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Abstract

In this paper, we are interested in the problem of estimatinga discontinuous surface from noisy

data. A novel procedure for this problem is proposed based onlocal linear kernel smoothing, in

which local neighbourhoods are adapted to the local smoothness of the surface measured by the

observed data. The procedure can therefore remove noise correctly in continuity regions of the

surface, and preserve discontinuities at the same time. Since an image can be regarded as a surface

of the image intensity function and such a surface has discontinuities at the outlines of objects, this

procedure can be applied directly to image denoising. Numerical studies show that it works well in

applications, compared to some existing procedures.
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T HIS paper presents a novel procedure for estimating discontinuous surfaces from noisy

data. The procedure is constructed in the framework of statistical jump regression

analysis (JRA), which is a research area handling regression models involving jumps and

discontinuities [1]. Since an image can be regarded as a surface of the image intensity function,

this work can be used directly for image restoration, especially for image denoising. Other

possible applications include early vision [2] and computer aided design [3].

In the literature, there are many existing procedures for image restoration. Early work

involves mainly Fourier and inverse Fourier transformations and other algebraic manipulations

(see e.g., Chapter 5 of [4]). Image restoration can also be formulated as a Bayesian estimation

problem with the Markov random field (MRF) modeling and the maximuma posteriori (MAP)

estimation (e.g., [5], [6]). In these Bayesian image restoration procedures, the equivalence

between Gibbs distributions and MRFs plays an important role [7], [8]. Geman and Geman [5]

suggested using a stochastic relaxation algorithm and an annealing schedule for computing the

MAP estimator of the true image. To simplify its computation, Besag [6] suggested the iterated

conditional modes (ICM) algorithm. Numerous other generalizations and modifications exist

in the literature, see [9]-[14].

Image denoising by robust estimation, adaptive smoothing,and bilateral filtering attracts

much attention in the literature. Median filtering was first suggested in the statistical literature

[15], and it has become a popular pre-smoothing tool in imageprocessing, because it has

a certain ability of preserving edges while removing noise [16], [17], [18], [19]-[21]. To

avoid pixels located on two different sides of an edge segment from being averaged in local

smoothing, Saint-Marcet al. [22] suggested an adaptive smoothing filter which can adapt to

the edge structure of the image. This filter was further generalized to the bilateral filtering

procedure by Tomasi and Manduchi [23]. Motivated by the relationship between a Gaussian

operator and a linear diffusion equation [24], [25], Peronaand Malik [26] suggested restoring
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images by nonlinear diffusion filtering. Barash [27] pointed out that both adaptive smoothing

and bilateral filtering can be regarded as special cases of nonlinear diffusion filtering.

Image denoising based on wavelet transformation and thresholding is also an active research

topic recently, after it is shown that the wavelet method is useful for recovering regression

curves and surfaces from noisy data with jumps and some otherlocal features preserved [28].

There are several different versions of wavelet transformation and thresholding schemes (e.g.,

[29]-[32]). Software packages are also available for general applications [33].

Another popular approach is to consider image restoration as an inverse problem solved by

edge preserving regularization methods, i.e. by minimizing an objective function that enforces

a roughness penalty, in addition to a term measuring fidelityof the estimator to the data (e.g.

[34], [35], [36]).

Discontinuity-preserving surface estimation can be regarded as a more general problem

than image denoising, in the sense that image pixels are usually regularly spaced in rows

and columns but data points in the former problem could be irregularly spaced. A two-

stage algorithm for discontinuity-preserving surface estimation was suggested by Sinha and

Schunck [37]. Its first stage is to clean and grid the data, andits second stage is to estimate the

surface with a discontinuity-preserving spline smoothingprocedure. Discontinuity-preserving

and viewpoint invariant surface estimation procedures have been proposed by several authors

(e.g., [38], [39]).

Surface estimation from noisy data can be regarded as a special case of 2-D statistical

regression problem (see Section II-A). There are several procedures in the statistical literature

for estimating surfaces with possible jumps preserved. Forexample, Qiu [40] proposed a

three-stage procedure for this purpose, in which jumps are preserved by fitting local principal

component lines. Chuet al. [41] studied the sigma filter and M-smoother. Both of them are

based on robust estimation and closely related to adaptive smoothing and bilateral filtering
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mentioned above. Polzehl and Spokoiny [42] proposed the adaptive weights smoothing al-

gorithm, which is an iterative procedure in which the size ofa neighbourhood is adaptive

to the surface smoothness. Recently, Qiu [43] suggested estimating jump surfaces by local

piecewise linear kernel smoothing.

The proposed discontinuity-preserving surface estimation procedure is based on local linear

kernel smoothing. Its basic idea is that local neighbourhoods used in local smoothing should

be adaptive to local features of the underlying surface, in the way that full neighbourhoods

are used in continuity regions of the surface and half or evensmaller neighbourhoods are used

around edges. Of course, the local features of the underlying surface are unobservable. To

overcome this difficulty, we propose a data-driven mechanism for making decisions whether

a given point is close to edges. Comparing with the existing procedures mentioned above,

the proposed procedure has the following major features. First, its surface estimator has an

explicit formula, which has at least two benefits compared tosome iterative procedures (e.g.,

[5], [6], [26], [41], [42]). One is that it is easy to compute,and the other is that it helps when

studying its theoretical properties. Second, besides a bandwidth and a threshold parameter,

this procedure has no other parameters to choose. Therefore, it is simple to use. Third, some

existing procedures (e.g., [26], [23], [41]) have some ability for preserving edges, but the

edges cannot be preserved completely due to the fact that pixels located on the other side,

other than the side located by the given pixel, of the relatededge segment still receivesome

weights in local smoothing, although such weights are usually small. This phenomenon is

partially eliminated in the current procedure because halfneighbourhoods are used around

edges.

The rest of the article is organized as follows. Our surface estimation procedure is described

in details in Section II. Some numerical comparisons with several existing procedures are

presented in Section III. A related problem to preserve corners of edges in surface estimation
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is discussed in Section IV, and the surface estimation procedure is modified accordingly

to handle this problem using more flexible neighbourhoods. In Section V, we illustrate the

method using various datasets. The discontinuity-preserving surface estimation problem when

the design points are random is discussed in Section VI. Finally, some concluding remarks

are given in Section VII.

For convenience of the reader we posted the digital images aswell as a more extended

technical report version of the paper, at the website http://www.stat.ucl.ac.be/∼alambert.

II. M ETHODOLOGY

In this section, we first describe a statistical model for specifying the discontinuous surface

estimation problem, and introduce a popular surface estimation procedure based on local

linear kernel smoothing, which is appropriate for estimating continuous regression surfaces

(Section II.A). Then our jump-preserving surface estimation procedure is introduced in some

detail (Section II.B). In the proposed procedure, there aretwo parameters (i.e., a bandwidth

and a threshold). A data-driven mechanism is discussed in the last part (Section II.C) for

selecting their values properly in applications.

A. Surface estimation

Suppose that a 2-D regression model for discontinuous surface estimation is:

Zi = m(Xi, Yi) + εi, i = 1, . . . , n. (1)

In (1), m is the true surface continuous in the design space[0, 1] × [0, 1] except along

some discontinuity curves (i.e., edges);εi’s are i.i.d. random errors with zero mean and

finite varianceσ2; (Xi, Yi)’s are design points, which are either i.i.d. r.v.’s from a bivariate

distribution fX,Y (x, y) with support[0, 1] × [0, 1] (i.e., random design case), or, equispaced
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grid points on the same support (i.e., fixed design case). The2-D model (1) with equispaced

fixed design is appropriate for describing an image withn = n1 × n2 pixels.

In the statistical literature, a popular surface estimation procedure is based on the following

local linear kernel smoothing:

(âc(x, y), âc,x(x, y), âc,y(x, y))

=arg min
a,b,c

n∑

i=1

(Zi − a − b(Xi − x) − c(Yi − y))2 · KB((Xi − x), (Yi − y)), (2)

whereKB(x, y) = 1
|B|

K(B−1 ·(x, y)t); B is a2×2 global bandwidth matrix with determinant

|B|, and K(x, y) is a radially symmetric bivariate kernel function with compact support

{(x, y) : x2 + y2 ≤ 1}. In practice, we often useK(x, y) = ((exp(−(x2 + y2)/2) −

exp(−0.5))/(2π − 3π exp(−0.5))) on {(x, y) : x2 + y2 ≤ 1} and 0 elsewhere, which is

the truncated 2-D Gaussian density function. Using a1st order Taylor expansion ofm(Xi, Yi)

around the point(x, y): m(Xi, Yi) = m(x, y) + ∂m
∂x

(x, y)(Xi − x) + ∂m
∂y

(x, y)(Yi − y) + · · · ,

one can show that the components of the triplet(âc(x, y), âc,x(x, y), âc,y(x, y)) estimate,

respectively,m(x, y), ∂m
∂x

(x, y), and ∂m
∂y

(x, y). This means that we can obtain at the same

time estimations of the surfacem(x, y) and its gradient∇m(x, y) = (∂m
∂x

, ∂m
∂y

)(x, y). They

are the so-calledlocal linear kernel estimators. These estimators have explicit formulas. It

has been demonstrated in the literature that they have some better properties in estimating

continuous surfaces than some other local smoothing estimators, such as the local constant

kernel estimator, especial near boundaries. See Fan and Gijbels [44] for more discussion.

If the surfacem is discontinuous at a point(x, y), then the estimator̂ac(x, y) is not

statistically consistent at this discontinuity point, since observations on both sides of the

discontinuity are averaged in constructingâc(x, y). As a consequence, jumps around(x, y)

are blurred. An illustration of this fact is depicted in Fig 1. Fig. 1(a) is the truestep surface,

1(b) is a noisy version, and 1(c) is the local linear kernel estimator where the edge is
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clearly blurred. Therefore, the conventional local linearkernel smoothing procedure should

be modified properly for estimating discontinuous surfaceswith jumps preserved.
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Fig. 1. (a) True Step surface. (b) Noisy version of (a). (c) Local linear kernel surface estimator. (d) Proposed estimator

B. Edge-preserving surface estimation

An edge can be defined as a curve in the(X, Y ) plane, along which the surface is

discontinuous. Of course, the conventional estimatorâc(x, y) is biased for estimatingm(x, y),

if there is an edge in the neighbourhood of(x, y). Next, we present a solution to overcome

this limitation.

By its definition, the gradient (∂m
∂x

, ∂m
∂y

) indicates the direction of the maximal increase in

m around(x, y). If the point (x, y) is on an edge segment, then the gradient direction would

be asymptotically perpendicular to the tangent direction of the edge segment. The support of

the kernel functionK is then divided into two parts by a line passing the point(x, y) and

perpendicular to the gradient direction (∂m
∂x

, ∂m
∂y

). See Fig. 2 for a demonstration.
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Fig. 2. Decomposition of the support of the kernel function along a direction perpendicular to the gradient direction ofm

at (x, y).

In the two parts, we define twoone-sided local linear kernel estimators as follows:

(âj(x, y), âj,x(x, y), âj,y(x, y))

=arg min
a,b,c

n∑

i=1

(Zi − a − b(Xi − x) − c(Yi − y))2 · K
(j)
B ((Xi − x), (Yi − y)), (3)

for j = 1, 2. In (3), K
(1)
B andK

(2)
B are the same asKB in (2), except that their supports have

been restricted to the two half-circles, as demonstrated byFig. 2. Then,̂a1(x, y) and â2(x, y)

provide two one-sided estimators ofm(x, y).

By now, we have obtained three estimators form(x, y): the conventional estimator̂ac(x, y)

and two one-sided estimatorŝa1(x, y) and â2(x, y). If there are no edge pixels in the neigh-

bourhood of(x, y), thenâc(x, y) should be selected for estimatingm(x, y), because it averages

more observations around the point(x, y) and thus is more powerful in removing noise. If

there is an edge segment around(x, y), then the conventional estimator̂ac(x, y) is not a

good estimator ofm(x, y) any more, as explained at the end of Section II.A. In such a case,

however, one of the two one-sided estimatorsâ1(x, y) and â2(x, y) should still estimate the

surface well, because most observations used by this estimator are located on a single side of

the edge segment, guaranteed by the statistical propertiesof the estimated gradient direction

from (2).
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In practice, the edge locations are usually unknown; so, we need to choose among the three

estimatorŝac, â1 and â2 in a data-driven way, which is discussed below.

The quality of the three estimatorsâc, â1 andâ2 can be measured by the Weighted Residual

Mean Squares (WRMS) of the related fitted surfaces, defined by:

WRMSc(x, y)

=
1∑

i KB(i)

∑

i

[Zi − âc(x, y)− âc,x(x, y)(Xi − x) − âc,y(x, y)(Yi − x)]2 KB(i),

WRMSj(x, y)

=
1

∑
i K

(j)
B (i)

∑

i

[Zi − âj(x, y)− âj,x(x, y)(Xi − x) − âj,y(x, y)(Yi − x)]2 K
(j)
B (i), (4)

whereKB(i) denotesKB((Xi − x), (Yi − y)), andK
(j)
B (i) denotesK(j)

B ((Xi − x), (Yi − y)),

for j = 1, 2.

The behaviour of these quantities depends on whether there are edge pixels in the neigh-

bourhood of the point(x, y). If there are no edge pixels in the neighbourhood, then all

WRMS’s are good estimators of the noise varianceσ2. Otherwise, those WRMS’s who use

data points on both sides of edge segments would be biased forestimatingσ2, and the bias

would depend on the jump size and the Euclidean distance between the point(x, y) and the

edge segments (see Qiu [43]).

Based on these results, our edge-preserving surface estimator is defined by:

m̂(x, y) =





âc(x, y) if diff (x, y) ≤ u

â1(x, y) if diff (x, y) > u and WRMS1(x, y) < WRMS2(x, y)

â2(x, y) if diff (x, y) > u and WRMS1(x, y) > WRMS2(x, y)

�

a1(x,y)+
�

a2(x,y)
2

if diff (x, y) > u and WRMS1(x, y) = WRMS2(x, y),

(5)

whereu is a threshold value and

diff(x, y) = max{WRMSc(x, y) − WRMS1(x, y), WRMSc(x, y) − WRMS2(x, y)}. (6)
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So our surface estimator̂m(x, y) is defined by one of the three estimators:âc(x, y), â1(x, y)

andâ2(x, y), depending on whether there are edge pixels around(x, y), judged by the WRMS

values. If we are in a continuity region of the surface, then all three WRMS’s are close

to σ2, so that diff(x, y) is close to zero. On the other hand, if we are close to an edge

segment, then one of the two one-sided WRMS’s would be smaller than WRMSc, and thus

diff(x, y) would be relatively large. Therefore, diff(x, y) can be used to judge whether there

are edge pixels around(x, y). See Gijbels et al. [45] for related discussion. In (5), the case

WRMS1(x, y) = WRMS2(x, y) has, forn tending to infinity, probability zero to occur under

some regularity conditions. It is included just for completeness. The explicit formulation of

the estimator (5) is helpful when investigating theoretical properties of the estimator. For a

one-dimensional version of the estimator (when recoveringdiscontinuous curves) this can be

seen from Gijbels et al. [45].

C. Selection of the bandwidth B and the threshold u

Different choices ofu would lead to different types of surface estimation. For example, if

u = 0, then the estimator̂m(x, y) privileges edge preservation since it only usesâ1(x, y) and

â2(x, y) in such a case, whereas ifu = max(x,y)∈[0,1]×[0,1] diff(x, y), thenm̂(x, y) becomes the

conventional estimator̂ac(x, y) which is ideal for removing noise. Any choice ofu between

these two extreme values would lead to an estimator having both edge preserving and noise

removing properties. The trade-off between these two properties depends on the value ofu.

Theoretically, the best choice ofu is the one minimizing the Mean Integrated Squared Error

(MISE) of the surface estimator, defined by:

MISE = E

{∫ 1

0

∫ 1

0

(m̂(x, y) − m(x, y))2 fX,Y dxdy

}
(7)

This definition can be used for both the fixed design and randomdesign cases. In the case

of fixed design with equispaced design points, we can simply set fX,Y = 1. Obviously, the
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MISE value defined in (7) depends on the true surfacem which is unknown. So a data-driven

criterion is still required to chooseu properly.

Similarly, the bandwidth matrixB used in (2) and (3) also needs to be chosen properly. For

simplicity, we assume thatB is a diagonal matrix with the same diagonal elements, which

implies that we impose the same amount of smoothing in thex and y directions. This is a

common practice in the image processing literature (e.g., [4]). Then, choosingB is equivalent

to choosing one of its diagonal elements, denoted byh.

In this article, we suggest choosing bothh andu by the following cross-validation (CV)

procedure:

(hn, un) = arg min
h,u

n∑

i=1

(
Zi − m̂(−i)(Xi, Yi)

)2
, (8)

wherem̂(−i)(Xi, Yi) is the estimator ofm(Xi, Yi) using all the data points except the point

(Xi, Yi, Zi).

One might think that choosing both parametersh and u by the CV procedure (8) would

require a big computational demand, but this is not true. In view of (5), once we have the

three estimators (̂ac, â1 and â2) (for fixed h), we do not have to re-compute these estimators

for different values ofu, which saves a great amount of computation.

In Fig. 1 (d), we show the proposed estimator of thestep surface. Here, the edge is preserved

quite well compared to results shown in Fig 1 (c).

III. COMPARISON WITH OTHER METHODS AND HETEROSCEDASTIC CASE

In this section, we compare via simulations our method with four existing ones which are

mainly used in the image denoising literature: wavelets, Markov random field (MRF), median

filter, and bilateral filter [23]. For the wavelet method, we use the R packagewavethresh by

Nason and Silverman [33]. The following parameters should be chosen properly before this

method can be used: the wavelet family, the threshold method(hard or soft), the levels of
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wavelet coefficients to be thresholded, and the number of vanishing moments of the wavelet

family. We also compare with the wavelet decomposition method from Portillaet al. [32] using

the BLS-GSM Image Denoising Matlab Toolbox 1.0.3. For the MRF method, the Fortran

package developped by P. Qiu is used, which is based on the method from Godtliebsen and

Sebastiani [9] and Geman and Geman [5] which has some similarities with regularization

techniques. This procedure has three parameters to choose which describe the joint prior

distribution of the true image and the line process (representing edges in an image). The

median filter has only one parameter involved, which is the size of the neighbourhood to

smooth. The bilateral filtering involves taking a weighted average of image intensities at

nearby pixels. The procedure has two smoothing parameters:a scaling factor for each of

the two weight functions (univariate and bivariate Gaussian density functions for the image

intensities and the pixel locations respectively).

We consider three different test models. Model 1 consists ofa smooth quadratic surface

which has a circular edge with constant jump size (see Fig. 3 (a)). Model 2 is depicted

in Fig. 3 (b); here, the jump size varies along an edge in a sinusoidal form. Model 3 is

shown in Fig. 3 (c). In this case, continuity parts of the image consist of regions with large

first-order derivatives. These three models can be described by the following functions: for

(x, y) ∈ [0, 1] × [0, 1],

m1(x, y) = −2(x − 0.5)2 − 2(y − 0.5)2 + I[(x−0.5)2+(x−0.5)2<0.252],

m2(x, y) = 0.25(1 − x)y + (1 + 0.2 sin(2πx))I[y>0.6 sin(πx)+0.2],

m3(x, y) = cos(4π(1 − x − y)) − 2 cos(4π(1 − x − y))I[x+y−1>0], (9)

whereI[A] equals to 1 ifA is true, and 0 otherwise. For Model 1, the jump size is one along

the circular edge. For Model 2, the jump size varies from 0.8 to 1.2. For Model 3, the jump

size is 2 along the edge line. Figs. 3 (d), (e) and (f) show noisy versions of the three models
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when n = 1282 and ε ∼ N(0; 0.52). Various surface estimation methods are evaluated in
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Fig. 3. (a) Model 1; (b) Model 2; (c) Model 3; (d) Noisy versionof (a); (e) Noisy version of (b); (f) Noisy version of (c).

In (d), (e) and (f),ε ∼ N(0, 0.52).

two different sample sizes:n = 1282 and n = 2562, and two values of the error variance:

σ2 = 0.22 and σ2 = 0.52, where it is assumed thatε ∼ N(0; σ2). For each method, its

procedure parameters are selected such that the approximated Mean Integrated Squared Error

(MISE), computed based onN = 100 samples and denoted bŷMISE, reaches the minimum

except for the BLS-GSM method where the default parameters (optimized) are used. For

comparison purposes, botĥMISE andM̂ISEe are reported, wherêMISEe is the localM̂ISE

value computed in a band, denoted asB(m, h), around edges of the surfacem with radius

equal to the selectedh-value. More specifically,̂MISEe is defined by

M̂ISEe =

∑n

i=1(m̂(Xi, Yi) − m(Xi, Yi))
2I[(Xi, Yi) ∈ B(m, h)]∑n

i=1 I[(Xi, Yi) ∈ B(m, h)]
(10)

Results for Models 1, 2, and 3 are shown in Tables I, II, and III, respectively.
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TABLE I

�

MISE (FIRST COLUMNS) AND
�

MISEe (SECOND COLUMNS) VALUES FOR MODEL 1 WHEN N = 100 AND n = 1282 OR

2562 .

n = 1282 n = 2562

Method σ=0.2 (h = 0.047) σ=0.5 (h = 0.074) σ=0.2 (h = 0.029) σ=0.5 (h = 0.051)

�

m (Proposed procedure) 0.0012 0.0044 0.0055 0.0172 0.0006 0.0033 0.0027 0.0121

Wavethresh 0.0058 0.0337 0.0125 0.0389 0.0032 0.0277 0.0071 0.037

BLS-GSM 0.0020 0.0097 0.0061 0.0179 0.0012 0.0090 0.0032 0.0140

MRF 0.0011 0.0029 0.0109 0.0327 0.0005 0.0017 0.0059 0.0216

Median Filter 0.0032 0.0165 0.0115 0.0364 0.0019 0.0153 0.0072 0.0306

Bilateral Filter 0.0023 0.0082 0.0104 0.0313 0.0016 0.0092 0.0067 0.0281

TABLE II

�

MISE (FIRST COLUMNS) AND
�

MISEe (SECOND COLUMNS) VALUES FOR MODEL 2 WHEN N = 100 AND n = 1282 OR

2562 .

n = 1282 n = 2562

Method σ=0.2 (h = 0.055) σ=0.5 (h = 0.090) σ=0.2 (h = 0.035) σ=0.5 (h = 0.059)

�

m (Proposed procedure) 0.0010 0.0053 0.0052 0.0214 0.0005 0.0035 0.0024 0.0150

Wavethresh 0.0064 0.0475 0.0130 0.0504 0.0035 0.0379 0.0079 0.0529

BLS-GSM 0.0019 0.0135 0.0064 0.0260 0.0011 0.0114 0.0034 0.0206

MRF 0.0007 0.0033 0.0107 0.0401 0.0004 0.0026 0.0065 0.0323

Median Filter 0.0036 0.0218 0.0120 0.0497 0.0021 0.0196 0.0075 0.0433

Bilateral Filter 0.0024 0.0111 0.0107 0.0410 0.0017 0.0116 0.0069 0.0387
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�

MISE (FIRST COLUMNS) AND
�

MISEe (SECOND COLUMNS) VALUES FOR MODEL 3 WHEN N = 100 AND n = 1282 OR

2562 .

n = 1282 n = 2562

Method σ=0.2 (h = 0.039) σ=0.5 (h = 0.051) σ=0.2 (h = 0.029) σ=0.5 (h = 0.039)

�

m (Proposed procedure) 0.0018 0.0055 0.0071 0.0244 0.0007 0.0025 0.0026 0.0099

Wavethresh 0.0076 0.0579 0.0250 0.1696 0.0047 0.0396 0.0124 0.1004

BLS-GSM 0.0039 0.0125 0.0118 0.0481 0.0018 0.0088 0.0066 0.0326

MRF 0.0033 0.0040 0.0126 0.0326 0.0013 0.0015 0.0054 0.0160

Median Filter 0.0044 0.0185 0.0211 0.1045 0.0025 0.0250 0.0116 0.0848

Bilateral Filter 0.0025 0.0062 0.0184 0.0955 0.0012 0.0042 0.0113 0.0740

For the three models, we can see that the selectedh increases when noise levelσ increases

and sample sizen decreases, which is intuitively reasonable. We can also seethat the proposed

estimator behaves well in botĥMISE and M̂ISEe values in all cases. The MRF method

performs very well whenσ is small; whereas the proposed method outperforms the MRF

method whenσ is relatively large. For Models 1 and 2 the BLS-GSM wavelet method performs

somewhat comparable, but (slightly) worse, than the proposed method. Fig. 4 shows the

estimators bym̂, the MRF method and the bilateral filtering, corresponding to a median

M̂ISE performance, for the three models whenn = 1282 andσ = 0.2.

Heteroscedastic error variance

In model (1), we assume the noise levelσ to be constant on the entire design space. In

some applications this assumption may not hold. Then a more appropriate model would be

Zi = m(Xi, Yi) + σ(Xi, Yi)εi, i = 1, . . . , n. (11)
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Fig. 4. Surface estimators corresponding to a median performance of the
�

MISE whenn = 1282 and σ = 0.2. Plots (a),

(d), and (g):
�

m; plots (b), (e), and (h): MRF; plots (c), (f), and (i): Bilateral filter.

whereεi aren i.i.d. random variables with zero mean and unit variance andσ(x, y) is a smooth

function describing the noise level in the design space. In this heteroscedasticity setting the

proposed procedure can still be used. For example, we simulate the Model 1 (ε ∼ N(0, 1))

with a σ function with a bell shape such that more noise is present in the foreground of

the image and less in the background (see Figs 5 (a) and (b)) which is more realistic in

applications. In the example the functionσ(x, y) is taken such that
∫ 1

0

∫ 1

0
σ(x, y) dxdy = 0.2.



17
The estimation, based on a simulation with sample size1282, is depicted in Fig. 5 (c). The

M̂ISE is equal to 0.0027 and̂MISEe = 0.0148 which seems to be reasonable compared to

the corresponding results in the homoscedastic case (see Table I for σ = 0.2 andσ = 0.5).
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Fig. 5. (a) Functionσ(x, y); (b) Noisy version of Model 1 and (c) Estimation by the proposed procedure.

IV. CORNER PRESERVING

A corner can be defined as an intersection point of two edge segments. Clearly, the discussed

surface estimator cannot preserve a corner well because we divide the kernel support into

two half circles and hencêa1(x, y) and â2(x, y) are biased at a corner.

Here, we suggest an improvement of the proposed procedure for corner preservation, which

is based on the following measure of the cornerness originally proposed by Yanget al. [46]

and Chabatet al. [47]:

c(x, y) = (1 − g(x, y))2||(mx, my)|| (12)

wheremx = ∂m
∂x

, my = ∂m
∂y

, ||.|| is the Euclidian norm, and

g(x, y) =
(
∫∫

V
(m2

x − m2
y) dxdy)2 + (

∫∫
V
(2mxmy) dxdy)2

(
∫∫

V
(m2

x + m2
y) dxdy)2

, (13)

with V a neighbourhood around the point(x, y).

It can be shown thatc(x, y) is large in the neighbourhood of a corner and small elsewhere.

In what follows,c(x, y) is normalized byc(x, y)/ max(c(x, y)) such that it belongs to[0, 1].
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All quantities involved in the estimator ofc, which is denoted aŝc, have been previously

computed in (2). The neighbourhoodV is taken to be a square centered at(x, y) and with

length2h.

We now define a new estimator̃m of m based on̂c and m̂ as follows:

If ĉ(x, y) > C, m̃(x, y) =





ã1(x, y) if WRMS�1(x, y) < WRMS�2(x, y)

ã2(x, y) if WRMS�1(x, y) > WRMS�2(x, y)

�

a1(x,y)+
�

a2(x,y)
2

if WRMS�1(x, y) = WRMS�2(x, y),

(14)

where ã1(x, y) and ã2(x, y) are modified versions of̂a1(x, y) and â2(x, y) defined below,

WRMS�1(x, y) and WRMS�2(x, y) are the corresponding WRMS values, andC ≥ 0 is a

threshold. If ĉ(x, y) ≤ C, we let m̃(x, y) = m̂(x, y). From this definition, we can see that

whenC is chosen 0,̃m depends only oña1(x, y) andã2(x, y), which means that̃m privileges

corner preservation in such a case. On the other hand, whenC is chosen 1,m̃ = m̂, and

consequently the procedure (14) can only preserve flat edgeswhile removing noise.

The estimators̃a1(x, y) and ã2(x, y) follow the same definitions aŝa1 and â2 (see equation

(3)), except that the quantityKB((Xi − x), (Yi − y)) is replaced byLH((Xi − x), (Yi − y)),

i.e., a new kernel functionL and a new bandwidth matrixH are used here. The matrixH is

defined by

H =




cos(α), − sin(α)

sin(α), cos(α)







h/k1, 0

0, hk2


 ,

wherekj ∈ [0, 1], for j = 1, 2, α = tan−1(m̂y(x, y)/m̂x(x, y)), andLH((Xi −x), (Yi − y)) =

|H|−1K(H−1(Xi − x, Yi − y)t)2 cos2(βi). In the simulation examples below, we takek1 = 1

andk2 = 0.5. The anglesβi are chosen as shown in Fig. 6 (b). Using this setup, the support

of K(H−1(Xi − x, Yi − y)t) becomes an ellipse centered at(x, y), with its longer axis of

lengthh/k1 parallel to the gradient direction, and its shorter axis of lengthhk2 perpendicular

to the gradient direction. If we are close to a corner point, then the direction of the gradient
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(m̂x(x, y), m̂y(x, y)) approximates the direction of the bisectrix of the corner (see Fig 6).

Thus, more data points are used in a corner region in this case, compared to the case when

the quantityKB is used as in equation (3) (cf. Fig. 6 (a)). The factor2 cos2(βi) guarantees

that more weights are given to observations near the bisectrix and less weights elsewhere.

Support of K
B

Support of K
B

Edge

Edge

(m
x
,m

y
)

(x,y)

(a)

(x,y)

(X
i
,Y

i
)

α

β
i

Support of L
H

(m
x
,m

y
)

(b)

Fig. 6. (a) Support ofKB at a corner point; (b) Support ofLH at a corner point with a nearby point(Xi, Yi).

For illustration, we apply this procedure to a noisy versionof Fig. 7 (a), shown in Fig. 7

(b), in whichn = 1002 andε ∼ N(0; 0.12). In the true image, there are three different corners.

Fig. 7(c) shows the surface estimator without corner preserving (i.e.,C = 1 in (14)). It can be

seen that the three corners are blurred, as expected, and theblurring is more noticeable around

a sharper corner. In Figs. 7 (d) and (e), we plot respectivelythe new estimator̃m with C = 0.2

and the corresponding standardized cornerness measureĉ(x, y). It can be seen that the corners

are preserved quite well. For more discussion on this cornerpreserving improvement of the

method, see [48].

V. OTHER ILLUSTRATIONS

In this section, we illustrate the proposed method on several different greyscale images

whose grey levels are in[0, 255]. Fig. 8 (a) shows a noisy version of an image of three

circles, in whichn = 2562 andσ = 752. The estimator̃m with C = 1 andu andh chosen

by CV is presented in Fig. 8 (b). We can see that the circular edges are preserved quite well
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(a) (b) (c)
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(e)

Fig. 7. (a) True image with three selected points (little squares); (b) Noisy version of (a) withε ∼ N(0; 0.12); (c) Surface

estimator without corner preserving; (d) Corner-preserving surface estimator; (e) Normalized, estimated cornerness measure

�

c(x, y);

in both the interior region and places near the boundaries.

(a) (b)

Fig. 8. (a) Noisy image; (b) Denoised image.

Figs.9 (a) and (b) depict respectively a noisy image of a rod withn = 2562 andσ2 = 252

and the denoised imagẽm with C = 1 andu andh chosen by CV. Again, edges are preserved

well by m̃, whereas noise is removed efficiently as well. Fig. 10 (a) shows a log-transformed

C-band, HH-polarization, synthetic aperture radar (SAR) image recorded by Dr. E. Attema at
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(a) (b)

Fig. 9. (a) Noisy image; (b) Denoised image.

the European Space Research and Technology Centre in Noordwijk, The Netherlands. It can

be seen that this noisy image has some corner points. Figs. 10(b)-(e) present the estimator

m̃ in various cases:C = 1 (i.e., without corner preservation) andu = 0 in plot (b); C = 1

and u = 51 in plot (c); C = 0.25 and u = 0 in plot (d); and finallyC = 0.25 and u = 51

in plot (e). The bandwidthh is chosen via CV in all cases. It can be seen that corners are

better preserved whenC = 0.25.

VI. RANDOM DESIGN

As mentioned in Section II-A, the proposed method can also beused in the case of non-

equispaced design. This problem has been studied by Strohmer [49] and Arigovindanet al.

[50], among some others, in applications of digital image processing.

For illustration, we randomly select 10% of the original pixels of Fig. 3 (a) (shown in

Fig. 11 (a)) and then add noise fromN(0; 0.22) distribution to the selected pixels. The noisy

version of Fig. 11 (a) is shown in Fig. 11 (b). In both images, black regions do not include

any pixels. Our goal is to estimate the whole image from the randomly selected true pixels

(i.e., from those in plot (a)) and from these pixels plus noise as well (i.e., from those in plot

(b)). Figs. 11 (c) and (d) present the two sets of results, respectively. It can be seen that the

proposed method works well in general. Fig. 11 (e) shows thêMISE values of the estimated
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(a)

(b) (c)

(d) (e)

Fig. 10. (a) Noisy image; (b) Denoised image whenC = 1 (i.e., without corner preservation) andu = 0; (c) Denoised

image whenC = 1 andu = 51; (d) Denoised image whenC = 0.25 andu = 0; (e) Denoised image whenC = 0.25 and

u = 51.

images for several different percentages of the selected pixels. The dotted line denotes results

from the randomly selected true pixels, whereas the solid line denotes results from these

pixels plus noise. In the proposed procedure, the values ofh andu are selected by CV and

C is fixed at 1.

We also apply the proposed method to thepepper image shown in Fig. 12(a) withn =

5122. In this case,30% original pixels were randomly selected. The selected pixels and the
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Fig. 11. (a) 10% randomly selected true pixels from Fig. 3 (a); (b) Noisy version of (a); Plots (c) and (d) show the

estimators from (a) and (b), respectively; (e)
�

MISE values for several different percentages from randomly selected pixels

with (solid line) and without (dotted line) noise.

reconstructed image from them are shown in Figs. 12 (b) and (c), respectively. Again, in the

proposed method,h andu are selected by CV andC is fixed at 1.

Finally, we test the proposed method with thering image of size256× 256 pixels, which

is similar to the image used in Arigovindanet al. [50]. For this circularly symmetric image,

we randomly select 18 radial directions and pixels in these directions constitute the random

design. The true image, selected pixels, and reconstructedimage are presented in Figs. 13
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(a) (b) (c)

Fig. 12. (a) Truepepper image; (b) Sampled pixels; (c) Reconstructed image.

(a)-(c). The ring appears to be reconstructed well.

(a) (b) (c)

Fig. 13. (a) True image; (b) Sampled pixels; (c) Reconstructed image.

VII. CONCLUSION

This paper presents a new procedure for edge-preserving image denoising. It is based

on local linear kernel surface estimation in the statistical framework. Advantages of the

proposed procedure are its non-iterative feature, its explicit formulation (local smoothing

method) and consequently its numerical simplicity. Numerical studies show that it performs

well in applications. We also demonstrated that this methodcan be used for reconstructing

images or surfaces from sparse noisy data. The proposed method could also possibly be used

in conjunction with other available methods, such as the mean shift method by nonlinear

filtering or more general methods (see e.g. Comaniciu [51] and Barash and Comaniciu [52]),

by applying the proposed surface estimation procedure to their iteration steps. Note that the
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proposed method already improves upon the bilateral filtering, by using neighborhoods that

are based upon the gradient estimation.

A limitation of the proposed procedure is the use of a global bandwidth parameter. Local

bandwidth selection methods should be developed in the future, which might lead to a possible

improvement of denoising in some cases.
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