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Abstract

Nonparametric profile monitoring (NPM) is for monitoring over time a functional relationship

between a response variable and one or more explanatory variables when the relationship is too

complicated to be specified parametrically. It is widely used in industry for the purpose of

quality control of a process. Existing NPM approaches require a fundamental assumption that

design points within a profile are deterministic (i.e., non-random) and they are unchanged from

one profile to another. In practice, however, different profiles often have different design points,

and in some cases they might even be random. NPM is particularly challenging in such cases

because it is difficult to combine data in different profiles properly for data smoothing and for

process monitoring. In this paper, we propose a novel exponentially weighted moving average

(EWMA) control chart for handling this problem, based on local linear kernel smoothing. In the

proposed chart, the exponential weights used in the EWMA scheme at different time points are

integrated into a nonparametric smoothing procedure for smoothing individual profiles. Because

of certain good properties of the charting statistic, this control chart is fast to compute, easy to

implement, and efficient to detect profile shifts. Some numerical results show that it works well

in applications.

Keywords: Bandwidth Selection; EWMA; Local Linear Kernel Smoothing; Nonparametric

Regression; Profile Monitoring; Self-Starting; Statistical Process Control.
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1 Introduction

In many applications, quality of a process is characterized by the functional relationship between a

response variable and one or more explanatory variables. Profile monitoring is mainly for checking

stability of this relationship (or profile) over time. In some calibration applications, the profile

can be described adequately by a linear regression model, while in other applications more flexible

models are necessary. This paper focuses on nonparametric profile monitoring (NPM) when the

profile is too complicated to be specified parametrically.

In the literature, some existing references focus on linear profile monitoring. See, for instance,

Kang and Albin (2000), Kim et al. (2003), Mahmoud and Woodall (2004), Zou et al. (2006, 2007b),

and Mahmoud et al. (2007), among several others. Extensions to multiple and/or polynomial profile

models are discussed by Zou et al. (2007a), and Kazemzadeh et al. (2008). Recently, nonlinear

profile models have been considered by some statisticians, including Lada et al. (2002), Ding et al.

(2006), Colosimo and Pacella (2007) and Williams et al. (2007a,b). NPM is discussed by Zou et

al. (2008, 2009). For an overview on profile monitoring, see Woodall et al. (2004).

All the control charts mentioned above require the fundamental assumptions that design points

within a profile are deterministic (i.e., non-random) and that they are the same from one profile

to another. These assumptions are (approximately) valid in certain calibration applications of the

manufacturing industry. In some other applications, however, they may be invalid. For instance,

when data acquisition takes the random design scheme, design points within a profile would be i.i.d.

random variables from a given distribution. Another commonly seen example occurs when observa-

tions within different profiles have missing values at different time points (e.g., the vertical-density

profile (VDP) data considered in Walker and Wright 2002). Furthermore, we will demonstrate

in this paper by both theoretical and empirical results that, even for applications where an equal

design scheme (i.e., design points are the same from profile to profile and they are deterministic)

is possible, one may get a better profile monitoring by using a random design scheme, as long as

the two design schemes involve similar measurement effort.

In this article, we propose a novel control chart for handling the NPM problem when the

profile design points are arbitrary. The proposed chart is based on local linear kernel smoothing of

individual profile data and on the exponentially weighted moving average (EWMA) process control

scheme as well. It incorporates the exponential weights used in the EWMA scheme at different time
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points into the local linear kernel smoother. We show that this chart is effective in detecting profile

shifts when profile design points are arbitrary. It is also fast to compute and easy to implement.

This chart is described in detail in Section 2. Its numerical performance is investigated in Section

3. In Section 4, we demonstrate the method using a real-data example from the semiconductor

manufacturing industry. Several remarks conclude the article in Section 5. Some technical details

are provided in the Appendix.

2 Methodology

Our proposed methodology is described in seven parts. In Section 2.1, we briefly introduce the

statistical process control (SPC) problem and the well known EWMA control chart. Then, in

Section 2.2, an EWMA control chart accommodating nonparametric regression of individual profiles

is introduced for monitoring nonparametric profiles with arbitrary design. Adaptive selection of

its weighting parameter and bandwidth parameter, used in EWMA and nonparametric regression,

are respectively discussed in Sections 2.3 and 2.4. Certain computational issues are addressed

in Section 2.5. A self-starting version is given in Section 2.6. Finally, some practical guidelines

regarding design and implementation of the proposed control chart are provided in Section 2.7.

2.1 Statistical process control and the EWMA control chart

SPC is for monitoring sequential processes (e.g., production lines in manufacturing industry) to

make sure that they work stably. When the process works stably, it is in the in-control (IC) state,

and it becomes out-of-control (OC) otherwise. In the literature, SPC is often divided into two

phases. In Phase I, a set of process data is gathered and analyzed. Any unusual “patterns” in

the data lead to adjustments and fine tuning of the process. Once all such assignable causes are

accounted for, we are left with a clean set of data, gathered under stable operating conditions

and illustrative of the actual process performance. This set is then used for estimating the IC

distribution of the process measurements. In Phase II, the estimated IC measurement distribution

from Phase I data is used, and the major goal of this phase is to detect any shift in the measurement

distribution from the IC distribution after an unknown time point. Performance of a Phase II SPC

procedure is often measured by the average run length (ARL), which is the average number of

samples obtained at sequential time points that are needed for the procedure to signal a shift
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in the measurement distribution. The IC ARL value of the procedure is usually controlled at a

certain level, and the procedure performs better if its OC ARL is smaller when detecting a given

shift, which is in parallel to the type-I and type-II error probabilities in hypothesis testing. In the

literature, most SPC control charts are for Phase II process monitoring which is also the focus of

the current paper.

Let {Xk, k = 1, 2, . . .} be the sequential, Phase II, univariate, process measurements. Then,

the well-known EWMA control chart is based on the following sequence of statistics

Sk = (1 − λ)Sk−1 + λXk, for k = 1, 2, . . . ,

where S0 = 0 and λ ∈ [0, 1] is a weighting parameter. It signals a shift at the k-th time point

if Sk > L, where L is a control limit chosen to achieve a given IC ARL value. Obviously, Sk =

λXk + λ(1 − λ)Xk−1 + · · ·+ λ(1− λ)k−1X1. So, Sk is a weighted average of all observations, more

recent observations would receive more weight in the average, and the weight changes exponentially

over time.

2.2 Monitoring nonparametric profiles when design points are arbitrary

In this paper, we are concerned about Phase II profile monitoring. At the k-th time point, the

profile is assumed to follow the nonparametric model

ykj = g (xkj) + εkj, j = 1, . . . , nk, k = 1, 2, . . . , (1)

where {xkj , ykj}nk

j=1 are the k-th profile data, xkj is the j-th design point in the k-th profile, g

is a smooth nonparametric profile function, and εkjs are i.i.d. random errors with mean 0 and

variance σ2. Without loss of generality, we assume that xkj ∈ [0, 1], for all k and j. In cases

when the design points Xk = {xk1, xk2, . . . , xknk
} are unchanged from one profile to another, the

nonparametric EWMA chart by Zou et al. (2008), which is called the NEWMA chart hereafter,

first averages observed responses ykjs across different profiles at each design point and then detects

potential profile shifts using the generalized likelihood ratio (GLR) test statistic. This idea can not

be applied to the current problem because the response is observed at different design points in

different profiles in the current setup of the problem. A naive modification to Zou et al.’s method is

to first obtain a nonparametric estimate of g from each profile data, and then predict response values

using the estimated g at some points {z1, z2, . . . , zn} in the design interval which are unchanged
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from one profile to another. Then, the NEWMA chart can be applied to the predicted response

values. However, this naive approach, which is called the NAEWMA chart hereafter, may not be

efficient, due to the facts that only nk observations are used for estimating g in the k-th profile, nk

could be very small, and thus the predicted response values could have large bias and variance. As

an alternative, in this paper, we consider using the following weighted local likelihood at any point

z ∈ [0, 1], which combines the exponential weighting scheme used in EWMA at different time points

(i.e., through the term (1 − λ)t−k in the expression below) with the local linear kernel smoothing

procedure (cf., Fan and Gijbels 1996):

WL(a, b; z, λ, t) =

t∑

k=1

nk∑

j=1

[ykj − a− b(xkj − z)]2Kh (xkj − z) (1 − λ)t−k,

where t is the current time point for profile monitoring, Kh(·) = K(·/h)/h, K is a symmetric

density kernel function, λ ∈ [0, 1] is a weighting parameter, and h is a bandwidth. Then, the

local linear kernel estimator of g(z), defined as the solution to a in the minimization problem

mina,bWL(a, b; z, λ, t), has the expression

ĝt,h,λ(z) =

t∑

k=1

nk∑

j=1

U
(t,h,λ)
kj (z)ykj

/
t∑

k=1

nk∑

j=1

U
(t,h,λ)
kj (z), (2)

where

U
(t,h,λ)
kj (z) = (1 − λ)t−kKh(xkj − z)

[
m

(t,h,λ)
2 (z) − (xkj − z)m

(t,h,λ)
1 (z)

]
,

m
(t,h,λ)
l (z) =

t∑

k=1

(1 − λ)t−k
nk∑

j=1

(xkj − z)lKh(xkj − z), l = 0, 1, 2. (3)

From the expression of WL(a, b; z, λ, t) above, we can see that this estimator makes use of all

available observations up to the current (i.e., the t-th) time point, and different profiles are weighted

as in a conventional EWMA chart (i.e., more recent profiles get more weight and the weight changes

exponentially over time).

If the process under monitoring is IC up to the t-th time point, then ĝt,h,λ in (2) should be

close to the IC profile function denoted as g0. Therefore, a charting statistic for profile monitoring

can be defined based on the difference between ĝt,h,λ and g0. For simplicity, let us first assume that

g0 and the error variance σ2 are both known. In such cases, a more convenient way to define the

charting statistic is to use ξ̂t,h,λ(z), which is the estimator defined by (2), after ykj are replaced by

ξkj = [ykj − g0(xkj)]/σ, for all k and j. Then, ξ̂t,h,λ(z) should be uniformly close to 0 when the
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process is IC up to the t-th time point. A natural charting statistic for profile monitoring is then

defined by

Tt,h,λ = c0,t,λ

∫
[ξ̂t,h,λ(z)]

2Γ1(z) dz,

where

ct0,t1,λ = a2
t0,t1,λ/bt0,t1,λ, at0,t1,λ =

t1∑

k=t0+1

(1 − λ)t1−knk, bt0,t1,λ =

t1∑

k=t0+1

(1 − λ)2(t1−k)nk,

and Γ1 is some pre-specified positive density function. In the expression of Tt,h,λ, the scale param-

eter c0,t,λ is used for unifying its asymptotic variance (see Theorem 1 below and its proof in the

Appendix). In practice, we can use the following approximation:

Tt,h,λ ≈ c0,t,λ
n0

n0∑

i=1

[
ξ̂t,h,λ(zi)

]2
, (4)

where zi, for i = 1, . . . , n0, are some pre-specified i.i.d. design points from Γ1. Then, the control

chart triggers a signal if Tt,h,λ > L, where L > 0 is a control limit chosen to achieve a specific IC

ARL. Hereafter, this chart is referred to as the nonparametric profile control (NPC) chart.

It should be pointed out that it is computationally faster to use points zi rather than the

original design points xkj in approximating the statistic Tt,h,λ. As shown in Section 2.5 below,

Tt,h,λ can be calculated in a recursive manner when zi are used in the approximation, and it does

not enjoy such a feature when xkj are used. Further, from theoretical properties of Tt,h,λ given

in Theorem 2 below and certain empirical results presented in Section 3, selection of zi and n0

has little effect on the performance of the NPC chart as long as n0 is not too small. See related

discussion in Section 2.7 about practical guidelines on selection of certain procedure parameters.

As a remark, one may define Tt,h,λ alternatively by

c0,t,λ
n0

n0∑

i=1

[ĝt,h,λ(zi) − g0(zi)]
2 . (5)

Namely, we can first compute profile estimators ĝt,h,λ from the original data and then construct

the control chart accordingly. It can be shown that (5) and (4) are asymptotically equivalent under

some regularity conditions given in Appendix A. However, in finite-sample cases, properties of (5)

depend on g0. As a comparison, formula (4) transforms the testing problem of H0 : g = g0 versus

H1 : g 6= g0 to the one of H0 : g = 0 versus H1 : g 6= 0. Therefore, it is invariant to g0. Its IC

distribution and all quantities related to this distribution do not depend on g0 either. A direct

6



benefit of this property is that the control limit L can be simply searched from a process with zero

IC profile and unity error standard deviation.

Next, we give some asymptotic properties of the charting statistic Tt,h,λ which can justify the

performance of the NPC chart to a certain degree and shed some light on practical design of the

chart as well. The following theorem establishes the asymptotic null distribution of Tt,h,λ, in which

design points xkjs are assumed to be i.i.d. with a density Γ2 in each IC profile.

Theorem 1 Under conditions (C1)–(C5) and (C7) given in Appendix A, when the process is IC,

we have

(Tt,h,λ − µ̃h) /σ̃h
L−→ N(0, 1),

where

µ̃h =

∫
[K(u)]2du

h

∫
Γ1(x)

Γ2(x)
dx, σ̃2

h =
2
∫

[K ∗K(u)]2du

h

∫
Γ2

1(x)

Γ2
2(x)

dx.

The next theorem investigates the asymptotic behavior of Tt,h,λ under the OC model

ykj =





g0(xkj) + εkj, if 1 ≤ k ≤ τ

g1(xkj) + εkj, if k > τ,
(6)

where τ is an unknown shift time point, and g1(x) = g0(x) + δ(x) is the unknown OC profile

function. Denote

ζδ =
1

σ2

∫ [
δ(u) +

h2η1

2
δ′′(u)

]2

Γ1(u)du, η1 =

∫
K(t)t2dt,

ζ1 =

∫
δ2(u)Γ1(u)du, ζ2 =

∫
[δ′′(u)]2Γ1(u)du.

Theorem 2 Under conditions (C1)-(C4), (C5’), (C6) and (C7) given in Appendix A and the extra

condition that ζ2 < M for some constant M > 0, we have

(i) If c0,t,λhζ1 → 0, then (Tt,h,λ − µ̃h − c0,t,λζδ) /σ̃h converges in distribution to N(0, 1).

(ii) If ζ2 → 0, then Tt,h,λ has a nontrivial power (i.e., the power will not converge to zero) when

δ ∝ c
−4/9
0,t,λ and h = O(c

−2/9
0,t,λ ).

From Theorem 2, we notice that the asymptotic power of the test statistic Tt,h,λ depends on

δ and its second order derivative. The charting statistic of the NEWMA chart has similar leading
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terms in its asymptotic expression. However, compared to NEWMA, Tt,h,λ has the luxury to use

a smaller bandwidth in local linear kernel smoothing because it uses observations from different

profiles in its smoothing process, as described above. Therefore, the NPC chart based on Tt,h,λ

would be more effective when the profile shift has large curvature (i.e., δ′′ is large) since small h

would diminish the effect of h2η1
2 δ′′(u) in the above expression of ζδ. This explains why we can get

a better profile monitoring by using a random design scheme, instead of an equal design scheme,

when the curvature of δ is large. In Section 2.4, we will discuss how to select the bandwidth h

adaptively in the NPC chart to accommodate different magnitudes of δ′′.

2.3 Adaptive selection of the weighting parameter

It is well known that optimal selection of the weighting parameter λ used in EWMA charts depends

on the target shift: small λ would be effective for detecting small shifts and large λ is effective for

detecting large shifts. So, an EWMA chart with a given λ cannot have a “nearly minimum” ARL

for both small and large shifts (cf., e.g., Lucas and Saccucci 1990). This assertion is also valid for

our proposed control chart by noting the following result.

Proposition 1 Under conditions (C1)-(C4) given in Appendix A and the extra conditions that

h → 0, nk → ∞, n0h
3

2 → ∞, nkh
3 → ∞, and nkh

5 → 0, if
a2

τ,t,λ

b0,t,λ
hζ1 → 0 and ζ2 < M for some

constant M > 0, we have

Tt,h,λ
D≈ µ̃h + h−

1

2w +
a2
τ,t,λ

b0,t,λ
ζδ,

where
D≈ denotes asymptotic equality in distribution, and w is a normal random variable with mean

zero and variance σ̃2
h.

The proof of this proposition is analogous to that of Theorem 2 given in Appendix B. So, it is

omitted. For simplicity, let us discuss the case when nk = n. In such a case, from expressions of

aτ,t,λ and b0,t,λ, we have

a2
τ,t,λ

b0,t,λ
=

2 − λ

λ[1 − (1 − λ)2t]
[1 − (1 − λ)t−τ ]2.

By Proposition 1 and the above expression, intuitively, if ζδ is small, then it would require a large

value of t − τ to signal and this also depends heavily on the factor (2 − λ)/λ. When λ is chosen

smaller, (2−λ)/λ becomes larger. Consequently, the small shift would be detected quicker. On the
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other hand, if ζδ is large, then we can expect the run length t− τ to be relatively small as long as

λ is chosen relatively large. If λ is chosen small in such a case, then 1− (1− λ)t−τ would approach

1 too slow to detect shifts effectively.

Motivated by the AEWMA chart suggested by Capizzi and Masarotto (2003), in this section

we suggest an adaptive procedure for choosing the weighting parameter λ. The underlying idea

is to adapt weights used for past profiles to the goodness-of-fit of the current profile, so that the

related chart can detect shifts of different sizes in a more efficient way. To be specific, let ψ be a

score function used for determining the adaptive weights. Capizzi and Masarotto (2003) propose

several candidates for ψ. For simplicity, we suggest using the following one:

ψl0,λ0
(u) =





1 − (1 − λ0)l0/u, if u ≥ l0

λ0, if u < l0,

where 0 < λ0 ≤ 1 and l0 > 0 are two parameters, λ0 defines the minimum weight, and l0 is used

for balancing detection ability of the control chart for large and small shifts. Apparently, a large

(small) l0 would generate a small (large) adaptive weight, making the control chart more sensitive

to small (large) shifts. Further discussion on selection of λ0 and l0 will be given in Section 2.7.

Then, the NPC chart with the adaptive weight, denoted as NPC-W, signals when

Tt,h,ψl0,λ0
(T ∗

t,h
) > L, (7)

where the control limit L > 0 is chosen to achieve a specific IC ARL, and T ∗
t,h is defined in the

same way as Tt,h,λ except that only the current profile data {(xtj , ytj), j = 1, . . . , nt} are used here.

It is easy to check that T ∗
t,h is actually Tt,h,1; it is therefore easy to compute. So, the NPC-W chart

essentially combines the EWMA and Shewhart procedures in a natural way. It is worth mentioning

that implementation of this adaptive control chart doesn’t require much extra computational effort,

compared to that of the NPC chart, because recursive formulas given in Section 2.5 for computing

Tt,h,λ only require nonparametric regression of individual profiles. From numerical examples in

Section 3, we can see that, after choosing λ0 and l0 properly, the NPC-W chart provides well

balanced protection against various shifts.

2.4 Adaptive selection of the bandwidth parameter

Like many other smoothing-based tests, performance of the NPC chart depends on selection of the

bandwidth parameter h. Optimal selection of h remains an open problem in this area, and it is
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widely recognized that optimal h for nonparametric curve estimation is generally not optimal for

testing (cf., e.g., Hart 1997). A uniformly most powerful test usually does not exist due to the

fact that nonparametric regression functions have infinite dimensions. But the term h2η1
2 δ′′(·) in

Theorem 2 tells us that appropriate selection of h would improve the testing power. Intuitively,

a smaller h would be more effective in detecting shifts with large curvature (i.e., large δ′′), and

a larger h would perform better when shifts are flat or smooth (i.e., small δ′′). This intuition

motivates us to use an adaptive selection procedure, briefly described below.

For the lack-of-fit testing problem, Horowitz and Spokoiny (2001) suggested choosing a single

h based on the maximum of a studentized conditional moment test statistic over a sequence of

smoothing parameters, and proved that the resulting test would have certain optimality properties.

Because this method is easy to use and has good performance in various cases, we use it here for

choosing h. Let H be a set of admissible smoothing parameter values defined to be the following

geometric grid:

H = {hj = hmaxγ
−j : hj ≥ hmin, j = 0, . . . , Jn}, (8)

where 0 < hmin < hmax are the lower and upper bounds, and γ > 1 is a parameter. Clearly, the

number of values in H is Jn ≤ logγ(hmax/hmin). Then, the charting statistic of the NPC chart with

adaptive bandwidth, denoted as NPC-B, becomes

T̃t,H,λ = max
h∈H

Tt,h,λ − µ̃h
σ̃h

, (9)

where µ̃h and σ̃2
h are respectively the asymptotic expectation and variance of Tt,h,λ, defined in

Theorem 1. The next proposition establishes the consistency of T̃t,H,λ against smooth alternatives.

Proposition 2 Under conditions (C1)-(C4), (C6), and the extra conditions that hmin and hmax

both satisfy condition (C5), ζ1 > M1(c
−1
0,t,λ ln ln c0,t,λ)

8

9 , and ζ2 < M2, where M1 and M2 are two

positive constants, then T̃t,H,λ is consistent under model (6) in the sense that its power converges

to 1 when t increases.

From the proof of this proposition given in Appendix B, we can see that T̃t,H,λ would “automat-

ically” maximize the asymptotic power function c0,t,λh
1

2 ζδ. Thus, it adapts to different magnitudes

of δ′′; consequently, T̃t,H,λ would be more robust to various potential shifts, compared to Tt,H,λ

with a given bandwidth.
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2.5 Some computational issues

Although computing power gets improved fast and it is computationally trivial to do nonparametric

function estimation for individual profiles, for on-line process monitoring, which generally handles a

large amount of profiles, fast implementation is important and some computational issues are worth

our careful examination. For the proposed charts, computation of the test statistic Tt,h,λ might

be time-consuming, and it requires a substantial amount of storage for past profile observations as

well. In this part, we provide updating formulas for computing the charting statistic, which will

greatly simplify the computation and lessen the storage requirement. Let

m̃
(t,h)
l (z) =

nk∑

j=1

(xtj − z)lKh(xtj − z), l = 0, 1, 2,

q̃
(t,h)
l (z) =

nk∑

j=1

(xtj − z)lKh(xtj − z)ytj , l = 0, 1.

Then, m
(t,h,λ)
l (z) in (3) can be recursively updated by

m
(t,h,λ)
l (z) = (1 − λ)m

(t−1,h,λ)
l (z) + m̃

(t,h)
l (z), l = 0, 1, 2,

where m
(0,h,λ)
l (zi) = 0, for l = 0, 1, 2. Let q

(t,h,λ)
l (z), for l = 0, 1, be two working functions defined

by the recursive formula

q
(t,h,λ)
l (z) = (1 − λ)q

(t−1,h,λ)
l (z) + q̃

(t,h)
l (z), l = 0, 1,

where q
(0,h,λ)
l (z) = 0, for l = 0, 1. Then, we have

ĝt,h,λ(z) =
[
M (t,h,λ)

]−1
{

(1 − λ)2M (t−1,h,λ)ĝt−1,h,λ +
[
q̃
(t,h)
0 m

(t,h,λ)
2 − q̃

(t,h)
1 m

(t,h,λ)
1

]

+ (1 − λ)
[
q
(t−1,h,λ)
0 m̃

(t,h)
2 − q

(t−1,h,λ)
1 m̃

(t,h)
1

]}
, (10)

where M (t,h,λ)(z) = m
(t,h,λ)
2 (z)m

(t,h,λ)
0 (z) − [m

(t,h,λ)
0 (z)]2. On the right hand side of the above

equation, dependence on z in each function is not made explicit in notation for simplicity, which

should not cause any confusion.

Using the above updating formulas, implementation of the NPC chart can be briefly described

as follows. At time point t, we first compute quantities m̃
(t,h)
l (z), for l = 0, 1, 2, and q̃

(t,h)
l (z), for

l = 0, 1, at n0 pre-determined z locations (see related discussion in Sections 2.2 and 2.7 about

selection of n0 and {zi, i = 1, 2, . . . , n0}). Then, m
(0,h,λ)
l (zi), for l = 0, 1, 2, and q

(0,h,λ)
l (zi), for
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l = 0, 1, are updated by the above formulas. Finally, ĝt,h,λ(z) is computed from (10), and the test

statistic Tt,h,λ is computed from ĝt,h,λ(z), after replacing ykj by ξkj. This algorithm only requires

O(n0nkh) operations for monitoring each profile, which is in the same order as the computation

involved in conventional local linear kernel smoothing. If nk and n0 are both large, we could further

decrease the computation to the order of O(nkh), using the updating algorithm proposed by Seifert

et al. (1994). See Fan and Marron (1994) for a similar algorithm. Clearly, using the proposed

updating formulas, required computer storage does not grow with time t. In addition, compared

to the NPC chart with fixed weight and bandwidth parameters, implementation of the NPC-W

chart does not require much extra computational effort, and implementation of the NPC-B chart

requires Jn times both computational effort and computer storage.

2.6 A self-starting version

The NPC chart makes explicit use of the IC regression function g0 and the error variance σ2

(cf., model (1)). In practice, both g0 and σ2 might be unknown. In such cases, they need to be

estimated from an IC data set. If such IC data are of small to moderate size, then there would be

considerable uncertainty in the estimates, which in turn would distort the IC run length distribution

of the control chart. Even if the control limit of the chart is adjusted properly to attain a desired IC

run length behavior, its OC run length would still be severely compromised (cf., e.g., Jones 2002).

To avoid such problems, a large and thus costly collection of IC profile samples would be necessary

(see Jensen et al. 2006 for related discussion). Zou et al. (2008) provide a general guideline on

how many IC profile samples are necessary to obtain good run length behavior for the NEWMA

chart, according to which at least forty IC profile samples with more than fifty observations in

each profile sample are required to obtain satisfactory results in various cases. In this section, we

present a self-starting version of the NPC chart, which can substantially reduce the required IC

profile samples.

The basic idea of the self-starting version is to replace g0 and σ2, both of which are used in

defining ξkj, with some appropriate estimators constructed from past profile data. If the chart does

not give a signal of profile shift at time point t, then g0(x) can be estimated by the conventional local

linear kernel estimator constructed from t historical profile samples, which is denoted as ĝ
(t)
0 (x).
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The variance σ2 can be estimated recursively by

σ̂2
t =

{ t−1∑

k=1

nkσ̂
2
t−1 +

nt∑

j=1

[ytj − ĝ
(t−1)
0 (xtj)]

2

}/ t∑

k=1

nk.

Then, the self-starting version, denoted as NPC-S, is the control chart based on the charting

statistic T̂t,h,λ, which is constructed in the same way as Tt,h,λ (cf., (4)) except that ξkj need to be

replaced by ξ̃kj = [ykj − ĝ
(k−1)
0 (xkj)]/σ̂k−1, for all k and j.

It is worth mentioning that, in practice, it is not necessary to update ĝ
(t)
0 (xkj) and σ̂2

t after t

is large enough. As a matter of fact, it is straightforward to show that, when the process is IC,

ĝ
(t)
0 (x) = g0(x) +Op((Nth)

− 1

2 ) +O(h4),

σ̂2
t = σ2

(
1 +Op(N

− 1

2

t ) +Op((Nth)
−1)

)
,

where Nt =
t∑

k=1

nk. Thus, when t is sufficiently large, say t ≥ t0, the approximations of ĝ
(t)
0 (x) and

σ̂2
t to g0 and σ2 would be good enough, and we could simply use ĝ

(t0)
0 (x) and σ̂2

t0 for all profiles

with t ≥ t0 in process monitoring. There are two benefits with this modification. First, it reduces

much computation and storage requirement with very little loss of efficiency. Second, it may reduce

the “masking-effect” (cf., Hawkins 1987) to certain extent. That is, when the potential shift occurs

after time t0, the estimates ĝ
(t0)
0 (x) and σ̂2

t0 would not be contaminated by the OC observations,

which is not the case if these estimates are updated at every time point.

From the description in this and previous two subsections, it can be seen that the NPC-S chart

can accommodate adaptive selection of the weight and bandwidth parameters. The resulting chart,

denoted as NPC-SWB, should be able to offer a balanced protection against shifts of different

magnitudes and adapt to the smoothness of the IC and OC profile functions as well. Formulation

of the NPC-SWB chart can be readily obtained by incorporating (7) and (9) into T̂t,h,λ; hence, it

is not elaborated here. Its performance will be investigated in Section 3.

2.7 Certain practical guidelines

On choosing nk and xkj: In certain applications, design points xkj are determined by the

industrial process itself, and we can not do much in choosing them. In some others (cf., Zou et

al. 2008), they need to be specified before process monitoring. As demonstrated by Theorem 2,

13



random design has some benefits, compared to the design in which different profiles share the same

design points, because observations from different profiles would provide information about more

details of the regression function g in the former case. So, if we can choose the design points, then

random design would be a good choice. This amounts to determining a proper design distribution

Γ2, from which design points xkj are generated for individual profiles. The number of design points

nk can also be random, although in many applications nk = n would be the most convenient scheme

to use. The value of n can be chosen smaller than the one used in the NEWMA chart by Zou et

al. (2008), because, in computing Tt,h,λ, roughly c0,t,λ = 2−λ
λ n observations are actually used.

On choosing n0 and zis: Based on our numerical experience, selection of n0 and zis does not

affect the performance of the NPC chart much, as long as n0 is not too small and zis cover all the

key parts (e.g., peaks/valleys or oscillating regions) of g0 well. In our numerical examples presented

in Section 3, we find that results do not change much when n0 ≥ 40.

On choosing l0 and λ0 used in the NPC-W chart: As described in Section 2.3, λ0 is the

minimum weight used by the chart NPC-W, and l0 is the parameter that controls the chance for

the chart to use that minimum weight. The chart would use the minimum weight λ0 if Tt,h,1 < l0.

We suggest using the upper α0 percentile of Tt,h,1 as the value of l0, which could be obtained

by simulation before profile monitoring. An appropriate method for determining α0 is to set

α0 = c/ARL0, where c > 1 is a constant and ARL0 is the desired IC ARL value. Since the

reciprocal of ARL0 can be regarded as a rough estimate of the false alarm probability, it would

be reasonable to choose α0 to be c/ARL0 so that the chart NPC-W can achieve the given IC

ARL value. With respect to λ0, it should be chosen smaller than the commonly used value 0.2 in

the EWMA literature (cf., Lucas and Saccucci 1990). Based on our numerical experience and the

results in Capizzi and Masarotto (2003), we recommend using λ0 ∈ [0.05, 0.1] and 5 ≤ c ≤ 15.

On choosing H used in the NPC-B chart: Theoretically speaking, the parameters γ, Jn,

hmax and hmin should satisfy certain conditions to obtain the corresponding asymptotic results.

See Appendix A for related discussion. Based on our simulations, we notice that the proposed

control chart is actually quite robust to them, which is consistent with the findings in Horowitz and

Spokoiny (2001). By both theoretical arguments and numerical studies, we recommend using the

choices that 1 < γ < 2, Jn could be 4, 5 or 6, hmax = Mc
−1/7
0,t,λ , and hj = hmaxγ

−j , for j = 1, . . . , Jn,

where 0.5 ≤ M ≤ 2 is a constant. Note that the recommended value hmax = Mc
−1/7
0,t,λ is partially

due to condition (C5) given in Appendix A.
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On the NPC-S chart: As suggested by Hawkins et al. (2003), we recommend collecting three to

ten IC profile samples before using the NPC-S chart. These preliminary profile samples are mainly

for stabilizing the variation of T̂t,h,λ.

3 A Simulation Study

We present some simulation results in this section regarding the numerical performance of the

proposed NPC chart. Throughout this section, the kernel function is chosen to be the Epanechnikov

kernel function K(x) = 0.75(1 − x2)I(−1 ≤ x ≤ 1). The IC ARL is fixed at 200. The error

distribution is assumed to be Normal. For simplicity, we assume that nk = n = 20 for all k,

xkj ∼ Uniform(0, 1), for j = 1, . . . , n, zi = (i − 0.5)/n0, for i = 1, . . . , n0, and n0 = 40. All the

ARL results in this section are obtained from 50,000 replications unless indicated otherwise. In

addition, we focus on the steady-state OC ARL behavior of each chart (cf., Hawkins and Olwell

1998), and assume that τ = 30 (cf., the OC model (6)). When computing the ARL values, any

simulation runs in which a signal occurs before the (τ + 1)-th profile are discarded. As a side note,

our numerical results (not reported here to save some space) show that steady-states of the related

charts considered in this section are reached when τ is as small as 10 in all cases considered.

To compare the NPC chart with alternative methods turns out to be difficult, due to lack of

an obvious comparable method. One possible alternative method is the NEWMA chart proposed

by Zou et al. (2008) in which design points are assumed to be equally spaced in each profile and

they are unchanged from profile to profile. To make the procedures comparable, for the NEWMA

chart, we assume that design points are (i−0.5)/n, for i = 1, . . . , n, in each profile sample. Another

possible method to compare is the naive modification of the NEWMA chart described in Section

2.2, which is called the NAEWMA chart below. By the NAEWMA chart, profile functions are first

estimated from individual profile data, then response values are predicted from these estimated

profile functions at some common points {z1, z2, . . . , zn} in the design interval for different profiles,

and finally the NEWMA chart is applied to the predicted response values. For this chart, we take

zi = (i− 0.5)/n, for i = 1, . . . , n, as in the NEWMA chart.

To appreciate the benefits of different versions of the NPC chart, we investigate numerical

performance of the NPC, NPC-W, NPC-B, NPC-S, and NPC-WBS charts separately. Note that,

for charts NEWMA and NAEWMA, the bandwidth h and the weighting parameter λ should both be
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pre-specified. Therefore, we first compare the charts NPC, NEWMA and NAEWMA in such cases.

Following the recommendations by Zou et al. (2008), h is chosen to be either h1 = 1.5n−1/5
√

Var(x)

or h2 = 1.5[n(2 − λ)/λ]−1/5
√

Var(x). The smaller bandwidth h2 is considered here because the

actual number of observations used in the NPC chart at each time point is c0,t,λ which is roughly

n(2−λ)/λ. In all three charts, λ is chosen to be 0.1 or 0.2. The IC model used is g0(x) = 1−exp(−x),
and the following two representative OC models are considered here:

(I) : g1(x) = 1 − exp(−x) + θx; (II) : g1(x) = 1 − exp(−x) + θ sin(2π(x− 0.5)).

In case (I), g1(x) − g0(x) = θx is a straight line; and g1(x) − g0(x) = θ sin(2π(x − 0.5)) oscillates

a lot in case (II). Table 1 presents the OC ARL values of the three charts in various cases. Their

control limits L are also included in the table.

From the table, we can have the following results. First, in case (I), larger h (i.e., h1) yields

better performance for both NPC and NEWMA charts, because δ(x) = g1(x) − g0(x) is straight

in this case. For a given bandwidth, the NPC chart outperforms the NEWMA chart uniformly.

This is because the effective number of observations used in the NPC chart at each time point is

larger than that used in the NEWMA chart, and consequently the charting statistic of the NPC

chart would converge to c0,t,λζ1 faster (cf., Theorem 1). Second, in case (II) where δ(x) oscillates

a lot, the NPC chart with the smaller h has better performance, which is intuitively reasonable.

However, this is not the case for the NEWMA chart, because smaller bandwidth in the NEWMA

chart would result in large bias in estimating the regression function and thus reduce its ability in

detecting profile shift. This example confirms the fact that the NPC chart allows us to use a smaller

bandwidth to better detect oscillating profile shifts (cf., related discussion at the end of Section 2.2).

Third, in case (II), the NPC chart outperforms the NEWMA chart uniformly. Fourth, the NPC

chart outperforms the NAEWMA chart by a quite large margin in most cases, and the NAEWMA

chart also performs uniformly worse than the NEWMA chart. These results confirm our argument

made in Section 2.2 that the naive chart NAEWMA would be inefficient because profile estimates

constructed from individual profile data would have relatively large bias and variance. By the way,

our simulations (not reported here) show that, when n0 is chosen larger than 40, performance of

the NPC chart would not change much.

Next we consider the NPC-W chart in which the weight parameter λ is adaptively chosen so

that the chart would be robust to shift size. Its other parameters are chosen according to the

practical guidelines given in Section 2.7. More specifically, we choose λ0 = 0.1 and α0 = 0.05.
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Table 1: OC ARL comparison of the NPC, NEWMA, and NAEWMA charts when IC ARL=200,

λ = 0.1 or 0.2, and n = 20.

θ NPC NEWMA NAEWMA

h1 h2 h1 h2 h1 h2

λ = 0.1

0.100 75.9 (.357) 87.4 (.486) 89.5 (.393) 102 (.452) 101 (.455) 103 (.464)

0.200 27.6 (.106) 33.1 (.152) 32.7 (.118) 38.5 (.142) 39.7 (.154) 41.0 (.160)

0.300 14.8 (.046) 17.4 (.066) 17.2 (.050) 19.7 (.059) 20.5 (.066) 20.9 (.067)

0.400 9.85 (.026) 11.4 (.037) 11.2 (.027) 12.6 (.031) 13.3 (.036) 13.6 (.037)

(I) 0.600 5.90 (.013) 6.68 (.018) 6.64 (.013) 7.33 (.015) 7.64 (.016) 7.76 (.017)

0.800 4.27 (.008) 4.80 (.011) 4.74 (.008) 5.19 (.009) 5.38 (.010) 5.44 (.010)

1.200 2.82 (.005) 3.12 (.007) 3.12 (.005) 3.37 (.005) 3.46 (.006) 3.50 (.006)

1.600 2.18 (.004) 2.37 (.004) 2.38 (.004) 2.56 (.004) 2.62 (.004) 2.65 (.004)

0.100 68.9 (.313) 65.3 (.343) 72.4 (.316) 81.6 (.348) 94.2 (.419) 95.6 (.424 )

0.200 23.2 (.082) 22.2 (.090) 24.5 (.080) 27.6 (.092) 31.7 (.112) 32.2 (.114 )

0.300 12.4 (.035) 12.0 (.039) 13.0 (.034) 14.3 (.037) 16.0 (.044) 16.2 (.045 )

(II) 0.400 8.29 (.020) 8.03 (.022) 8.76 (.019) 9.53 (.021) 10.5 (.024) 10.5 (.024 )

0.600 5.11 (.010) 4.96 (.012) 5.32 (.009) 5.75 (.010) 6.15 (.011) 6.20 (.011 )

0.800 3.73 (.007) 3.65 (.008) 3.89 (.006) 4.16 (.007) 4.42 (.008) 4.43 (.008 )

1.200 2.51 (.004) 2.42 (.005) 2.62 (.004) 2.78 (.004) 2.94 (.004) 2.95 (.004 )

1.600 1.94 (.003) 1.90 (.003) 2.04 (.003) 2.15 (.003) 2.25 (.003) 2.26 (.003 )

L 9.49 13.05 14.39 19.02 12.88 13.32

λ = 0.2

0.100 95.6 (.452) 108 (.501) 112 (.519) 125 (.595) 132 (.625) 135 (.648)

0.200 34.6 (.148) 41.0 (.174) 43.2 (.188) 51.9 (.228) 60.0 (.269) 62.2 (.281)

0.300 16.6 (.063) 19.6 (.076) 20.1 (.076) 23.7 (.089) 28.4 (.116) 29.6 (.120)

0.400 10.0 (.031) 11.7 (.036) 11.7 (.036) 13.4 (.045) 16.1 (.056) 16.6 (.058)

(I) 0.600 5.39 (.013) 6.05 (.013) 6.03 (.013) 6.64 (.018) 7.69 (.020) 7.94 (.022)

0.800 3.69 (.009) 4.09 (.009) 4.09 (.009) 4.44 (.009) 4.98 (.011) 5.15 (.011)

1.200 2.35 (.004) 2.55 (.004) 2.56 (.004) 2.74 (.004) 3.00 (.005) 3.04 (.005)

1.600 1.80 (.003) 1.93 (.003) 1.94 (.003) 2.06 (.003) 2.21 (.003) 2.26 (.003)

0.100 93.1 (.461) 85.7 (.407) 93.9 (.429) 105 (.479) 133 (.630) 135 (.639)

0.200 30.3 (.130) 27.6 (.112) 31.3 (.125) 35.4 (.148) 48.6 (.235) 55.3 (.242)

0.300 13.8 (.049) 13.0 (.045) 14.2 (.049) 16.0 (.054) 22.5 (.081) 23.2 (.086)

(II) 0.400 8.31 (.022) 7.91 (.022) 8.57 (.022) 9.38 (.027) 12.3 (.036) 12.5 (.038)

0.600 4.54 (.009) 4.37 (.009) 4.68 (.009) 5.00 (.009) 5.98 (.012) 6.05 (.013)

0.800 3.17 (.004) 3.07 (.004) 3.26 (.004) 3.46 (.004) 4.00 (.007) 4.04 (.007)

1.200 2.08 (.004) 2.01 (.004) 2.14 (.004) 2.25 (.004) 2.50 (.004) 2.53 (.004)

1.600 1.61 (.003) 1.56 (.003) 1.66 (.003) 1.74 (.003) 1.91 (.003) 1.92 (.003)

L 10.47 13.09 15.41 19.10 15.00 15.51

NOTE: Standard errors are in parentheses.
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Figure 1: OC ARL comparison of the NPC-W chart and three NPC charts with λ = 0.1, 0.2 and

0.4.

Since we are mainly concerned about the robustness of the NPC-W chart to shift size, only the OC

model (I) is considered here. The bandwidth h is chosen to be h1, because it is more appropriate

to use in this case than h2, by Table 1. For comparison purpose, the OC ARL values of three NPC

charts when λ = 0.1, 0.2 and 0.4 are also computed. To measure robustness of a chart T to shift

size, the relative mean index (RMI) originally proposed by Han and Tsung (2006) is used, which

is defined by

RMI(T) =
1

m

m∑

i=1

ARLθi
(T) − MARLθi

MARLθi

,

where ARLθi
(T) is the OC ARL of T for detecting a shift of size θi, and MARLθi

is the smallest

value among such OC ARL values of all charts considered. In this example, θi ranges from 0.1 to

2 with a step 0.1. Obviously, small RMI(T) implies that T has a robust performance in detecting

shifts of various sizes. Figure 1 shows the OC ARL values (in log scale) and the RMI values of the

four charts considered. It can be seen that performance of the three NPC charts depends heavily

on their pre-specified λ values, as expected, and the NPC-W chart offers a balanced protection

against various shift sizes. In terms of RMI, the NPC-W chart performs the best. After taking into

account its convenient implementation, we think that the NPC-W chart is a valuable improvement

of the NPC chart.
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Table 2: OC ARL comparison of the NPC and NPC-B charts when IC ARL=200, λ = 0.2 and

n = 20.
θ NPC-B NPC

h = 0.6 h = 0.3 h = 0.15

0.250 8.20 (.031) 7.84 (.022) 8.27 (.031) 10.8 (.036)

0.500 9.05 (.031) 8.95 (.027) 9.45 (.031) 12.2 (.040)

0.750 11.2 (.036) 11.4 (.036) 10.7 (.036) 13.9 (.040)

1.000 14.7 (.054) 16.2 (.058) 14.1 (.049) 15.9 (.058)

2.000 32.3 (.112) 86.3 (.398) 35.0 (.125) 26.9 (.103)

3.000 31.0 (.098) 49.0 (.224) 50.6 (.224) 24.4 (.094)

4.000 63.5 (.286) 166 (.814) 174 (.832) 48.0 (.206)

5.000 75.6 (.344) 120 (.577) 125 (.581) 81.4 (.376)

L 4.27 8.75 9.61 13.32

NOTE: Standard errors are in parentheses.

Next, we consider the NPC-B chart. By the guidelines in Section 2.7, we choose γ = 1.4,

hmax = 1.0[(2 − λ/λ)n]−1/7, and hj = hmaxγ
−j , for j = 1, . . . , 4. We consider the following OC

model g1(x) = 1 − exp(−x) + 0.25 cos(θπ(x − 0.5)). By changing θ, this model can cover various

cases with different smoothness of δ(·). For comparison purposes, we also consider three NPC

charts with bandwidth 0.6, 0.3, and 0.15, respectively. Their other parameters are chosen as in

the example of Table 1. OC ARL values of related charts are shown in Table 2, with their control

limits L listed in the bottom line. From the table, it can be seen that the NPC chart with a fixed

bandwidth outperforms the NPC-B chart in certain ranges of θ, but they can also be much worse in

other ranges of θ. As a comparison, the NPC-B chart is always close to the best chart in all cases,

because it can adapt to the unknown smoothness of δ(x) and pick up an appropriate bandwidth

accordingly from H.

We now investigate the numerical performance of the NPC-S chart. First, we study its IC run

length distribution. As recognized in the literature, it is often insufficient to summarize run length

behavior by ARL, especially for self-starting control charts (cf., Jones 2002). As an alternative, here

we use the hazard function H1(r)/H2(r) recommended by Hawkins and Maboudou-Tchao (2007),

where H1(r) is the probability that the run length equals r and H2(r) is the probability that the run

length equals r or a larger number. Note that, if the run length follows a geometric distribution,

then the corresponding hazard is a constant whose inverse is the ARL. In the example of Table

1 when h = h1 and L = 10.47, which corresponds to an IC ARL of 200 when the IC model is
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assumed known, the IC hazard function of the NPC-S chart based on 250,000 replications is shown

in Figure 2. When computing the IC hazard function, we follow the suggestion given in Section 2.7

that process monitoring starts after five IC profiles are collected beforehand. From the plot, we can

see that the IC hazard starts around 0.0065, then drops quickly to values around 0.005 = 1/200,

and gets stabilized at that level for good. This plot shows that, except for short run-lengths, the

geometric distribution is an excellent fit to the IC run length of the NPC-S chart, which is consistent

with the findings in Hawkins and Maboudou-Tchao (2007) about a self-starting chart for monitoring

multivariate Normal processes. Furthermore, sample mean and sample standard deviation of the

run lengths are 196 and 194, respectively, which are almost identical and which further confirms

that the NPC-S chart works well under the IC condition. We conducted some other simulations

with various combinations of n, h and Γ2 to check whether the above conclusions are true in other

settings. These simulation results, not reported here but available from the authors, show that the

NPC-S chart has quite satisfactory performance in other cases as well, except certain extreme cases

such as the ones when n is too small (e.g., n ≤ 5).

Figure 2: Hazard curve of the NPC-S chart.

Next, we examine the OC performance of the NPC-S chart. As demonstrated in the literature,

OC performance of self-starting charts is generally affected by the shift time point (cf., e.g., Hawkins

et al. 2003). In this example, we consider two shift times τ = 40 and τ = 80. The simulation
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Table 3: OC ARL performance of the NPC-S and NPC-SWB charts when IC ARL=200, λ = 0.2

and n = 20.
NPC-S NPC-SWB

θ τ = 40 τ = 80 τ = 40 τ = 80

h1 h2 h1 h2

0.100 163 (.903) 176 (.939) 143 (.818) 161 (.899) 151 (.859) 132 (.859)

0.200 101 (.738) 116 (.778) 68.2 (.505) 88.9 (.626) 82.5 (.626) 54.7 (.474)

0.300 46.1 (.456) 60.4 (.523) 24.9 (.192) 34.5 (.268) 32.2 (.313) 19.6 (.130)

0.400 17.5 (.188) 26.3 (.291) 11.7 (.054) 15.0 (.085) 14.0 (.098) 10.8 (.040)

(I) 0.600 6.01 (.018) 7.25 (.027) 5.66 (.018) 6.63 (.018) 6.20 (.018) 5.87 (.018)

0.800 3.88 (.009) 4.37 (.009) 3.77 (.009) 4.22 (.009) 4.14 (.009) 3.95 (.009)

1.200 2.38 (.004) 2.64 (.004) 2.38 (.004) 2.62 (.004) 2.38 (.004) 2.35 (.004)

1.600 1.81 (.004) 1.95 (.004) 1.81 (.004) 1.96 (.004) 1.64 (.004) 1.64 (.004)

0.100 156 (.872) 161 (.926) 146 (.823) 142 (.814) 150 (.836) 132 (.827)

0.200 78.7 (.581) 82.2 (.631) 55.2 (.402) 54.5 (.398) 68.0 (.483) 48.1 (.367)

0.300 26.1 (.206) 26.5 (.237) 18.3 (.103) 17.6 (.103) 22.9 (.165) 17.2 (.080)

(II) 0.400 10.9 (.063) 10.6 (.067) 9.44 (.036) 8.86 (.031) 10.7 (.040) 9.75 (.031)

0.600 4.92 (.013) 4.68 (.013) 4.77 (.009) 4.56 (.009) 5.34 (.013) 5.10 (.013)

0.800 3.30 (.004) 3.19 (.004) 3.24 (.004) 3.15 (.004) 3.62 (.009) 3.58 (.009)

1.200 2.13 (.004) 2.05 (.004) 2.09 (.004) 2.03 (.004) 2.11 (.004) 2.10 (.004)

1.600 1.60 (.004) 1.56 (.004) 1.61 (.004) 1.56 (.004) 1.43 (.004) 1.42 (.004)

L 10.47 13.09 10.47 13.09 4.070 4.070

NOTE: Standard errors are in parentheses.

results in various cases considered in Table 1 are presented in Table 3. From the table, it can be

seen that the NPC-S chart performs almost equally well for both values of τ when the shift size is

large. For detecting small to moderate shifts, it generally performs better with a larger τ , because

the updated parameter estimates would be more accurate in such a case under the IC condition,

which is confirmed by the table. As a comparison, in Table 3, we also present the OC ARLs of the

NPC-SWB chart, which is a combination of the self-starting chart and adaptive selection of the

weight and bandwidth parameters. Its parameters are chosen to be the same as those used in the

examples of Figure 1 and Table 2. From the table, we can see that the NPC-SWB chart outperforms

both NPC-S charts using h1 and h2 in all cases except certain cases with moderate shifts. Thus, in

practice, the NPC-SWB chart is recommended, if the extra computation involved is not a major

concern (cf., the last paragraph of Section 2.5 for related discussion about computation).
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4 A Real-Data Application

In this section, we demonstrate the proposed NPC chart by applying it to a dataset obtained

from the semiconductor manufacturing industry for monitoring a deep reactive ion etching (DRIE)

process which is critical to the output wafer quality and requires careful control and monitoring.

In the DRIE process, the desired profile is the one with smooth and straight sidewalls and flat

bottoms, and ideally the sidewalls of a trench are perpendicular to the bottom of the trench with

a certain degree of smoothness around the corners (cf., the middle shape shown in Figure 3).

Various other profile shapes, such as positive and negative ones (cf., the two left-hand-side and two

right-hand-side shapes shown in Figure 3) due to underetching and overetching, are considered to

be unacceptable. More detailed discussion about the DRIE example can be found in Rauf et al.

(2002) and Zhou et al. (2004).

PositiveNegative

Figure 3: Illustrations of various etching profiles from a DRIE process.

The DRIE data considered here have 21 profiles. The original data include their images,

like the ones shown in Figure 3. To monitor the DRIE process, we need to obtain samples from

individual profiles, which can be acquired by the scanning electron microscope (SEM). Since the

profiles are usually symmetric, we can focus on one half of each profile (e.g., the left half) for profile

monitoring purposes. To make that part of the profile convenient to describe by a mathematical

function, it is rotated by 45 degrees along a reference point in a pre-specified coordinate system,

before dimensional readings of the profile are collected by SEM. Among the 21 profiles, based on

engineering knowledge, the first 18 profiles are IC and the remaining 3 profiles are OC. Since the

number of IC profiles is not large, the IC profile function g0 and the error standard deviation σ may

not be accurately estimated from the IC data. Therefore, we consider using the self-starting chart

NPC-S in this example. As pointed out at the end of Section 2.2 and confirmed numerically in the

example of Table 1, for applications such as the current one, a better profile monitoring can be
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achieved by using a random design scheme, instead of a fixed design scheme for all profiles. Next,

we illustrate how to design a reasonable random design scheme in this example and how to apply

the NPC-S chart to the resulting data.

To design a random design scheme, we first need to specify the density Γ1 of the design points.

In this example, it seems that the corner part of the profile contains critical information regarding

whether the profile is OC; it should receive enough attention. A reasonable design distribution that

takes this into account is x ∼ Normal(0, 2.5), where the original point of x is located at the center

of the corner. This random design ensures that most design points fall within [-4,4] that covers half

of the bottom trench, and about 65% design points are located in [-1.5,1.5] that covers the corner

part. For each profile, we fix n = 20, and dimensional readings are collected by SEM at n design

points generated from Γ1. Using electronic sensor and information technologies, this entire data

acquisition process can be finished automatically by a computer. In the NPC-S chart, we fix the

IC ARL at 200, n0 at 40, and zis to be equally spaced in [-3.5,3.5]. All other parameters of the

NPC-S chart are chosen to be the same as those used in the example of Table 3. The control limit

is computed to be L = 16.07 by simulation. Following the practical guidelines given in Section

2.7, we take the first 10 IC profiles as preliminary data, and profile monitoring starts at the 11th

profile. The charting statistic T̂t,h,λ, for t = 11, . . . , 21, is shown in Figure 4, along with its control

limit shown by the solid horizontal line. In that figure, we also present the NAEWMA chart and

its control limit 22.32 by the dashed lines. Parameters of the NAEWMA chart are chosen to be

λ = 0.2, IC ARL=200, n = 20, and z1, ...zn are equally spaced in [−3.5, 3.5]. From the plot, it can

be seen that the NPC-S chart gives a signal of profile shift at the 20th time point which corresponds

to the 2nd OC profile. The NAEWMA chart does not give any signal, even after the 3rd OC profile

is collected.

As a side note, it takes about 3.4/1000 seconds to compute all values of the charting statistic

T̂t,h,λ that are plotted in Figure 4, by a Pentium 2.4MHz CPU. Therefore, the proposed procedure

should be quite convenient to use for on-line automatic profile monitoring.

5 Summary and Concluding Remarks

In this paper, we propose a control chart for monitoring nonparametric profiles with arbitrary

design. Our proposed control chart effectively combines the EWMA control chart and a nonpara-
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Figure 4: The NPC-S and NAEWMA control charts for monitoring the DRIE process. The solid

and dashed horizontal lines indicate their control limits, respectively.

metric regression test. The proposal to adaptively choose the weight and bandwidth parameters

further enhances the proposed chart. Moreover, a self-starting version is introduced for cases when

the IC regression function and error variance are unknown. As demonstrated by the DRIE exam-

ple, the proposed monitoring approach can be implemented conveniently in industrial applications.

In addition, we show that a better monitoring performance can be obtained by using a random

design instead of a fixed design. Numerical studies show that the proposed approach is effective in

applications.

Our proposed control chart is under the assumptions that observations within and between

individual profiles are independent of each other. In some applications, within-profile observations

might be spatially or serially correlated, and between-profile observations might be auto-correlated

(cf., Williams et al. 2007a,b, Zou et al. 2007a). It requires much future research to accommo-

date such correlations in nonparametric profile monitoring. In addition, sometimes we might be

interested in monitoring multivariate relationship between a response variable and several predic-

tors over time. At this moment, we are not aware of any existing research on this topic, and we

leave it to our future research to generalize the proposed control chart discussed in this paper to

multivariate cases.
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Appendix: Technical details

Throughout the appendix, we use the following additional notations:

αt,h,λ(z) =
1

a0,t,λΓ2(z)

t∑

k=1

(1 − λ)t−k
nk∑

j=1

Kh(xkj − z)εkj ,

βt,h,λ(z) =
g′′1 (z)

2a0,t,λΓ2(z)

t∑

k=1

(1 − λ)t−k
nk∑

j=1

(xkj − z)2Kh(xkj − z),

φi(z) =
1

a0,t,λ

t∑

k=1

(1 − λ)t−k
nk∑

j=1

(xkj − z)iKh(xkj − z)εkj , i = 0, 1,

φi+2(z) =
1

aτ,t,λ

t∑

k=τ+1

(1 − λ)t−k
nk∑

j=1

(xkj − z)iKh(xkj − z)g1(xkj), i = 0, 1,

dt0,t1,λ =

t1∑

k=t0+1

(1 − λ)4(t−k)nk, et0,t1,λ =

t1∑

k=t0+1

(1 − λ)4(t−k)n2
k.

Appendix A: Regularity Conditions Used In Section 2

(C1) Density functions Γ1 and Γ2 are Lipschitz continuous and bounded away from zero on [0,1].

(C2) g0(·) and g1(·) have continuous second order derivatives on [0,1].

(C3) The kernel function K(u) is bounded and symmetric about 0 on [-1,1]. Furthermore, u3K(u)

and u3K ′(u) are both bounded, and
∫ 1
−1 u

4K(u)du <∞.

(C4) E(|ε11|4) <∞.

(C5) n0, h and c0,t,λ satisfy the conditions that n0 → ∞, h → 0, n0h
3

2 → ∞, c0,t,λ → ∞,

c0,t,λh
3

2 → ∞ and c0,t,λh
8 → 0.

(C5’) n0, h and c0,t,λ satisfy the conditions that n0 → ∞, h→ 0,

n0h
3

2 → ∞, c0,t,λ → ∞, c0,t,λh
3 → ∞ and c0,t,λh

5 → 0.
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(C6)
aτ,t,λ

a0,t,λ
− 1 = o(min{h2, c

− 1

2

0,t,λ}).

(C7) nks satisfy the condition that
max1≤k≤t nk

min1≤k≤t nk
is bounded.

It is noted that conditions (C1)-(C4) are standard in nonparametric regression. (C5) and

(C5’) are the bandwidth conditions used in Theorem 1 and Theorem 2(i), respectively. Note that

(2−λ)
λ min1≤k≤t nk ≤ c0,t,λ ≤ (2−λ)

λ max1≤k≤t nk for large t. Thus, if λ → 0, we even do not require

nk → ∞. The conditions listed here are much milder than those in Zou et al. (2008) where the

number of design points in each profile should go to infinity. (C6) can be easily satisfied if t is large

enough. (C7) implies that all nks are of the same order, which is common in practice.

Appendix B: Proofs

To prove the two theorems in Section 2, the following lemma is required.

Lemma 1 For any z ∈ [0, 1], (i) under conditions in Theorem 1, we have

ĝt,h,λ(z) = αt,h,λ(z)(1 + o(h
1

2 ));

(ii) under conditions in Theorem 2, we have

ĝt,h,λ(z) − g1(z) = αt,h,λ(z)(1 + o(h
1

2 )) + βt,h,λ(z)(1 + op(1)).

Proof We only prove the second equation because the first one can be proved in a similar way. For

simplicity, we suppress the symbol “(t, h, λ)” in m
(t,h,λ)
i (z), which should not cause any confusion.

By some algebraic manipulations, it can be checked that

ĝt,h,λ(z) − g1(z) = a0,t,λm
−1
0 (z)[φ0(z) + φ2(z)] + a0,t,λm

−1
0 (z)m1(z)[m2(z) −m2

1(z)m
−1
0 (z)]−1

·{m−1
0 (z)m1(z)[φ0(z) + φ2(z)] − φ1(z) − φ3(z)} − g1(z)

= a0,t,λm
−1
0 (z)φ0(z) + a0,t,λm

−1
0 (z)[φ2(z) − a−1

0,t,λm0(z)g1(z) − a−1
0,t,λm1(z)g

′
1(z)]

+m−1
0 (z)m1(z){g′1(z) + a0,t,λ[m2(z) −m2

1(z)m
−1
0 (z)]−1·

[m−1
0 (z)m1(z)(φ0(z) + φ2(z)) − φ1(z) − φ3(z)]}

=: ∆1 + ∆2 + ∆3.
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By Taylor expansions, it is straightforward that

∆1 = α0,t,h,λ(z)
(
1 +Op((c0,t,λh)

−1/2) +O(h)
)
,

∆2 = βt,h,λ(z)
(
1 +Op((c0,t,λh)

−1/2) +O(h)
)

+O

(
aτ,t,λ
a0,t,λ

− 1

)
.

By the facts that

a
−1/2
0,t,λm1(z) =

∫
Γ2(u)(u − z)Kh(u− z)du+Op(c

−1/2
0,t,λ h

1/2) = O(h2),

φ3(z) = g1(z)

∫
Γ2(u)(u − z)Kh(u− z)du+ h2Γ2(z)g

′
1(z)η1 +O(h3) +Op(c

−1/2
0,t,λ h

1/2),

φ2(z) = g1(z) +O(h), m2(z) = O(h2),

we have

∆3 = Op(h
3) +Op(c

−1/2
0,t,λ h

1/2).

Combining all the above results, condition (C6), and the facts that αt,h,λ(z) = Op((c0,t,λh)
−1/2)

and βt,h,λ(z) = Op(h
2), we can get result (ii) in the lemma. �

Proof of Theorem 1 Without loss of generality, we assume that g0 = 0 (see related discussion

after equation (5) in Section 2). By Lemma 1, we have

Tt,h,λ =
c0,t,λ
n0σ2

n0∑

i=1

[αt,h,λ(z)]
2 (1 + o(h

1

2 ))

=
c0,t,λ
n0

n0∑

i=1

1

a2
0,t,λ[Γ2(zi)]2

t∑

k=1

(1 − λ)2(t−k)
nk∑

j=1

[Kh(xkj − zi)]
2ξ2kj(1 + o(h

1

2 ))

+
c0,t,λ
n0

n0∑

i=1

1

a2
0,t,λ[Γ2(zi)]2

{ t∑

k=1

(1 − λ)2(t−k)
∑

j 6=l

[Kh(xkj − zi)][Kh(xkl − zi)]ξkjξkl

+
∑

k 6=k′

(1 − λ)t−k(1 − λ)t−k
′
∑

j,l

[Kh(xkj − zi)][Kh(xk′l − zi)]ξkjξk′l

}
(1 + o(h

1

2 ))

=: (T1 + T2)(1 + o(h
1

2 ))

Note that, as h→ 0,

T1 =
c0,t,λ
a2

0,t,λ

t∑

k=1

(1 − λ)2(t−k)
nk∑

j=1

ξ2kj
1

n0

n0∑

i=1

1

[Γ2(zi)]2
[Kh(xkj − zi)]

2

=
c0,t,λη1

ha2
0,t,λ

t∑

k=1

(1 − λ)2(t−k)
nk∑

j=1

ξ2kj
Γ1(xkj)

Γ2(xkj)
(1 +O(h) +Op((n0h)

− 1

2 )).
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It is easy to see that

E(T1) = µ̃h + o(h−
1

2 ), Var(T1) =
d0,t,λ

b20,t,λh
2
(1 + o(1)) = O((c0,t,λh

2)−1),

where the last equation is from condition (C7). Thus, we have

T1 = E(T1) +Op(
√

Var(T1)) =
η1

h

∫
Γ1(u)

Γ2(u)
du+ op(h

−1/2).

Similar to the manipulations for T1, we have

T2 =
c0,t,λ
a2

0,t,λh

{ t∑

k=1

(1 − λ)2(t−k)
∑

j 6=l

Γ1(xkj)

[Γ2(xkj)]2
K ∗K((xkj − xkl)/h)ξkjξkl

+
∑

k 6=k′

(1 − λ)t−k(1 − λ)t−k
′
∑

j,l

Γ1(xkj)

[Γ2(xkj)]2
K ∗K((xkj − xk′l)/h)ξkjξk′l

}
(1 +O(h) +Op((n0h)

− 1

2 ))

=: (T21 + T22)(1 +O(h) +Op((n0h)
− 1

2 )).

Since h1/2(T21 + T22) can be written as a symmetric quadratic function of ξkj, for j = 1, . . . , nk and

k = 1, . . ., with symmetric matrix (νij)Nt×Nt which has vanishing diagonal elements, here we can

use Theorem 5.2 in de Jong (1987) to show the asymptotic normality of h1/2(T21 + T22). Obviously,

the expectation of T21 + T22 is zero. It can be checked that

Var(h1/2T21) = h
e0,t,λ
b20,t,λ

σ̃2
h(1 + o(1)),

Var(h1/2T22) = h

(
1 − e0,t,λ

b20,t,λ

)
σ̃2
h(1 + o(1)).

Thus, the asymptotic variance of h1/2(T21 + T22) is hσ̃2
h, after noting Cov(T21, T22) = 0. Finally, by

certain straightforward algebraic manipulations, we can verify that νijs satisfy all the conditions

given in Theorem 5.2 of de Jong (1987). Using this theorem and all the results above about T1 and

T2, we have the result in Theorem 1. �

Proof of Theorem 2

(i). Without loss of generality, we assume that g0 = 0. Thus, g1 = δ. By Lemma 1, we have

Tt,h,λ =
c0,t,λ
n0σ2

n0∑

i=1

α2
t,h,λ(zi)(1 + o(h

1

2 )) +
c0,t,λ
n0σ2

n0∑

i=1

[δ(zi) + βt,h,λ(zi)]
2(1 + op(1))

+
2c0,t,λ
n0σ2

n0∑

i=1

αt,h,λ(zi)βt,h,λ(zi)(1 + op(1)) +
2c0,t,λ
n0σ2

n0∑

i=1

αt,h,λ(zi)δ(zi)(1 + op(1))

=: T1 + T2 + (T3 + T4)(1 + op(1)).
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Obviously, T1 is equivalent to Tt,h,λ under the IC condition. It is straightforward to see that

βt,h,λ(z) =
h2

2
δ′′(z)η1(1 + op(1)).

By this result, we have T2 = c0,t,λζδ(1 + op(1)), and

T3 =
h2η1a0,t,λ

b0,t,λσ2

t∑

k=1

(1 − λ)t−k
nk∑

j=1

Γ1(xkj)

Γ2(xkj)
εkjδ

′′(xkj)(1 + op(1)).

Note that 1√
b0,t,λ

∑t
k=1(1 − λ)t−k

∑nk

j=1
Γ1(xkj)
Γ2(xkj)

εkjδ
′′(xkj) is stochastically bounded. Thus, by con-

dition (C5’), we have T3 = op(h
−1/2). Similarly,

T4 =
2a0,t,λ

b0,t,λσ2

t∑

k=1

(1 − λ)t−k
nk∑

j=1

Γ1(xkj)

Γ2(xkj)
εkjδ(xkj)

= Op((c0,t,λ

∫
δ2(u)Γ1(u)du)

1

2 ) = op(h
− 1

2 ).

By all these results and Theorem 1, we have result (i) in this theorem.

(ii). This result follows directly from result (i). �

Proof of Proposition 2

This proposition follows from Theorems 1 and 2 and from the proof of Theorem 4 in Horowitz

and Spokoiny (2001). Here we just highlight some key steps, and the details are omitted. One

important step is to derive the critical value of T̃t,H,λ, denoted as Cα, for any given false alarm rate

0 < α < 1. By Lemmas 11 and 12 in Horowitz and Spokoiny (2001) and the proof of Theorem 1,

we can show that, for c0,t,λ → ∞, Cα ≤ 2
√

ln ln c0,t,λ − lnα . Then, by Theorem 2, we have

Tt,h,λ =
c0,t,λ
σ2

[ζ1 + h4ζ2 + 2h2ζ3](1 + op(1)) + µ̃h +Op(h
− 1

2 ), (A.1)

where ζ3 =
∫
δ(u)δ′′(u)Γ1(u)du. When ζ1 satisfies the condition ζ1 > M1(c

−1
0,t,λ ln ln c0,t,λ)

8

9 for

some sufficiently large M1, by choosing h∗ in the order of (c−1
0,t,λ ln ln c0,t,λ)

2

9 , the term c0,t,λζ1 on

the right hand side of (A.1) would dominate other terms, and it would be larger than σ̃hCα as

well. Obviously, we can obtain such h∗ by setting h∗ = hmaxγ
−jn , where jn is the integer part of

ln[khmax/(c
−1
0,t,λ ln ln c0,t,λ)

2

9 ]/ ln γ for some constant k > 0. �
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