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Abstract

In this paper, we are interested in the problem of estimadiniiscontinuous surface from noisy
data. A novel procedure for this problem is proposed basetbecal linear kernel smoothing, in
which local neighbourhoods are adapted to the local smesthiof the surface measured by the
observed data. The procedure can therefore remove noisectiprin continuity regions of the
surface, and preserve discontinuities at the same timee%in image can be regarded as a surface
of the image intensity function and such a surface has disugties at the outlines of objects, this
procedure can be applied directly to image denoising. Nigakstudies show that it works well in

applications, compared to some existing procedures.
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HIS paper presents a novel procedure for estimating disaomis surfaces from nozl"sy
T data. The procedure is constructed in the framework ofssieai jump regression
analysis (JRA), which is a research area handling regmessiodels involving jumps and
discontinuities [1]. Since an image can be regarded as acudf the image intensity function,
this work can be used directly for image restoration, egdgcfor image denoising. Other
possible applications include early vision [2] and compuatieed design [3].

In the literature, there are many existing procedures faagenrestoration. Early work
involves mainly Fourier and inverse Fourier transformagiand other algebraic manipulations
(see e.g., Chapter 5 of [4]). Image restoration can also treuiated as a Bayesian estimation
problem with the Markov random field (MRF) modeling and thexmaum a posteriori (MAP)
estimation (e.g., [5], [6]). In these Bayesian image redton procedures, the equivalence
between Gibbs distributions and MRFs plays an importaet[fd, [8]. Geman and Geman [5]
suggested using a stochastic relaxation algorithm and meading schedule for computing the
MAP estimator of the true image. To simplify its computatiBesag [6] suggested the iterated
conditional modes (ICM) algorithm. Numerous other geneadéions and modifications exist
in the literature, see [9]-[14].

Image denoising by robust estimation, adaptive smoothang, bilateral filtering attracts
much attention in the literature. Median filtering was finsggested in the statistical literature
[15], and it has become a popular pre-smoothing tool in imageEessing, because it has
a certain ability of preserving edges while removing noi$6][ [17], [18], [19]-[21]. To
avoid pixels located on two different sides of an edge segiitem being averaged in local
smoothing, Saint-Maret al. [22] suggested an adaptive smoothing filter which can adapt t
the edge structure of the image. This filter was further geized to the bilateral filtering
procedure by Tomasi and Manduchi [23]. Motivated by theti@hship between a Gaussian

operator and a linear diffusion equation [24], [25], Perand Malik [26] suggested restoring



images by nonlinear diffusion filtering. Barash [27] poohteut that both adaptive smootﬁing
and bilateral filtering can be regarded as special casesrdinear diffusion filtering.

Image denoising based on wavelet transformation and tbidislg is also an active research
topic recently, after it is shown that the wavelet methodseful for recovering regression
curves and surfaces from noisy data with jumps and some balrfeatures preserved [28].
There are several different versions of wavelet transftionand thresholding schemes (e.g.,
[29]-[32]). Software packages are also available for ganapplications [33].

Another popular approach is to consider image restorasoananverse problem solved by
edge preserving regularization methods, i.e. by miningizan objective function that enforces
a roughness penalty, in addition to a term measuring fidefityie estimator to the data (e.qg.
[34], [35], [36]).

Discontinuity-preserving surface estimation can be mgdras a more general problem
than image denoising, in the sense that image pixels ardlysegularly spaced in rows
and columns but data points in the former problem could beguiarly spaced. A two-
stage algorithm for discontinuity-preserving surfacaeneation was suggested by Sinha and
Schunck [37]. Its first stage is to clean and grid the data,itsrskcond stage is to estimate the
surface with a discontinuity-preserving spline smoothangcedure. Discontinuity-preserving
and viewpoint invariant surface estimation procedurestmen proposed by several authors
(e.g., [38], [39)).

Surface estimation from noisy data can be regarded as aasmase of 2-D statistical
regression problem (see Section II-A). There are seveoalgoiures in the statistical literature
for estimating surfaces with possible jumps preserved. &@mple, Qiu [40] proposed a
three-stage procedure for this purpose, in which jumps esepved by fitting local principal
component lines. Chet al. [41] studied the sigma filter and M-smoother. Both of them are

based on robust estimation and closely related to adaptnthing and bilateral filtering



mentioned above. Polzehl and Spokoiny [42] proposed thetagaweights smoothing gl-
gorithm, which is an iterative procedure in which the sizeaoheighbourhood is adaptive
to the surface smoothness. Recently, Qiu [43] suggestenastg jump surfaces by local
piecewise linear kernel smoothing.

The proposed discontinuity-preserving surface estimgirocedure is based on local linear
kernel smoothing. Its basic idea is that local neighboudsaased in local smoothing should
be adaptive to local features of the underlying surfaceheway that full neighbourhoods
are used in continuity regions of the surface and half or evealler neighbourhoods are used
around edges. Of course, the local features of the undgrisimface are unobservable. To
overcome this difficulty, we propose a data-driven mecharfiar making decisions whether
a given point is close to edges. Comparing with the existirgcg@dures mentioned above,
the proposed procedure has the following major featurest,His surface estimator has an
explicit formula, which has at least two benefits comparedame iterative procedures (e.g.,
[5], [6], [26], [41], [42]). One is that it is easy to computnd the other is that it helps when
studying its theoretical properties. Second, besides awiath and a threshold parameter,
this procedure has no other parameters to choose. Therdf@eimple to use. Third, some
existing procedures (e.g., [26], [23], [41]) have some igbilor preserving edges, but the
edges cannot be preserved completely due to the fact thalsgocated on the other side,
other than the side located by the given pixel, of the relaidgle segment still receiaame
weights in local smoothing, although such weights are Ugwshall. This phenomenon is
partially eliminated in the current procedure because haighbourhoods are used around
edges.

The rest of the article is organized as follows. Our surfateration procedure is described
in details in Section Il. Some numerical comparisons withesal existing procedures are

presented in Section Ill. A related problem to preserve eof edges in surface estimation



is discussed in Section IV, and the surface estimation piweeis modified accordinaly
to handle this problem using more flexible neighbourhoodsSéction V, we illustrate the
method using various datasets. The discontinuity-prasgsurface estimation problem when
the design points are random is discussed in Section VLlIirsme concluding remarks
are given in Section VII.

For convenience of the reader we posted the digital imagesetisas a more extended

technical report version of the paper, at the website Wipuv.stat.ucl.ac.befalambert.

II. METHODOLOGY

In this section, we first describe a statistical model forcdgang the discontinuous surface
estimation problem, and introduce a popular surface etmgrocedure based on local
linear kernel smoothing, which is appropriate for estimgtcontinuous regression surfaces
(Section 11.A). Then our jump-preserving surface estimagprocedure is introduced in some
detail (Section 11.B). In the proposed procedure, theretame parameters (i.e., a bandwidth
and a threshold). A data-driven mechanism is discussedenatst part (Section 11.C) for

selecting their values properly in applications.

A. Surface estimation

Suppose that a 2-D regression model for discontinuousidatimation is:
Zi=m(X,Y;) +e, i=1,...,n. (1)

In (1), m is the true surface continuous in the design spgce| x [0,1] except along
some discontinuity curves (i.e., edges)s are i.i.d. random errors with zero mean and
finite variances?; (X;,Y;)'s are design points, which are either i.i.d. r.v's from adbiate

distribution fx y (x,y) with support[0, 1] x [0, 1] (i.e., random design case), or, equispaced



grid points on the same support (i.e., fixed design case).ZFhemodel (1) with equispacsed
fixed design is appropriate for describing an image with n; x ny pixels.
In the statistical literature, a popular surface estimmaipocedure is based on the following

local linear kernel smoothing:

(@e(7,y), e (T, ), ey, Y))

—arggngz i—a—b(X;—2)—c(Yi—y) - Kp(Xi—2),(Yi—y), (2

i=1

whereKp(r,y) = 7 K(B~'-(z,y)"); B is a2 x 2 global bandwidth matrix with determinant

1B
|B|, and K(z,y) is a radially symmetric bivariate kernel function with coagp support
{(x,y) : 2> +y* < 1}. In practice, we often usé(z,y) = ((exp(—(2® + 3?)/2) —
exp(—0.5))/(2m — 3mexp(—0.5))) on {(x,y) : 2* + y* < 1} and O elsewhere, which is
the truncated 2-D Gaussian density function. Using‘arder Taylor expansion of.(X;, Y;)
around the pointz, y): m(X;,Y;) = m(z,y) + 22(z,y)(X; — x) + 22 (@, y)(Yi—y) +-

one can show that the components of the trigl@t(x,y), a..(z,y), a.,(z,y)) estimate,

respectively,m(z, y), 5% (x,y), and §*(z,y). This means that we can obtain at the same

(52, 32)(z,y). They

time estimations of the surface(x,y) and its gradientVm(z,y) 957 By

are the so-callediocal linear kernel estimators. These estimators have explicit formulas. It
has been demonstrated in the literature that they have setter Iproperties in estimating
continuous surfaces than some other local smoothing estisjasuch as the local constant
kernel estimator, especial near boundaries. See Fan ahdI$jf#4] for more discussion.

If the surfacem is discontinuous at a pointz,y), then the estimatofi.(x,y) is not
statistically consistent at this discontinuity point, @nobservations on both sides of the
discontinuity are averaged in constructiagz,y). As a consequence, jumps aroufid y)
are blurred. An illustration of this fact is depicted in FigHig. 1(a) is the truestep surface,

1(b) is a noisy version, and 1(c) is the local linear kerndinestor where the edge is
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clearly blurred. Therefore, the conventional local lin&arnel smoothing procedure should

be modified properly for estimating discontinuous surfaséh jumps preserved.

Intensity

(@) (b)

© (d)

Fig. 1. (a) True Step surface. (b) Noisy version of (a). (ctdldinear kernel surface estimator. (d) Proposed estimato

B. Edge-preserving surface estimation

An edge can be defined as a curve in € Y) plane, along which the surface is
discontinuous. Of course, the conventional estimatér, y) is biased for estimating:(z, v),
if there is an edge in the neighbourhood(af y). Next, we present a solution to overcome
this limitation.

By its definition, the gradient%g, %—’;) indicates the direction of the maximal increase in
m around(zx, y). If the point(z,y) is on an edge segment, then the gradient direction would
be asymptotically perpendicular to the tangent directibthe edge segment. The support of
the kernel functionX is then divided into two parts by a line passing the pdinty) and

perpendicular to the gradient directio%%(, %—2). See Fig. 2 for a demonstration.



Fig. 2. Decomposition of the support of the kernel functitong a direction perpendicular to the gradient directionrof

at (z,y).
In the two parts, we define twone-sided local linear kernel estimators as follows:

(aj(l‘7 y)aaj,m(xv y)u aj7y($7 y))

=argminy_ (Z; —a —b(X; —z) —c(Y; =)’ K (X =), (Vi =9)). ()
=1
for 7 =1,2. In (3), KS) anng) are the same a&’ in (2), except that their supports have
been restricted to the two half-circles, as demonstrateBipy2. Thena, (z,y) anday(z, y)
provide two one-sided estimators of(x, ).

By now, we have obtained three estimators#afr, y): the conventional estimatar.(z, y)
and two one-sided estimatods(x, y) andas(x,y). If there are no edge pixels in the neigh-
bourhood of(z, y), thena,.(x, y) should be selected for estimatingz, y), because it averages
more observations around the poiat i) and thus is more powerful in removing noise. If
there is an edge segment aroufdy), then the conventional estimatar(z,y) is not a
good estimator ofn(x,y) any more, as explained at the end of Section Il.A. In such a,cas
however, one of the two one-sided estimatorgr, y) andas(z,y) should still estimate the
surface well, because most observations used by this detilau@ located on a single side of

the edge segment, guaranteed by the statistical propeftil® estimated gradient direction

from (2).
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In practice, the edge locations are usually unknown; so, @esliio choose among the three
estimatorsi,., a; anda, in a data-driven way, which is discussed below.
The quality of the three estimatais, a; anda, can be measured by the Weighted Residual

Mean Squares (WRMS) of the related fitted surfaces, defined by
WRMS,.(z,y)

:ﬁ Z [ZZ B Eic(x,y)— ac,x<x7 y)(XZ - .’L’) - ag,y(l’,y)(yri — .1')]2 KB(’L),

i

WRMS;(z,y)
=ﬁ 52 1= (0.0 Bl ) X3 =) = D) 05— 2 K ). 9
where K 5(i) denotesK5((X; — z), (Y; — y)), and K% (i) denotesk Y (X, — z), (Y; — v)),
for j =1,2.

The behaviour of these quantities depends on whether theredge pixels in the neigh-
bourhood of the pointz,y). If there are no edge pixels in the neighbourhood, then all
WRMS's are good estimators of the noise varianée Otherwise, those WRMS'’s who use
data points on both sides of edge segments would be biasegbstioratingo?, and the bias
would depend on the jump size and the Euclidean distanceeketithe poin{zx,y) and the
edge segments (see Qiu [43]).

Based on these results, our edge-preserving surface éstimalefined by:

(6C(x, y) if diff (z,y) < u
a(z,y) if diff (x,y) > v and WRMS§(z,y) < WRMS;(z, y)

m(z,y) = (5)
as(z,y) if diff (z,y) > v and WRMS(z,y) > WRMS,(z, y)

Qi) if diff (r,y) > u and WRMS (z, y) = WRMS, (2, y),

\
wherew is a threshold value and

diff (2, y) = max{WRMS.(z,y) — WRMS, (z,y), WRMS,(z,y) — WRMS,(z,y)}.  (6)
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So our surface estimatat(z, y) is defined by one of the three estimatatsz, v), a1 (x, y)

andas(z, y), depending on whether there are edge pixels arqung), judged by the WRMS
values. If we are in a continuity region of the surface, thédnttaee WRMS's are close

to o2, so that diffz,y) is close to zero. On the other hand, if we are close to an edge
segment, then one of the two one-sided WRMS’s would be smiddéen WRMS, and thus
diff (z, y) would be relatively large. Therefore, diff,y) can be used to judge whether there
are edge pixels aroung:;, y). See Gijbels et al. [45] for related discussion. In (5), theec
WRMS, (z,y) = WRMS,(z, y) has, forn tending to infinity, probability zero to occur under
some regularity conditions. It is included just for completss. The explicit formulation of
the estimator (5) is helpful when investigating theordtjmaperties of the estimator. For a
one-dimensional version of the estimator (when recovedisgontinuous curves) this can be

seen from Gijbels et al. [45].

C. Slection of the bandwidth B and the threshold

Different choices ofu would lead to different types of surface estimation. Formegke, if
u = 0, then the estimatof(z, y) privileges edge preservation since it only uge&e, y) and
as(x,y) in such a case, whereasuf= max y)cjo,1)x[o,1] diff (7, y), thenm(z, y) becomes the
conventional estimatai.(z,y) which is ideal for removing noise. Any choice afbetween
these two extreme values would lead to an estimator havitlg édge preserving and noise
removing properties. The trade-off between these two ptigsedepends on the value of
Theoretically, the best choice afis the one minimizing the Mean Integrated Squared Error

(MISE) of the surface estimator, defined by:

1 1
wise —{ [ [ (ae.y) = mia. ) Fey dody ™)
0 0
This definition can be used for both the fixed design and randesign cases. In the case

of fixed design with equispaced design points, we can sim@lyfsy = 1. Obviously, the



MISE value defined in (7) depends on the true surfacehich is unknown. So a data-driven
criterion is still required to choose properly.

Similarly, the bandwidth matrix3 used in (2) and (3) also needs to be chosen properly. For
simplicity, we assume thaB is a diagonal matrix with the same diagonal elements, which
implies that we impose the same amount of smoothing in:tfead y directions. This is a
common practice in the image processing literature (ef4)., Then, choosings is equivalent
to choosing one of its diagonal elements, denoted: by

In this article, we suggest choosing bdthand « by the following cross-validation (CV)

procedure:
(s un) = axgmin > (Z = (X, Vi), (8)
=1

wherem (=9 (X;,Y;) is the estimator ofn(X;,Y;) using all the data points except the point
(X:, Y, Z;).

One might think that choosing both parametérand v by the CV procedure (8) would
require a big computational demand, but this is not true.i&wwf (5), once we have the
three estimatorsa(,, a; anda,) (for fixed h), we do not have to re-compute these estimators
for different values ofu, which saves a great amount of computation.

In Fig. 1 (d), we show the proposed estimator of $tep surface. Here, the edge is preserved

quite well compared to results shown in Fig 1 (c).

[Il. COMPARISON WITH OTHER METHODS AND HETEROSCEDASTIC CASE

In this section, we compare via simulations our method waitlr fexisting ones which are
mainly used in the image denoising literature: waveletstkdarandom field (MRF), median
filter, and bilateral filter [23]. For the wavelet method, weeuhe R packageavethresh by
Nason and Silverman [33]. The following parameters sho@dhosen properly before this

method can be used: the wavelet family, the threshold methadl or soft), the levels of



wavelet coefficients to be thresholded, and the number akkiarg moments of the wavlezlet
family. We also compare with the wavelet decomposition métinom Portillaet al. [32] using
the BLS-GSM Image Denoising Matlab Toolbox 1.0.3. For the fMRethod, the Fortran
package developped by P. Qiu is used, which is based on theothé&bm Godtliebsen and
Sebastiani [9] and Geman and Geman [5] which has some sitie$awith regularization
techniques. This procedure has three parameters to chdosé wescribe the joint prior
distribution of the true image and the line process (remtasg edges in an image). The
median filter has only one parameter involved, which is tleze if the neighbourhood to
smooth. The bilateral filtering involves taking a weightecerage of image intensities at
nearby pixels. The procedure has two smoothing paramedesgaling factor for each of
the two weight functions (univariate and bivariate Gausslansity functions for the image
intensities and the pixel locations respectively).

We consider three different test models. Model 1 consista efnooth quadratic surface
which has a circular edge with constant jump size (see Figa)B Model 2 is depicted
in Fig. 3 (b); here, the jump size varies along an edge in assidal form. Model 3 is
shown in Fig. 3 (c). In this case, continuity parts of the imagnsist of regions with large
first-order derivatives. These three models can be deschiethe following functions: for

(x,y) € [0,1] x [0, 1],

my(z,y) = —2(z—0.5)* = 2(y — 0.5)* + Ij(z—0.572+(2-0.5)2<0.252);

my(z,y) = 0.25(1 — )y + (14 0.2sin(272)) L1y50.6sin(ra)+0.2];

ma(z,y) = cos(dm(l —x —y)) —2cos(4m(l —x — y)) 1z yy—1>0, 9)
wherel} 4 equals to 1 ifA is true, and O otherwise. For Model 1, the jump size is onegalon

the circular edge. For Model 2, the jump size varies from 0.8.2. For Model 3, the jump

size is 2 along the edge line. Figs. 3 (d), (e) and (f) showyneggsions of the three models
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whenn = 128% ande ~ N(0;0.5%). Various surface estimation methods are evaluated in

(d) (e) )
Fig. 3. (a) Model 1; (b) Model 2; (c) Model 3; (d) Noisy versiofi(a); (e) Noisy version of (b); (f) Noisy version of (c).

In (d), (e) and (f),e ~ N(0,0.5%).

two different sample sizes: = 1282 andn = 2562, and two values of the error variance:
o? = 0.2% and 0? = 0.5%, where it is assumed that ~ N(0;0?). For each method, its
procedure parameters are selected such that the apprexifiigan Integrated Squared Error
(MISE), computed based oN = 100 samples and denoted hWS\E reaches the minimum
except for the BLS-GSM method where the default parametgpsintized) are used. For
comparison purposes, bothISE andWS\Ee are reported, WhermS\Ee is the localMISE
value computed in a band, denoted /a&n, 1), around edges of the surface with radius
equal to the selectefl-value. More specificallymS\Ee is defined by

> (m(X;,Y) —m(X,,Y0))I[(X;,Y;) € B(m, h)]
e ST T(X. Y) € Bm. )

(10)

Results for Models 1, 2, and 3 are shown in Tables I, Il, andréd§pectively.



TABLE |
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MISE (FIRST COLUMNS) AND MISE. (SECOND COLUMNS VALUES FORMODEL 1 WHEN N = 100 AND n = 1282 OR

2567,
n = 128 n = 256
Method 0=0.2(h =0.047) | 0=0.5 (h =0.074) || 6=0.2(h =0.029) | 0=0.5 (rh = 0.051)
m (Proposed procedure) 0.0012 | 0.0044| 0.0055| 0.0172 || 0.0006 | 0.0033| 0.0027 | 0.0121
Wavethresh 0.0058 | 0.0337| 0.0125| 0.0389 || 0.0032| 0.0277| 0.0071| 0.037
BLS-GSM 0.0020| 0.0097 | 0.0061| 0.0179 || 0.0012| 0.0090 | 0.0032| 0.0140
MRF 0.0011| 0.0029| 0.0109| 0.0327 || 0.0005| 0.0017| 0.0059| 0.0216
Median Filter 0.0032| 0.0165| 0.0115| 0.0364 || 0.0019| 0.0153| 0.0072| 0.0306
Bilateral Filter 0.0023 | 0.0082| 0.0104 | 0.0313 || 0.0016| 0.0092| 0.0067| 0.0281
TABLE I

MISE (FIRST COLUMNS) AND MISE. (SECOND COLUMNS VALUES FORMODEL 2 WHEN N = 100 AND n = 1282 OR

2567,
n = 128 n = 256
Method 0=0.2(h =0.055) | 0=0.5 (h =0.000) || 6=0.2 (h =0.035) | 0=0.5(h = 0.059)
m (Proposed procedure) 0.0010 | 0.0053| 0.0052 | 0.0214 || 0.0005| 0.0035| 0.0024 | 0.0150
Wavethresh 0.0064 | 0.0475| 0.0130| 0.0504 || 0.0035| 0.0379| 0.0079| 0.0529
BLS-GSM 0.0019| 0.0135| 0.0064 | 0.0260 || 0.0011| 0.0114| 0.0034| 0.0206
MRF 0.0007 | 0.0033| 0.0107 | 0.0401 || 0.0004| 0.0026 | 0.0065| 0.0323
Median Filter 0.0036 | 0.0218 | 0.0120| 0.0497 || 0.0021| 0.0196 | 0.0075| 0.0433
Bilateral Filter 0.0024 | 0.0111| 0.0107 | 0.0410 || 0.0017| 0.0116| 0.0069| 0.0387




TABLE Il 15

MISE (FIRST COLUMNS) AND MISE. (SECOND COLUMNS VALUES FORMODEL 3 WHEN N = 100 AND n = 128% OR

2567,

n = 128 n = 256
Method 0=0.2 (h =0.039) | 0=0.5(h =0.051) || 6=0.2 (h =0.029) | 6=0.5 (h = 0.039)
n (Proposed procedure]) 0.0018 | 0.0055| 0.0071| 0.0244 || 0.0007 | 0.0025| 0.0026 | 0.0099
Wavethresh 0.0076 | 0.0579| 0.0250| 0.1696 || 0.0047 | 0.0396 | 0.0124 | 0.1004
BLS-GSM 0.0039| 0.0125| 0.0118| 0.0481 || 0.0018| 0.0088 | 0.0066 | 0.0326
MRF 0.0033| 0.0040| 0.0126| 0.0326 || 0.0013| 0.0015| 0.0054 | 0.0160
Median Filter 0.0044| 0.0185| 0.0211| 0.1045 || 0.0025| 0.0250 | 0.0116 | 0.0848
Bilateral Filter 0.0025| 0.0062 | 0.0184 | 0.0955 || 0.0012| 0.0042| 0.0113| 0.0740

For the three models, we can see that the seldciadreases when noise levelincreases
and sample size decreases, which is intuitively reasonable. We can alsthe¢¢he proposed
estimator behaves well in botMISE and WS\Ee values in all cases. The MRF method
performs very well wherv is small; whereas the proposed method outperforms the MRF
method whem is relatively large. For Models 1 and 2 the BLS-GSM wavelethrod performs
somewhat comparable, but (slightly) worse, than the pregamethod. Fig. 4 shows the
estimators bym, the MRF method and the bilateral filtering, correspondiagat median

MISE performance, for the three models wher- 128% ando = 0.2.

Heteroscedastic error variance

In model (1), we assume the noise leweto be constant on the entire design space. In

some applications this assumption may not hold. Then a mapeopriate model would be

Zi :m(Xz,)/;)+U(XZ,Y;)€Z, 1= 1,,7’L (11)
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Fig. 4. Surface estimators corresponding to a median paeioce of theMISE whenn = 1282 and o = 0.2. Plots (a),

(d), and (g):m; plots (b), (e), and (h): MRF; plots (c), (f), and (i): Bilas filter.

whereg; aren i.i.d. random variables with zero mean and unit variancesndy) is a smooth
function describing the noise level in the design spacehis heteroscedasticity setting the
proposed procedure can still be used. For example, we dientiiea Model 1 £ ~ N(0, 1))
with a o function with a bell shape such that more noise is presenhénforeground of
the image and less in the background (see Figs 5 (a) and (hEhwé more realistic in

applications. In the example the functiefz, y) is taken such thafo1 fol o(x,y)dxdy = 0.2.



The estimation, based on a simulation with sample $22, is depicted in Fig. 5 (c). The
MISE is equal to 0.0027 anWS\Ee = 0.0148 which seems to be reasonable compared to

the corresponding results in the homoscedastic case ($de Mor o = 0.2 ando = 0.5).
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Fig. 5. (a) Functiorv(z,y); (b) Noisy version of Model 1 and (c) Estimation by the pragigrocedure.

IV. CORNER PRESERVING

A corner can be defined as an intersection point of two edgaeets. Clearly, the discussed
surface estimator cannot preserve a corner well becausewee dhe kernel support into
two half circles and hence, (x,y) andas(z,y) are biased at a corner.

Here, we suggest an improvement of the proposed proceducerfioer preservation, which
is based on the following measure of the cornerness origipabposed by Yangt al. [46]

and Chabatt al. [47]:

c(a,y) = (1= g(a,y))*l|(ms, my)|| (12)
wherem, = g%, m, = %, ||.|| is the Euclidian norm, and
(Jfy (mZ = mj) dudy)® + ([[,,(2mam,) drdy)?
g(z,y) = Iy s fov — : (13)
([, (m2 +m3) dxdy)

with V' a neighbourhood around the poipt, y).
It can be shown that(z, y) is large in the neighbourhood of a corner and small elsewhere

In what follows, ¢(x, y) is normalized byc(z, y)/ max(c(z,y)) such that it belongs t{, 1].



All quantities involved in the estimator af which is denoted ag, have been previoﬁ%ly
computed in (2). The neighbourhodd is taken to be a square centered(aty) and with
length 2.

We now define a new estimatat of m based orr andm as follows:

p

ai(z,y) if WRMS;(z,y) < WRMS;(z,y)
If ez, y) > C, m(z,y) =< ay(z,y) if WRMS;(z,y) > WRMS;(z, y) (14)
| DBl if - WRMSq(x,y) = WRMS;(z, ),

where a;(x,y) and as(x,y) are modified versions of; (z,y) and ay(z,y) defined below,
WRMS;(z,y) and WRMS(z,y) are the corresponding WRMS values, agd> 0 is a
threshold. Ifc(z,y) < C, we letm(z,y) = m(z,y). From this definition, we can see that
whenC' is chosen 0 depends only o, (z, y) anday(z, y), which means that privileges
corner preservation in such a case. On the other hand, whenchosen 1, = m, and
consequently the procedure (14) can only preserve flat edbids removing noise.

The estimatorg; (z, y) andas(z, y) follow the same definitions ag anda, (see equation
(3)), except that the quantity(z((X; — =), (Y; —y)) is replaced byLy((X; — z), (Vi — vy)),
I.e., a new kernel functiol. and a new bandwidth matrik are used here. The matri is

defined by

cos(a), —sin(a) h/ki, 0

H pum

sin(a), cos(a) 0, hks
wherek; € [0, 1], for j = 1,2, a = tan!(my(z,y) /M. (z,y)), and Ly (X; — 2), (Vi —y)) =
|H|7'K(HY(X; — z,Y; —y)")2cos?(5;). In the simulation examples below, we take= 1
andk, = 0.5. The angless; are chosen as shown in Fig. 6 (b). Using this setup, the stippor
of K(H'(X; — z,Y; — y)') becomes an ellipse centered (aty), with its longer axis of

lengthh/k, parallel to the gradient direction, and its shorter axiseofgithi.k, perpendicular

to the gradient direction. If we are close to a corner poimentthe direction of the gradient



(my(z,y), my,(z,y)) approximates the direction of the bisectrix of the cornere(§ig 6133
Thus, more data points are used in a corner region in this casepared to the case when
the quantityKz is used as in equation (3) (cf. Fig. 6 (a)). The fac?eps®(3;) guarantees

that more weights are given to observations near the biseantd less weights elsewhere.

Supportof L, L |

Support of KB

(@) (b)

Fig. 6. (a) Support ofz at a corner point; (b) Support dfz at a corner point with a nearby poifk;, Y;).

For illustration, we apply this procedure to a noisy versubrFig. 7 (a), shown in Fig. 7
(b), in whichn = 100% ande ~ N(0;0.12). In the true image, there are three different corners.
Fig. 7(c) shows the surface estimator without corner prasgri.e.,C = 1 in (14)). It can be
seen that the three corners are blurred, as expected, abtuthag is more noticeable around
a sharper corner. In Figs. 7 (d) and (e), we plot respectibadynew estimatom with C' = 0.2
and the corresponding standardized cornerness me@sygg. It can be seen that the corners
are preserved quite well. For more discussion on this cgoneserving improvement of the

method, see [48].

V. OTHER ILLUSTRATIONS

In this section, we illustrate the proposed method on séwbff@rent greyscale images
whose grey levels are if0, 255]. Fig. 8 (a) shows a noisy version of an image of three
circles, in whichn = 2562 ando = 752. The estimatorm with C = 1 andu and h chosen

by CV is presented in Fig. 8 (b). We can see that the circulgeg@re preserved quite well



u u “ |
@ (b) ()

(d) (e)

Fig. 7. (a) True image with three selected points (littleags); (b) Noisy version of (a) with ~ N (0;0.1%); (c) Surface
estimator without corner preserving; (d) Corner-preseysurface estimator; (e) Normalized, estimated cornernmesasure

c(z,y);

in both the interior region and places near the boundaries.

@ (b)
Fig. 8. (a) Noisy image; (b) Denoised image.

Figs.9 (a) and (b) depict respectively a noisy image of a rod with 2562 ando? = 252
and the denoised image with C' = 1 andw andh chosen by CV. Again, edges are preserved
well by m, whereas noise is removed efficiently as well. Fig. 10 (aysha log-transformed

C-band, HH-polarization, synthetic aperture radar (SARage recorded by Dr. E. Attema at
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€Y (b)
Fig. 9. (a) Noisy image; (b) Denoised image.

the European Space Research and Technology Centre in Nigigrditve Netherlands. It can

be seen that this noisy image has some corner points. Figt)4@) present the estimator

m in various casesC' = 1 (i.e., without corner preservation) and= 0 in plot (b); C =1
andu = 51 in plot (c); C = 0.25 andu = 0 in plot (d); and finallyC' = 0.25 andu = 51

in plot (e). The bandwidtth is chosen via CV in all cases. It can be seen that corners are

better preserved whefi = 0.25.

VI. RANDOM DESIGN

As mentioned in Section II-A, the proposed method can alsadesl in the case of non-
equispaced design. This problem has been studied by Strgd@leand Arigovindanet al.
[50], among some others, in applications of digital imagecpssing.

For illustration, we randomly select %0 of the original pixels of Fig. 3 (a) (shown in
Fig. 11 (a)) and then add noise froW(0; 0.2%) distribution to the selected pixels. The noisy
version of Fig. 11 (a) is shown in Fig. 11 (b). In both imagdsck regions do not include
any pixels. Our goal is to estimate the whole image from tmeloanly selected true pixels
(i.e., from those in plot (a)) and from these pixels plus aas well (i.e., from those in plot
(b)). Figs. 11 (c) and (d) present the two sets of resultpeds/ely. It can be seen that the

proposed method works well in general. Fig. 11 (e) showsMIBE values of the estimated
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(b) (©

(d) (e)

Fig. 10. (a) Noisy image; (b) Denoised image whén= 1 (i.e., without corner preservation) and= 0; (c) Denoised

image whenC' = 1 andu = 51; (d) Denoised image whe@' = 0.25 andu = 0; (e) Denoised image whefi = 0.25 and

u = 51.

images for several different percentages of the selectaspiThe dotted line denotes results
from the randomly selected true pixels, whereas the safid denotes results from these
pixels plus noise. In the proposed procedure, the valués arfd u are selected by CV and
C'is fixed at 1.

We also apply the proposed method to hepper image shown in Fig. 12(a) with =

5122, In this case30% original pixels were randomly selected. The selected pixsld the
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@ (b)

(e)
Fig. 11. (a) 10% randomly selected true pixels from Fig. 3 (a); (b) Noisy i@msof (a); Plots (c) and (d) show the
estimators from (a) and (b), respectively; NT)S\E values for several different percentages from rangioselected pixels

with (solid line) and without (dotted line) noise.

reconstructed image from them are shown in Figs. 12 (b) anddspectively. Again, in the
proposed methody andu are selected by CV and' is fixed at 1.

Finally, we test the proposed method with theg image of size256 x 256 pixels, which
is similar to the image used in Arigovindaah al. [50]. For this circularly symmetric image,
we randomly select 18 radial directions and pixels in thasections constitute the random

design. The true image, selected pixels, and reconstructage are presented in Figs. 13
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€Y (b) (©
Fig. 12. (a) Truepepper image; (b) Sampled pixels; (c) Reconstructed image.

(a)-(c). The ring appears to be reconstructed well.

€Y (b) (©
Fig. 13. (a) True image; (b) Sampled pixels; (c) Reconstaiénage.

VIlI. CONCLUSION

This paper presents a new procedure for edge-preservingeirdanoising. It is based
on local linear kernel surface estimation in the statistitamework. Advantages of the
proposed procedure are its non-iterative feature, itsi@kgbrmulation (local smoothing
method) and consequently its numerical simplicity. Nuedrstudies show that it performs
well in applications. We also demonstrated that this mettena be used for reconstructing
images or surfaces from sparse noisy data. The proposeddietiuld also possibly be used
in conjunction with other available methods, such as thenmrsaft method by nonlinear
filtering or more general methods (see e.g. Comaniciu [5dl]Barash and Comaniciu [52]),

by applying the proposed surface estimation proceduredmn iteration steps. Note that the



proposed method already improves upon the bilateral figerby using neighborhoodszﬁmt
are based upon the gradient estimation.

A limitation of the proposed procedure is the use of a glol@ddwidth parameter. Local
bandwidth selection methods should be developed in theduithich might lead to a possible

improvement of denoising in some cases.
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