen to be the optimal ones for detecting the shift

of 0.6 are shown in Figures 2 and 3. The results are shown in two figures to better demonstrate

the difference among control charts. The OC ARL values of the P-CUSUM chart are plotted in

both figures for comparison. When reading the plots in these figures, readers are reminded that

the scale on the y-axis is in natural logarithm, to better demonstrate the difference among different

control charts when detecting relatively large shifts.

From Figures 2(a) and 3(a), we can see that when the normality assumption is valid, the I-

CUSUM and N-CUSUM charts are the best, because of the optimality of the conventional CUSUM

chart (cf., Moustakides 1986, Ritov 1990). The St-CUSUM and P-CUSUM charts lose power in

detecting mean shifts because of grouping in the St-CUSUM chart and the categorization in the P-
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Figure 2: OC ARL values of five control charts when the IC ARL is 500, M = 500, m = 5, and
the actual IC process distribution is the standardized version of N(0, 1) (plot (a)), t(4) (plot (b)),
χ2(1) (plot (c)), and χ2(4) (plot (d)). Procedure parameters of the control charts are chosen to be
the ones that minimize their OC ARL values when detecting the shift of 0.6. Scale on the y-axis is
in natural logarithm.

CUSUM chart. The R-EWMA and S-CUSUM charts perform well for detecting small shifts only.

It seems that the K-CUSUM and L-CUSUM charts are not appropriate to use in this scenario.

When reading the plots, readers are reminded that all the control charts are tuned optimal for

detecting the shift of 0.6 in Figures 2 and 3.

In the scenario of Figures 2(b) and 3(b), the IC process distribution is t(4), which is symmetric

with heavy tails. In such cases, the I-CUSUM chart is still the best, as expected. Results of the

other control charts are similar to those for the normal case, with two exceptions: (i) The P-CUSUM

chart performs the best among all control charts other than the I-CUSUM chart in most cases of
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Figure 3: OC ARL values of four control charts when the IC ARL is 500, M = 500, m = 5, and
the actual IC process distribution is the standardized version of N(0, 1) (plot (a)), t(4) (plot (b)),
χ2(1) (plot (c)), and χ2(4) (plot (d)). Procedure parameters of the control charts are chosen to be
the ones that minimize their OC ARL values when detecting the shift of 0.6. Scale on the y-axis is
in natural logarithm.

this scenario. (ii) The N-CUSUM chart is not among the best any more when the shift is large,

although it still performs well when the shift is small.

When the actual IC distribution is skewed (Figures 2(c)-(d) and 3(c)-(d)), the charts P-CUSUM

and L-CUSUM perform well. The chart St-CUSUM performs well only when detecting downward

shifts. The K-CUSUM chart performs well only when the skewness is large. The other three charts

do not perform well in such cases.

Corresponding results when M = 200 are given in the online supplementary material, along

with the results in cases when M equals 200 or 500 and when all procedure parameters are chosen
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to be the optimal for each individual shift. These results suggest the same relative performance of

the eight control charts as observed in Figures 2 and 3.

3.3 More numerical results about the P-CUSUM chart

Section 3.2 demonstrates that the P-CUSUM chart performs well in most cases considered. In

this part, we present further investigate its numerical performance. First, we fix the value of its

allowance constant kP at 0.001, 0.005, 0.01, 0.05, or 0.1, the nominal IC ARL value (denoted as

ARL0) at 500, M = 500, and compute its OC ARL values based on 10,000 replications when the

mean shift in the original process observations, the IC process distribution, and other parameters

are in the same setup as those in Figures 2 and 3. In Figure 4, the OC ARL values are uniformly

larger when kP = 0.1, suggesting that kP should not be chosen larger than 0.05. An intuitive

explanation of this result is that kP works as a threshold value of the statistic Cn which measures

the relative difference between the observed counts and the corresponding expected counts and

often takes small values. Consequently, a good value for kP should also be relatively small. From

the plots, we can also see that results when kP = 0.01 are good only when the shift is large. When

the shift is small, kP should be a smaller number.

As discussed in Section 2, selection of the control limit hP depends only on the number of

categories p, the allowance constant kP , the batch size m, and the nominal IC ARL value ARL0.

Next, in cases when ARL0 = 200, 300, 500, or 1000, p = 2, 3, 5, 10, 15, or 20, kP = 0.001, 0.005,

0.01, or 0.05, m = 1, or 5, and M = 500, we compute the hP values based on 10,000 replications,

and the results are shown in Table 2. They should be useful for practitioners to implement the

P-CUSUM chart. In the cases considered, the actual IC ARL values are also recorded, and they

are all within one standard error of ARL0, as in the example of Table 1. From the table, it can be

seen that hP increases with ARL0, kP , and p, and decreases with m.

To use the P-CUSUM chart, an IC dataset of size M is required to estimate the IC quantiles

{ql, l = 1, 2, . . . , p−1} such that categorization of the Phase II data can be proceeded (cf., expression

(1)). Therefore, performance of the P-CUSUM chart may depend on the IC sample size M . To

study this potential dependence, we display in Figure 5 the optimal OC ARL values of the P-

CUSUM chart when M =100, 200, 500, or 1000. From the figure, it can be seen that (i) the

P-CUSUM chart performs better when M is larger, (ii) its OC performance does not change much
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Figure 4: OC ARL values of the P-CUSUM chart when kP = 0.001, 0.005, 0.01, 0.05, or 0.1, the
IC ARL is 500, M = 500, m = 5, p = 5, and the actual IC process distribution is the standardized
version of N(0, 1) (plot (a)), t(4) (plot (b)), χ2(1) (plot (c)), and χ2(4) (plot (d)). Scale on the
y-axis is in natural logarithm.

whenM ≥ 100, and (iii) its optimal OC ARL values are stable whenM ≥ 200, and almost identical

when M ≥ 500 in most cases considered. Intuitively, the value of M may also have an impact on

the variability of the run length distribution of the P-CUSUM chart. To investigate this issue, we

compute the sample standard deviation of the 10,000 run length values (denoted as SDRL) obtained

from the 10,000 replications in each case considered, and the results are given in the supplementary

file. From these results, we have the conclusions that (i) the SDRL value tends to be smaller when

M increases, and (ii) its values are stable when M ≥ 200 and are almost identical when M ≥ 500

in most cases considered.

From the construction of the P-CUSUM chart discussed in Section 2, it can be seen that the
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Table 2: Computed hP values based on 10,000 replications when ARL0 = 200, 300, 500, or 1000,
p = 2, 3, 5, 10, 15, or 20, kP = 0.001, 0.005, 0.01, or 0.05, m = 1, or 5, and M = 500.

m = 1

kP ARL0 p = 2 3 5 10 15 20

200 4.144 4.429 5.654 10.783 15.777 20.883
0.001 300 4.898 4.614 5.887 11.015 16.230 21.422

500 5.445 4.833 6.265 11.305 16.570 21.827
1000 6.402 5.552 6.843 11.960 16.979 22.155

200 5.089 5.148 6.215 11.180 16.142 21.297
0.005 300 5.848 5.481 6.650 11.531 16.407 21.589

500 6.497 6.099 7.251 12.006 16.992 22.106
1000 7.735 7.146 8.056 12.758 17.655 22.677

200 5.529 5.555 6.665 11.377 16.400 21.448
0.01 300 6.123 6.061 7.209 11.842 16.739 21.856

500 6.954 6.899 7.929 12.343 17.307 22.312
1000 8.078 7.979 8.600 13.205 18.056 22.993

200 5.918 6.860 7.957 12.171 16.981 21.931
0.05 300 6.656 7.685 8.438 12.841 17.550 22.397

500 7.595 8.492 9.269 13.616 18.181 22.958
1000 8.559 9.773 10.614 14.461 19.149 23.986

m = 5

kP ARL0 p = 2 3 5 10 15 20

200 0.899 0.983 1.318 2.430 3.588 4.753
0.001 300 1.080 1.065 1.379 2.496 3.647 4.814

500 1.265 1.183 1.485 2.598 3.734 4.916
1000 1.469 1.384 1.636 2.718 3.879 5.054

200 1.214 1.245 1.512 2.575 3.732 4.912
0.005 300 1.326 1.375 1.618 2.678 3.824 4.987

500 1.522 1.556 1.759 2.799 3.948 5.115
1000 1.778 1.815 1.966 2.981 4.119 5.254

200 1.276 1.389 1.635 2.686 3.826 5.024
0.01 300 1.412 1.530 1.750 2.777 3.909 5.084

500 1.600 1.725 1.911 2.911 4.032 5.214
1000 1.889 2.007 2.152 3.100 4.228 5.396

200 1.348 1.704 1.994 2.927 4.071 5.255
0.05 300 1.488 1.898 2.149 3.047 4.187 5.365

500 1.718 2.040 2.362 3.220 4.355 5.528
1000 1.924 2.272 2.628 3.459 4.577 5.745

number of categories p should be chosen properly beforehand, which is studied in the following

examples. We first assume that the actual IC distribution is the t(4) standardized to mean 0 and

standard deviation 1,M = 500, and the shift ranges from -1.0 to 1.0 with step 0.2, as in Figure 2(b).

The optimal OC ARL values of the P-CUSUM chart based on 10,000 replications are presented in

the four plots of Figure 6, respectively, when the batch size m changes its value among 1, 5, 10,
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Figure 5: Optimal OC ARL values of the P-CUSUM chart when the IC ARL is 500, m = 5, the IC
sample sizeM = 100, 200, 500, and 1000, and the actual IC process distribution is the standardized
version of N(0, 1) (plot (a)), t(4) (plot (b)), χ2(1) (plot (c)), and χ2(4) (plot (d)). Scale on the
y-axis is in natural logarithm.

and 20. In all four plots, we consider p =2, 3, 5, 10, and 15. From Figure 6, it can be seen that

(i) when m = 1 (i.e., for single-observation data), it seems that p should be chosen relatively large,

although the performance of the P-CUSUM chart does not change much when p ≥ 5, and (ii) when

m gets larger, it seems that p can be chosen smaller. For instance, when m = 20 (cf., Figure 6(d)),

it seems that p = 2 is already good enough.

Next, we repeat the above simulation, after changing the actual IC distribution to the stan-

dardized version of χ2(1). The corresponding results are presented in Figure 7. Similar conclusions

to those in the previous example can be made here for positive shifts. When the shift is negative

and relatively small, it seems that p should be at least 10 to have reasonably good results. When
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Figure 6: Optimal OC ARL values of the P-CUSUM chart when the actual IC distribution is the
standardized version of t(4), M = 500, p = 2, 3, 5, 10 or 15, and the batch size is m = 1, 5, 10, 20
(plots (a)–(d)). Scale on the y-axis is in natural logarithm.

the shift is negative and large, p can be chosen smaller. We also performed simulations in cases

when the actual IC distribution is N(0, 1) or the standardized version of χ2(4). Results in these

two cases are similar to those in Figures 6 and 7, respectively, and are omitted.

Based on the results shown in Figures 6 and 7, we provide the following guidelines for selecting

p. (i) p can be chosen smaller when m is larger. (ii) In cases when we do not have any prior

information about the process distribution, then we can choose p = 10. In such cases, the P-

CUSUM chart should perform reasonably well. (iii) If we know that the process distribution is

quite symmetric, or that it is skewed but the potential shift is in the direction of the longer tail,

then p can be chosen as small as 5. The above guideline (i) can be explained intuitively as follows.
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Figure 7: Optimal OC ARL values of the P-CUSUM chart when the actual IC distribution is the
standardized version of χ2(1), M = 500, p = 2, 3, 5, 10 and 15, and the batch size is m = 1 (plot
(a)), m = 5 (plot (b)), m = 10 (plot (c)), and m = 20 (plot (d)). Scale on the y-axis is in natural
logarithm.

When the batch size m is larger, the observed count vector g(n) (cf., expression (2)) carries more

information about a potential distributional shift in the categorized data Yj(n), allowing p to be

smaller without losing much efficiency of the P-CUSUM chart. More detailed explanations of the

three guidelines are given in the supplementary file.

From the construction of the P-CUSUM chart, we can see that it should be able to detect any

distributional shift of the original observations X(n) that results in a shift in the distribution of the

corresponding categorized data Yj(n). Therefore, the P-CUSUM chart should have certain ability

to detect shifts in dispersion, or in both location and dispersion, of the distribution of the original

observations X(n). To demonstrate this, we consider the cases when the IC process distribution
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Table 3: Computed optimal OC ARL values of the P-CUSUM chart when the IC observation
distribution is the standardized version with mean 0 and standard deviation 1 of χ2(1) or χ2(4),
and the OC distribution has a (location, dispersion) shift to (µ1, σ

2
1).

IC Distribution (µ1, σ
2
1)=(0,1.5) (0,2.0) (0.5,1.5) (0.5,2.0)

χ2(1) 51.90 17.30 8.13 15.87
χ2(4) 279.24 117.69 86.96 79.94

is the standardized version with mean 0 and standard deviation 1 of χ2(1) or χ2(4), and the OC

distribution has a (location, dispersion) shift from (0, 1) to (µ1, σ
2
1), where (µ1, σ

2
1) takes the value

of (0, 1.5), (0, 2.0), (0.5, 1.5), or (0.5, 2.0). The computed optimal OC ARL values of the P-CUSUM

chart when M = 500, m = 5, and p = 5 are presented in Table 3. The small ARL values indicate

that the P-CUSUM chart can detect dispersion shifts, and its computed optimal OC ARL values are

much smaller in cases when both the location and dispersion are shifted, compared to cases when

only the dispersion is shifted, which is reasonable because the resulting shifts in the distribution of

the categorized dataYj(n) are bigger in the former cases. For a similar reason, the P-CUSUM chart

is more sensitive to dispersion shifts when the IC process distribution is more skewed. However,

based on the P-CUSUM chart alone, we cannot distinguish location shifts from dispersion shifts,

after a signal of shift is given. It is left to our future research to design a control chart based on

the categorized data that is powerful in detecting both location and dispersion shifts and is able to

make a distinction between the two types of shifts.

4 An Application

We illustrate the proposed methods using a real-data example about daily exchange rates between

Korean Won and US Dollar between March 28, 1997 and December 02, 1997. During this period,

the daily exchange rates were quite stable early on and became unstable starting from early August,

due to the world financial crisis. This can be seen from Figure 8(a) in which 162 daily exchange

rates (Won/Dollar) observed in that period are shown. Like many other Phase II SPC procedures,

our proposed procedure assumes that observations at different time points are independent of each

other. However, for this data, we found that observations are substantially correlated. Following

the suggestions by Qiu and Hawkins (2001), we first pre-whiten the data using an auto-regression

model that can be accomplished by the R function ar.yw(), and the pre-whitened data are shown

in Figure 8(b).
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Figure 8: (a) Original observations of the exchange data. (b) Pre-whitened data. (c) The first
121 pre-whitened values. (d) Density histogram, estimated density curve (solid) of the first 96
pre-whitened values (i.e., IC data), and the density curve of a normal distribution (dashed) with
the same mean and variance as those of the IC data. In plots (a)–(c), the dashed vertical lines
separate the IC and testing data. In plot (c), the solid horizontal line denotes the sample mean of
the IC data.

We then apply the related control charts considered in the previous section to the pre-whitened

data. To this end, the first 96 residuals are used as an IC data, which correspond to the first 105

original observations, and the remaining residuals are used for testing. In Figure 8(a)-(b), the

training and testing data are separated by a dashed vertical line. To take a closer look at the IC

data and at the first several testing observations as well, the first 121 residuals are presented in

Figure 8(c) again, in which the solid horizontal line denotes the sample mean of the IC data and

the dashed vertical line separates the IC and testing data. From Figure 8(c), it can be seen that

there is an upward mean shift starting from the very beginning of the test data. The Shapiro test
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for checking the normality of the IC data gives a p-value of 1.323×10−4, implying that the IC data

are significantly non-normal. To demonstrate this, the density histogram of the IC data is shown

in Figure 8(d), along with its estimated density curve (solid) and the density curve of a normal

distribution (dashed) with the same mean and standard deviation. We then apply the related

control charts to this dataset. Because the S-CUSUM chart can only be used for batch data and

the current exchange rate data have a single observation at each time point, it is not considered

here. The I-CUSUM and St-CUSUM charts are not considered here either because they require a

parametric form of the IC distribution which is unavailable. Among the remaining 5 charts, based

on the simulation results shown in Table 1, the three nonparametric charts P-CUSUM, L-CUSUM,

and K-CUSUM might be more appropriate to use in this case, compared to the charts N-CUSUM

and R-EWMA. Because the IC process distribution is quite symmetric, as shown by Figure 8(d),

we choose p = 5 in the P-CUSUM chart, by the practical guidelines given in Section 3.3. When the

nominal IC ARL value is fixed at 200, and the allowance constants of the four CUSUM charts are all

chosen to be 0.1 (remember that λ = 0.05 in the R-EWMA chart), the five control charts are shown

in Figure 9, in which the dashed horizontal lines denote the control limits of the related control

charts. The P-CUSUM, L-CUSUM, K-CUSUM, N-CUSUM, and R-EWMA charts give signals of

shift at i = 111, 112, 115, 115, and 113, respectively. Therefore, the P-CUSUM chart gives an

earliest signal in this example. By these results, the control charts confirm that the exchange rates

between Korean Won and US Dollar started to become unstable at the very beginning of the Phase

II monitoring, as demonstrated in Figure 8(c).

5 Concluding Remarks

We have presented a new framework to construct nonparametric control charts for univariate SPC

in cases when the process distribution cannot be specified beforehand. By this framework, original

observations are first categorized, and then some statistical tools for categorical data analysis are

used for constructing nonparametric control charts. Compared to existing control charts that are

based on ranking information of the process observations, the proposed control charts have the

advantages that (i) the information loss due to categorization can be controlled by adjusting the

number of categories used, (ii) they can be used for either numerical or categorical observations,

and (iii) they can be used in cases with single-observation data. Numerical studies show that the

P-CUSUM chart performs well in all cases considered, compared to its peers. Therefore, this is the
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Figure 9: Control charts P-CUSUM, L-CUSUM, K-CUSUM, N-CUSUM, and R-EWMA when they
are applied to the exchange rate data. In each plot, the horizontal dashed line(s) denotes the control
limit(s). The N-CUSUM chart is two-sided; the little circles and triangles in plot (d) denote their
upward and downward charting statistics, respectively.

nonparametric chart that we recommend for use in practice.

The comparative study presented in this paper is empirical. Much future research is required to

confirm the conclusions presented here by mathematically more rigorous arguments. In this paper,

we focus on Phase II online monitoring of the process mean. In some applications, simultaneous

online monitoring of the process mean and variance would be our interest, which also requires much

future research. Further, our proposed P-CUSUM chart does not require the specification of the IC

distribution. But, we assume that an IC dataset is available for estimating certain IC parameters.

As pointed out at the beginning of Section 2, it still requires much future research on how to do

the corresponding Phase I analysis properly in cases when the IC distribution is unknown and how
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to collect the IC data properly at the end of Phase I SPC. In this regard, the paper Jones-Farmer

(2009) has provided us a useful method.

6 Supplemental Materials

supplemental.pdf This pdf file presents some extra numerical results about the proposed P-

CUSUM control chart.
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