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We thank the editor Professor David Steinberg for organizing this stimulating discussion. We

are also grateful to all the discussants for their constructive comments about the method proposed

in our paper (denoted as QZW hereafter). Profile monitoring is a relatively new research area; but,

it has a profound application background (cf., Wang and Tsung 2005, Woodall et al. 2004). Due

to the fact that the data structure in profile monitoring is much more complicated than that in

conventional process monitoring problems, it is also a challenging task. In QZW, we try to apply

some recent statistical tools developed in some other research areas, including longitudinal data

and functional data analysis (e.g., Fitzmaurice et al. 2008, Liang and Zeger 2002), to the area of

profile monitoring. As pointed out by the discussants, there are still some issues in our proposed

method that need to be addressed in future research. In the next several parts, we provide our

thoughts about some main issues raised by the discussants.

1 Phase I and Phase II Profile Monitoring

Our paper focuses on Phase II profile monitoring. Instead of assuming the in-control (IC) profile

mean function and other parameters and functions (i.e., g, γ, and σ2) to be known, we assume that

there is an IC dataset from which g, γ, and σ2 can be estimated. In practice, however, it is still a

challenging task to obtain the IC dataset. In that regard, we agree with Woodall, Birch and Du

completely, and think that much future research is required on Phase I analysis of profile data.

In the limited literature on Phase I analysis of profile data, Jensen et al. (2008) and Jensen

and Birch (2009) have developed procedures for monitoring linear and nonlinear profiles. Their

nonlinear profile monitoring procedure in Jensen and Birch (2009) can be easily generalized to the

nonparametric setup, by using the nonparametric mixed-effects modeling described in Section 2.2

of QZW. Let

T 2
i = f̂

T

i Σ̂
−1

f̂ i, (1)
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where f̂ i = (f̂i(s1), . . . , f̂i(sn0
))T , {s1, s2, . . . , sn0

} are n0 given points in the design interval of x

(cf., model (1) in QZW), and Σ̂ is an estimated covariance matrix of f̂ i. Then, the ith profile is

an outlier if T 2
i is larger than a threshold value. In the AEC data example discussed in Section 4

of QZW, the first 96 profiles are treated as an IC dataset. We agree with Woodall, Birch and Du

that, in practice, it still needs to be checked whether there are any outliers in this data. To this

end, we apply the above Phase I outlier detection procedure to this IC dataset, with Σ̂ chosen to

be the successive difference estimator, as recommended by Jensen and Birch (2009) for detecting

sustained step shifts in profiles. Namely,

Σ̂ =
1

2(m − 1)

m−1∑

i=1

(f̂ i+1 − f̂ i)(f̂ i+1 − f̂ i)
T .

Figure 1 presents T 2
i , for 1 ≤ i ≤ 96, along with a control limit corresponding to the significance

level of 0.05 that is computed by a bootstrap procedure as follows. Each time we draw 96 f̂is with

replacement from {f̂i, 1 ≤ i ≤ 96} that are computed beforehand by the procedure described in

Section 2.2 of QZW. Then, a bootstrap version of Σ̂ is computed from the resampled f̂is, and 96

bootstrap observations of T 2
i are computed from the resampled f̂is and the corresponding bootstrap

version of Σ̂. This process is repeated 10,000 times, and the control limit is defined to be the 95th

percentile of all bootstrap observations of T 2
i computed. From the plot, it can be seen that no

outliers are detected by this procedure.
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Figure 1: Phase I T 2 control chart defined in (1) for monitoring the first 96 profiles of the AEC

dataset.
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It should be pointed out that, for detecting outliers in Phase I profile monitoring, the T 2

control chart defined in (1) may not be the most powerful one. In the context of longitudinal data

analysis, a similar issue has been investigated by Fung et al. (2002) who proposed certain influence

diagnostics and outlier detection procedures using semiparametric mixed-effects modeling. For

Phase I monitoring of nonparametric profiles, discussion about nonparametric covariance analysis

and comparison of multiple curves in the context of nonparametric regression testing (cf., Dette

and Neumeyer 2001, Neumeyer and Dette 2003, Young and Bowman 1995) might also be relevant.

We appreciate the comment made by Chipman, MacKay and Steiner that the absence of

random-effects terms in our Phase II modeling (cf., the expression of WL(a, b; s, λ, t) in the second

paragraph of Section 2.3 in QZW) may affect the efficiency of our proposed Phase II profile moni-

toring chart. Woodall, Birch and Du raise a similar issue and they ask why we use the method by

Wu and Zhang (2002) in Phase I modeling and the different method by Lin and Carroll (2000) in

Phase II profile monitoring. As explained in Section 2.3 of QZW, the major reason for us to use two

different methods in Phase I and Phase II analysis is that the computation involved in the iterative

algorithm of the method by Wu and Zhang (2002) is quite substantial. For Phase I analysis in

which the sample size is fixed, that algorithm is still feasible. But, for online Phase II monitoring,

this method is cumbersome and may not be feasible. It is true that, by using the method of Lin

and Carroll (2000) in Phase II analysis (cf., (9) and (10) in QZW), it appears that only the het-

eroscedasticity of the within-profile observations is taken care of and the within-profile correlation

has not been fully accommodated. However, according to Lin and Carroll (2000), under some regu-

larity conditions, it would not have much of an effect on the estimated profile mean function to only

accommodate the heteroscedasticity properly without specifying the complete correlation structure

of the within-profile observations. To further investigate this issue, we run a simulation in cases

when the IC model (II), the out-of-control (OC) models (i) and (ii), and λ = 0.1 are considered

(cf., Section 3 of QZW for their definitions). In this example, besides our proposed chart MENPC,

we also consider the chart constructed as follows. Let ĝ∗t,h,λ(s) be the estimator of g(s), obtained

by the algorithm described in Section 2.2 of QZW, except that expression (2) in QZW is replaced

by

t∑

i=1





1

σ2

ni∑

j=1

[yij − zT
ij(β + αi)]

2Kh (xij − s) + αT
i D−1αi + ln |D| + ni ln(σ2)



 (1 − λ)t−i,

where λ ∈ [0, 1] is a weighting parameter. Obviously, the above expression combines different
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profiles for Phase II monitoring using the EWMA weighting scheme. Then, a charting statistic can

be constructed in a similar way to (11) in QZW, after {yij} are replaced by {ξij = yij − g0(xij)} in

the above expression. This control chart is denoted as MENPC1, and it is based on the method by

Wu and Zhang (2002) in both the Phase I and Phase II analysis. With all the procedure parameters

chosen in the same way as those in Table 2 of QZW, the OC ARL values of the charts MENPC

and MENPC1 are presented in Table 1. From the table, it can be seen that the two charts perform

similarly in all cases considered, and the chart MENPC1 is slightly better in cases with OC Model

(ii).

Table 1: OC ARL comparison of the charts MENPC and MENPC1 when ARL0=200, n = 20,

n0 = 40, λ = 0.1 and IC model (II) is used.

OC Model (i) OC Model (ii)

θ MENPC MENPC1 MENPC MENPC1

0.20 130 (1.36) 134 (1.22) 85.3 (0.83) 84.8 (0.86)

0.30 80.5 (0.78) 77.2 (0.80) 40.5 (0.32) 37.4 (0.33)

0.40 48.6 (0.42) 46.5 (0.44) 22.3 (0.15) 20.6 (0.16)

0.60 20.7 (0.13) 19.8 (0.11) 10.6 (0.05) 10.1 (0.05)

0.80 12.1 (0.06) 11.8 (0.07) 6.81 (0.03) 6.62 (0.03)

1.20 6.64 (0.02) 6.60 (0.03) 4.06 (0.02) 3.95 (0.02)

1.60 4.60 (0.02) 4.64 (0.02) 2.93 (0.01) 2.88 (0.01)

2.00 3.51 (0.01) 3.54 (0.01) 2.33 (0.01) 2.33 (0.01)

2.40 2.88 (0.01) 2.85 (0.01) 1.95 (0.01) 1.96 (0.01)

Regarding the initial estimator σ2
(0) used in the iterative algorithm in Section 2.2 of QZW,

Woodall, Birch and Du suggest to replace ĝ(P )(xij) in the formula for σ2
(0) given in the paragraph

immediately before expression (7) of QZW by ĝi(xij) where ĝi is the local linear kernel estimator

of g that is constructed from the ith profile data alone. We have tried this idea in some numerical

examples and find that the modified initial estimator is indeed better.

2 Temporal Autocorrelation

In QZW, we only consider possible correlation among within-profile observations, and assume

that observations between profiles are independent of each other. We appreciate the comment

made by Apley that temporal autocorrelation among profiles collected at consecutive time points

might also be common in practice. We agree with Apley completely on this issue, and believe

that it is an important future research problem to propose profile monitoring charts that can
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accommodate both within-profile and between-profile correlation. A number of useful references

on handling temporal autocorrelation in some conventional process monitoring problems have been

cited in Apley’s discussion. Another relevant paper, by Noorossana et al. (2008), tries to handle

autocorrelated linear profiles using certain time series models. The method proposed in that paper

has the potential to be generalized for handling autocorrelated nonparametric profiles, which needs

to be further studied.

By the suggestion of Apley, in the AEC data example, we present the estimated profiles ĝ(s)+

f̂i(s) over i, for 1 ≤ i ≤ 96, at two specific positions s = x∗

10 and s = x∗

30 in the two panels of Figure

2. We also compute the lag-1 and lag-2 autocorrelations of the time series shown in each panel.

They are 0.104 and 0.058 in the case of panel (a), and 0.154 and 0.074 in the case of panel (b).

From the plots and the computed autocorrelation values, we can see that temporal autocorrelation

is not evident in this data, which can be explained by the fact that all the profiles in this example

are actually collected over a relatively long time period.
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Figure 2: Plots of the estimated profiles ĝ(s) + f̂i(s) over i, for 1 ≤ i ≤ 96, at two specific positions

s = x∗

10 (plot (a)) and s = x∗

30 (plot (b)).

In his discussion, Apley proposes two possible approaches for accommodating between-profile

correlation. One is the Markov bootstrap procedure and the other one is the block bootstrap

procedure. He thinks that the block bootstrap procedure might be more appropriate to use for

monitoring profiles because of the relatively complicated structure of the profile data. In the AEC
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example, we compute the control limit using the block bootstrap procedure with the bootstrap

sample size 10,000 and the block size 9 which is about 10% of the IC data. The computed control

limit is 19.37. Compared to the control limit 18.24 reported in QZW, this control limit is marginally

larger and it does not change the signal time at the 112-th time point (cf., Figure 3 in QZW).

3 Alternative Charting Statistics

Besides our proposed charting statistic Tt,h,λ defined by (11) in QZW, the discussants propose

two alternative charting statistics. For the purpose of detecting a shift in the covariance function

γ(x1, x2) (cf., its definition in Section 2.1 of QZW), Apley suggests using the charting statistic

T̃
(1)
t =

t−1∑

i=0

(1 − ρ)iTt−i,h,1,

where ρ ∈ [0, 1] denotes an EWMA weighting parameter. From the definition of Tt,h,λ, we can see

that Tt−i,h,1 is a quadratic measure of the difference between the estimated profile mean function

from the (t − i)th profile data alone and the IC profile mean function g0. Therefore, T̃
(1)
t which is

an EWMA statistic constructed from {Tt−i,h,1} tries to combine information from different profiles

about the difference between individual profiles and g0. In their discussion, Woodall, Birch and Du

propose this charting statistic as well.

The statistic T̃
(1)
t is natural to use. As a matter of fact, we also thought of it at the begining

of this research project. It was finally given up and replaced by Tt,h,λ for the following reason.

The estimator of g from a single profile is relatively noisy, especially when the profile contains only

a small number of observations. The relatively large variability of such estimators of g would be

inherited by T̃
(1)
t and make it less sensitive to shifts in the profile mean function. As a comparison,

ĝt,h,λ(s) defined in (9) of QZW is obtained from multiple profiles through the EWMA weighting

scheme. Its variability is therefore smaller than the variability of ĝt,h,1(s) which is constructed

from the tth profile alone. Consequently, the control chart based on Tt,h,λ is expected to be more

powerful for detecting a shift in the profile mean function, compared to the chart based on T̃
(1)
t .

Instead of Tt,h,λ, Chipman, MacKay and Steiner think that it is more convenient to use the

charting statistic

T̃
(2)
t =

t−1∑

i=0

(1 − ρ)i (yi − g0,i)
T Σ−1

i (yi − g0,i) ,
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where yi = (yi1, yi2, . . . , yini
)T , and g0,i = (g0(xi1), g0(xi2), . . . , g0(xini

))T . Obviously, T̃
(2)
t is an

EWMA statistic constructed from quadratic discrepancies between yi and g0,i. From its construc-

tion, we think that T̃
(2)
t would not be as sensitive to possible profile mean shifts as Tt,h,λ, because

of the large variability in yi − g0,i. However, this chart might be good for detecting shifts in the

covariance function of γ(x1, x2), because yi − g0,i is just fi + εi when the process is IC, where

fi = (fi(xi1), fi(xi2), . . . , fi(xini
))T and εi = (εi1, εi2, . . . , εini

)T .

To investigate the performance of the alternative charts based on T̃
(1)
t and T̃

(2)
t , which are

denoted as ALT(1) and ALT(2), respectively, we consider the following example, where the IC

models (II) and (III) and the OC model (i) used in QZW are considered. In addition, we consider

the following OC model in which the shift is in variances:

yij = g(xij) + fi(xij) + (1 + θ∗)εij , for j = 1, 2, . . . , ni, i = 1, 2, . . . , (2)

where θ∗ is a constant. In the charts MENPC, ALT(1) and ALT(2), λ = ρ = 0.1 and all other

parameters are chosen to be the same as those used in the example of Table 2 of QZW. The OC

ARL values of the three charts are presented in Table 2.

From Table 2, we can see that chart ALT(1) does not work well in all cases considered in this

example, in comparison with the other two charts. As explained earlier, this chart would not be

efficient for detecting profile mean shifts, which is confirmed here. From the table, it seems that

this chart is not good for detecting shifts in variances either. This latter result is not surprising

because the quantity Tt−i,h,1 that it uses does not contain much information about the covariance

function γ(x1, x2). Chart ALT(2), on the other hand, does perform reasonably well for detecting

shifts in variances. But it is not powerful for detecting small to moderate profile mean shifts, as

expected. Our proposed chart MENPC is designed for detecting profile mean shifts. So, it performs

reasonably well in cases with OC model (i), especially when the mean shift is small or moderate

(i.e., θ value in the table is between 0.20 and 1.20). However, this chart does not perform well for

detecting shifts in variances. So, in practice, if shifts in both mean and variances are our concern,

then we probably want to use the charts MENPC and ALT(2) simultaneously.
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Table 2: OC ARL values of the charts MENPC, ALT(1) and ALT(2) in cases when ARL0=200,

n = 20, n0 = 40 and λ = ρ = 0.1.

OC Model (i) OC model defined in (2)

θ MENPC ALT(1) ALT(2) θ∗ MENPC ALT(1) ALT(2)

0.20 130 197 196 0.05 173 183 74.1

0.30 80.5 196 165 0.10 156 177 33.1

0.40 48.6 195 142 0.15 134 174 16.6

IC model (II) 0.60 20.7 191 82.5 0.20 129 160 9.66

0.80 12.1 192 45.8 0.30 101 156 4.26

1.20 6.64 194 13.2 0.40 77.6 138 2.40

1.60 4.60 197 4.42 0.50 62.3 124 1.77

2.00 3.51 190 2.10 0.75 35.7 111 1.17

2.40 2.88 185 1.37 1.00 21.9 92.4 1.05

0.20 131 199 186 0.05 179 187 75.9

0.30 81.0 197 153 0.10 157 182 34.7

0.40 48.1 197 119 0.15 142 162 16.5

IC model (III) 0.60 21.4 196 68.4 0.20 138 168 9.83

0.80 12.4 195 34.9 0.30 106 146 4.31

1.20 6.59 193 8.77 0.40 82.7 140 2.45

1.60 4.51 193 3.02 0.50 65.4 127 1.80

2.00 3.43 192 1.60 0.75 34.5 111 1.17

2.40 2.81 190 1.17 1.00 21.4 97.5 1.04

4 Are Asymptotic Results Relevant?

We appreciate the comment made by Apley regarding the asymptotic results included in QZW,

and we agree with him completely that readers should not assign too much significance to Theorem

1 and other asymptotic results in QZW when designing the proposed control chart. Generally

speaking, asymptotic results are valid only when the sample size is large. In reality, the related

sample size is always finite. Therefore, asymptotic results are always a certain distance away from

reality, and that distance depends on the sample size and how all the conditions and assumptions

required by the asymptotic results are satisfied in a practical situation. In SPC, this is especially

true because whenever we get a signal of shift from a control chart, the process (e.g., a production

line) should be stopped immediately for people to find the root cause of the shift and then make

certain appropriate adjustments of the process. Therefore, the sample size is hardly large in such

cases. This may be the reason why asymptotic results are not often seen in the SPC literature.

However, if we check the asymptotic results and their associated conditions and assumptions
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carefully, then we can still get some helpful information about the related SPC procedure. For

instance, Apley already provides a thorough explanation why Theorem 1 in QZW concludes that

Tt,h,λ is independent of γ(x1, x2) and σ2 when nih is bounded for each i and when other conditions

hold. We agree with Apley that this result should not be used directly for choosing the control

limit of our proposed chart. One major reason is that this result describes the IC behavior of the

charting statistic Tt,h,λ only; it does not take any profile mean shift into account. More specifically,

the result holds when h tends to 0 and when other conditions are valid. But, a too small h would not

be appropriate to use for detecting a profile mean shift effectively. On the other hand, this result

together with the result (ii) of Theorem 1 in QZW also implies that h should be chosen small if it is

desirable to have a chart that is less affected by the correlation among within-profile observations.

In the case when nih are large, the result (ii) reveals how the asymptotic distribution of Tt,h,λ

depends on γ(x1, x2), which might be helpful in future research to modify Tt,h,λ such that the

modified version would incorporate the correlation function γ(x1, x2) more effectively. As another

example, according to result (i) of Theorem 2 in QZW, after the profile mean function changes

from g0(x) to g1(x), the asymptotic distribution of the charting statistic Tt,h,λ would depend on

δ(x) = g1(x)−g0(x) and δ′′(x). Therefore, if the curvature of δ(x) is bigger, then the corresponding

shift is easier to detect, which has been confirmed in the numerical examples presented in Section

3 of QZW. See, for instance, Table 2 in QZW, where the curvature of δ(x) is much larger with OC

model (ii) than the curvature of δ(x) with OC model (i).

5 Generalizations to Multivariate Cases

We appreciate Tsung’s comments on possible generalization of our proposed method to multivariate

cases. He provides a nice description about several potential applications of multivariate profile

monitoring and about some related research. We believe that his discussion provides us a strong

motivation to study profile monitoring in multivariate cases in future research. In their discussion,

Woodall, Birch and Du also provide some comments on this topic, and they think that other

smoothing techniques such as the smoothing spline ANOVA might be more convenient to use,

compared to the local polynomial kernel smoothing used in QZW. Frankly, we do not have much

experience in multivariate cases, but would still like to share with readers some of our initial

impressions described below.
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Multivariate profile monitoring can be roughly classified into the following three categories:

(i) each profile has one response and multiple covariates,

(ii) each profile has multiple responses and one covariate, and

(iii) each profile has multiple responses and multiple covariates.

For category (i), some semi-parametric modeling methods might be useful to describe the com-

plicated high-dimensional profiles. For instance, the single-index and partial linear models (cf.,

Ruppert et al. 2003), which has a relatively simple interpretation of the effect of each covariate

on the response, might be appropriate in certain cases for describing multivariate profiles. As an

example, one type of multivariate profile monitoring problem can be described using partial linear

modeling as follows.

yij =





g0(tij) + Xiβ + fi(tij) + εij , for j = 1, 2, . . . , ni, i = 1, . . . , τ,

g1(tij) + Xiβ + fi(tij) + εij , for j = 1, 2, . . . , ni, i = τ + 1, . . . ,

where t denotes a univariate covariate that has a nonparametric relationship with the response y,

X denotes multiple covariates that affect y linearly, τ is an unknown change-point, β is a coefficient

vector, and other quantities are the same as those used in QZW. This model describes cases when

the nonparametric relationship between y and t has a shift at τ . Obviously, similar models can

be formulated for cases when the linear relationship between y and X has a shift. By combining

existing semi-parametric model estimation methods and process control schemes, we believe that

appropriate control charts can be constructed for monitoring such multivariate profiles in a way

that is similar to the chart MENPC.

For category (ii), assume that we have p responses, and the observed IC data are from the

following multivariate nonparametric mixed-effects model:

yij = g(xij) + f i(xij) + εij , for j = 1, 2, . . . , ni, i = 1, . . . ,m,

where g(x) = (g1(x), . . . , gp(x))T is the fixed-effects term, f i(x) = (fi1(x), . . . , fip(x))T is the

random-effects term, yij = (yij1, . . . , yijp)
T , and Cov(εij) = Σ. For a given point s ∈ [0, 1], g(s)

and f i(s) can be estimated by minimizing the following penalized local linear likelihood function
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which is similar to expression (2) in QZW.

m∑

i=1

{
tr

{
[Y i − Zi(β̃ + α̃i)]Σ

−1[Y i − Zi(β̃ + α̃i)]
TKi

}

+[vec(α̃i)]
TD−1vec(α̃i) + ln |D| + ni ln |Σ|

}
,

where

Y i = (yi1, . . . ,yini
)T , β̃ = (β1, . . . ,βp), α̃i = (αi1, . . . ,αip);

Zi = (zi1, . . . ,zini
)T , zT

ij = (1, xij − s),

each βj is a deterministic two-dimensional coefficient vector, each αij is a two-dimensional vector

of the random effects with mean 0 and covariance Dj , D = diag{D1, . . . ,Dp}, and Ki are defined

in (4) of QWZ. Then, a similar iterative algorithm to the one described in Section 2.2 of QZW can

be developed for Phase I model estimation. The local weighted negative log likelihood estimation

and a corresponding Phase II control chart can also be developed in a similar way to that described

in Section 2.3 of QZW.

Category (iii) is much more complicated than the previous two categories. Probably certain

appropriate combinations of the models described above can handle some special cases. This is an

important and challenging area and serious research will be required to develop effective monitoring

schemes.
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