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Abstract

This paper deals with nonparametric estimation of a regression curve, where the esti-

mation method should preserve possible jumps in the curve. At each point x at which one

wants to estimate the regression function, the method chooses in an adaptive way among

three estimates: a local linear estimate using only datapoints to the left of x, a local linear

estimate based on only datapoints to the right of x, and finally a local linear estimate using

data in a two-sided neighbourhood around x. The choice among these three estimates is

made by looking at differences of the weighted residual mean squares of the three fits. The

resulting estimate preserves the jumps well and in addition gives smooth estimates of the

continuity parts of the curve. This property of compromise between local smoothing and

jump-preserving is what distinguishes our method from most previously proposed methods,

that mainly focused on local smoothing and consequently blurred possible jumps, or mainly

focused on jump-preserving and hence led to rather noisy estimates in continuity regions of

the underlying regression curve. Strong consistency of the estimator is established and its

performance is tested via a simulation study. This study also compares the current method

with some existing methods. The current method is illustrated in analyzing a real dataset.

KEY WORDS: Consistency, Jump-preserving estimation, Local linear fit, Nonparametric re-

gression, Smoothing, Weighted Residual Mean Square.

1 Introduction

When one wants to estimate a regression function that possibly shows a discontinuous behaviour

at certain places, two smoothing approaches have been adopted in the literature. The first

approach, which we will call the indirect approach, estimates the discontinuity locations first

and then considers different segments of the design interval, on which the underlying function is

assumed to be continuous. The final estimate of the regression function is obtained by using a
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conventional estimator (e.g., a local linear estimator) on each of the segments. Such an approach

can provide estimates of jump sizes simultaneously. By this approach, good estimation of the

regression function depends on accurate estimates of the jump locations. It also requires users to

implement each of its two steps properly. As long as the jump locations are accurately estimated,

its estimates in continuity regions often show the desired smoothness. The second approach,

called the direct approach, estimates the regression curve directly, without first estimating the

number and locations of discontinuity points. By this approach one starts with the idea that

each point in the design interval is a potential discontinuity point and thus the curve estimation

method should adapt at each point to a possible discontinuity. Therefore it is convenient to use

and also preserves potential jumps well. A consequence of this built-in flexibility is that the

resulting estimates often show a quite ‘unsmooth’ behaviour in regions where the underlying

regression function is actually continuous. For both approaches one can use methods based on

kernel smoothing, splines, wavelets, etc.

The two approaches mentioned above are quite different in nature and a thorough comparison

of them is lacking. It is even questionable whether such a comparison makes much sense because

their major objectives are quite different. By the first approach, the major goal is to obtain

good estimates of jump locations and jump sizes. Estimation of the regression function in its

continuity regions is often secondary. On the other hand, the major goal of the second approach

is to obtain an overall good estimation of the regression function, and it should be noted that a

good overall estimate of the regression function may not necessarily reveal jump locations and

sizes well. Due to this difference in major goals, it is even difficult to choose an appropriate

criterion for comparisons.

This paper suggests a “greedy” jump-preserving curve estimation method which has the

properties that: (i) it is still a direct method and therefore jumps are not detected explicitly

before curve estimation, (ii) its curve estimate behaves ‘smoother’ in the continuity regions than

those of most existing direct methods, and (iii) it still preserves possible jumps well. Therefore

the proposed new methodology combines the major benefits of existing direct and indirect jump-

curve estimation methods. It might be greedy to achieve these goals simultaneouly.

For estimating continuous regression functions, there exist many smoothing methods in the

literature. Among the kernel smoothing methods there are the Nadaraya-Watson estimator, the

Gasser-Müller estimator, the local linear kernel estimator, and several others. In this paper we

focus on local linear kernel smoothing because of its special merits when estimating regression

functions at boundary points. The discontinuity points of a discontinuous regression function are

similar in nature to boundary points of a continuous regression function because the discontinu-

ous regression function is continuous within the interval formed by two consecutive discontinuity

points. Therefore it would be advantageous to use local linear kernel smoothing in the context

of discontinuous curve estimation. See Fan and Gijbels (1996) for a more complete discussion

about local linear kernel smoothing techniques.

It is known that the conventional local linear kernel estimator using observations in a two-

sided neighbourhood of a given point has a good smoothing property. But it assumes that the

true regression function is smooth, and hence would not preserve jumps. Around a jump point

a better way for constructing the local linear kernel estimate is to use data points located on a
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single (left or right) side of that point, avoiding the dependence on the smoothness assumption

of the underlying regression function at the point. The basic idea of our method is to consider

three possible estimates at each point x: the conventional local linear estimate, the local linear

estimate using data only to the left of x, and the local linear estimate using data only to the

right of x. Ideally, one should use the conventional local linear estimate at continuity points of

the regression function, and one of the two one-sided estimates near or at discontinuity points.

Since the jump locations are often unknown, we suggest a data-driven criterion for choosing

among the three estimates as well for choosing the involved bandwidth parameter.

Methods based on similar ideas have been proposed in the literature. McDonald and Owen

(1986) suggested to obtain at each point three local linear fits, via least squares, and to construct

a ‘split linear fit’ as a weighted average of these three estimates with weights determined by the

goodness-of-fit values of the estimates. Hall and Titterington (1992) proposed an alternative

to this split linear fitting method. They considered at each point three nearest-neighbour type

estimates, and propose various diagnostics to decide whether the regression function was con-

tinuous at that point or not. The method of Hall and Titterington (1992) is in fact an indirect

method, since it searched for discontinuity points first and then constructed the curve estimate

in each continuity region. Recently Qiu (2003) proposed a jump-preserving curve fitting pro-

cedure based on local piecewise-linear kernel estimation. For each point x two one-sided local

linear estimates were considered, and based on a comparison of the residual sums of squares of

the two one-sided fits the curve estimate at x was defined by one of the two estimates or their

average. This estimate preserves jumps quite well, but shows a quite ‘rough’ behaviour in con-

tinuity regions of the underlying regression curve, as mentioned at the beginning of this section

regarding direct jump curve estimation methods. The proposed method in this paper represents

an improvement in this regard, by compromising between local smoothing and jump-preserving.

The literature on indirect estimation methods includes Müller (1992), Wu and Chu (1993),

Eubank and Speckman (1994), Müller and Song (1997), Qiu and Yandell (1998), Gijbels, Hall

and Kneip (1999), Kang, Koo and Park (2000), Gijbels and Goderniaux (2004), among others.

Spline estimation of discontinuous regression functions has been discussed in Koo (1997).

A completely different adaptive estimation procedure that simultaneously adapts to the

smoothness of the regression curve and to its discontinuities as well has been proposed by

Spokoiny (1998). Our method distinguishes from this method by its computational simplicity

and by the fact that it is a non-iterative procedure. Other relevant references are the papers

on Sigma filtering by Lee (1983) and on M-smoothers by Chu, Glad, Godtliebsen and Marron

(1998) and Rue, Chu, Godtliebsen and Marron (2002).

The paper is organized as follows. In Section 2 we first briefly introduce the estimation

method proposed by Qiu (2003) and then discuss possible improvements based on theoretical

considerations. We focus on one particular improved estimation method and establish its strong

consistency in Section 3. Proofs of the theoretical results are defered to the Appendix. The

estimation method involves selection of a threshold and a smoothing parameter, which is dis-

cussed in Section 4. A simulation study investigating the performances of the proposed methods

is provided in Section 5. An application of the proposed method to real data is demonstrated

in Section 6.
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2 Estimation procedures

In this section, we first discuss some preliminary results about the three local linear kernel

estimates (i.e., the conventional estimate and the two one-sided estimates), and then introduce

several jump-preserving curve estimation procedures, all based on the three local linear kernel

estimates.

2.1 Model and preliminary results

Consider the regression model

Yi = f(xi) + εi, i = 1, . . . , n, (2.1)

where the xi = i/n are n equally-spaced design points in the design interval [0, 1], εi are n

iid random errors with zero mean and finite variance σ2, and f is a nonparametric regression

function. In this paper, we consider the case when f has jumps at points sq in [0, 1] with jump

magnitudes dq, for q = 1, . . . ,m. Without loss of generality, f is assumed to be right-continuous

at all jump locations. The number of jumps m, the jump locations sq’s and the jump magnitudes

dq’s are all unknown. In (2.1) the design points are assumed equally-spaced for convenience.

All methodologies developed in this paper can actually be applied to cases when the design

points are unequally-spaced or even random, under some regularity conditions. Moreover, the

methodologies also apply when the conditional variance is a function of x, denoted as σ2(x), i.e.

in the heteroscedastic case. The theoretical results have been proved for the random design and

heteroscedastic case, but for ease of presentation, we present here only the proofs for the fixed

design and homoscedastic case.

Let K be a bounded symmetric density kernel function supported on [−1/2, 1/2]. Two

one-sided kernel functions are defined by:

K`(x) =

{
K(x), when x ∈ [−1/2, 0)

0, otherwise
; Kr(x) =

{
K(x), when x ∈ [0, 1/2]

0, otherwise .

Namely, K` is defined as the left-half of K on its support and Kr is the right-half. Then three

sets of local linear estimators of f and its first-order derivative f ′ at x are considered. The left

local linear estimator is defined by:

(â`,0(x), â`,1(x)) = arg min
a,b

n∑

i=1

[Yi − a− b(xi − x)]2K`

(
xi − x
hn

)
, (2.2)

where hn > 0 is a bandwidth parameter. The right and conventional local linear estimators,

denoted by respectively (âr,0(x), âr,1(x)) and (âc,0(x), âc,1(x)) are obtained by using respectively

Kr and K instead of K` in (2.2). Obviously the estimators (âc,0(x), âc,1(x)) are the usual local

linear estimators of f(x) and f ′(x), based on data in the neighbourhood [x − hn
2 , x + hn

2 ] of x.

The first set of estimators are based on data in the left-sided interval [x− hn
2 , x), and the second

estimator relies only on data in the right-sided interval [x, x+ hn
2 ].
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The quality of the three local linear fits can be evaluated via their Weighted Residual Mean

Squares (WRMSs), defined as

WRMS`(x) =

∑
i[Yi − â`,0 − â`,1(xi − x)]2K`(

xi−x
hn

)
∑

iK`(
xi−x
hn

)
, (2.3)

for the left local linear estimate. The residual quantities WRMSr(x) and WRMSc(x) are defined

similarly by replacing (â`,0, â`,1,K`) by respectively (âr,0, âr,1,Kr) and (âc,0, âc,1,K) in (2.3). If

f is continuous around a given point x, then all three estimators â`,0(x), âr,0(x) and âc,0(x) are

consistent estimators of f(x) (cf. Section 2.2 below). The following proposition tells us that all

three weighted residual mean square quantities are consistent estimators of the error variance

σ2 in such cases.

Proposition 2.1 Assume that f has continuous second-order derivatives in [0, 1]\
m⋃
q=1

[
sq − hn

2 ,

sq + hn
2

]
; the kernel function K is uniformly Lipschitz continuous; hn → 0 and nhn →∞. Then

at any x ∈ [hn2 , 1− hn
2 ] \

m⋃
q=1

[
sq − hn

2 , sq + hn
2

]
, we have

WRMSj(x) = σ2 +Rn,j,1(x), j = `, r, c , (2.4)

where Rn,`,1(x), Rn,r,1(x) and Rn,c,1(x) are random variables tending to 0 almost surely and

uniformly in x ∈ [hn2 , 1− hn
2 ] \

m⋃
q=1

[
sq − hn

2 , sq + hn
2

]
.

The proof of this result is along the same lines as the proof of Theorem 3.2 in Qiu (2003)

and is omitted here.

The behaviours of the weighted residual mean squares are quite different near jump points.

Next we discuss this behaviour for an arbitrary jump point s with associated jump magnitude

d. Any point x in the neighbourhood [s− hn
2 , s+ hn

2 ] of s can be denoted as

x = s+ τ hn, with τ ∈ [−1/2, 1/2]. (2.5)

In the left-half of the neighbourhood, i.e., for x = s + τ hn with τ ∈ [− 1
2 , 0), intuition tells

us that only WRMS`(x) provides a consistent estimator for σ2 and the other two weighted

residual mean squares would be affected by the jump at s. Similarly, in the right-half of the

neighbourhood, i.e. for x = s + τ hn with τ ∈ [0, 1
2 ], only WRMSr(x) provides a consistent

estimator for σ2. The following proposition formally states these results. For points x = s+τ hn,

τ ∈ [−1/2, 1/2], in the neighbourhood of a jump point s, we introduce the following notations.

C2
τ,j = q−2

j

∫ 1/2

−τ

[∫ −τ

−1/2
s1,j(x)Kj(x) dx − u

∫ 1/2

−τ
s0,j(x)Kj(x) dx

]2

Kj(u) du

+ q−2
j

∫ −τ

−1/2

[∫ 1/2

−τ
s1,j(x)Kj(x) dx+ u

∫ 1/2

−τ
s0,j(x)Kj(x) dx

]2

Kj(u) du (2.6)
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where j denotes r, `, c respectively (with Kc = K) and

qj = v0,jv1,j − v2
1,j, s0,j(x) = v0,jx− v1,j , s1,j(x) = v2,j − v1,jx and vk,j =

∫ 1/2

−1/2
ukKj(u) du.

(2.7)

Proposition 2.2 Assume that f has continuous second-order derivatives in [s − hn
2 , s + hn

2 ]

except at a jump point s (with jump magnitude d) at which f has a second-order left derivative

(for (i) below) or a second-order right derivative (for (ii) below); the kernel function K is

uniformly Lipschitz continuous; hn → 0 and nhn →∞. Then, we have

(i). for any x = s+ τ hn with τ ∈ [− 1
2 , 0):

WRMS`(x) = σ2 +Rn,`,2(x),

WRMSr(x) = σ2 + d2C2
τ,r +Rn,r,2(x),

WRMSc(x) = σ2 + d2C2
τ,c +Rn,c,2(x), (2.8)

where Rn,`,2(x), Rn,r,2(x) and Rn,c,2(x) are random variables tending to 0 almost surely

and uniformly in x ∈ [s− hn
2 , s);

(ii). for any x = s+ τ hn with τ ∈ [0, 1
2 ]:

WRMS`(x) = σ2 + d2C2
τ,` +Rn,`,3(x),

WRMSr(x) = σ2 +Rn,r,3(x),

WRMSc(x) = σ2 + d2C2
τ,c +Rn,c,3(x), (2.9)

where Rn,`,3(x), Rn,r,3(x) and Rn,c,3(x) are random variables tending to 0 almost surely

and uniformly in x ∈ [s, s+ hn
2 ].

The expressions for WRMS`(x) and WRMSr(x) in (2.8) and (2.9) were derived by Qiu

(2003). The expressions for WRMSc(x) can be derived in a similar way.

Since our curve estimation method depends heavily on the three weighted residual mean

squares, which in turn depend on the quantities C 2
τ,`, C

2
τ,r and C2

τ,c, we explore these quantities

a bit further.

From their expressions, the quantities C2
τ,`, C

2
τ,r and C2

τ,c depend on τ and the kernel function

K. When K is one of the Uniform, Epanechnikov and Triangular kernels on [−1/2, 1/2], the

three quantities are shown in Figure 2.1 as functions of τ . From Figure 2.1, we can discover

some of their common properties: all three quantities seem to be bimodal functions of τ and

this bimodality is stronger for kernels with smaller values at 0. Furthermore, the quantities

C2
τ,` and C2

τ,r are symmetric versions of one another and C2
τ,c is always symmetric about τ = 0.

Moreover, we have C2
τ,r ≤ C2

τ,c for all values of τ . All these properties have been proved formally.

Expressions for finding the local maxima of the three functions of τ are also available.
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Figure 2.1: (a) Plots of C2
τ,c; (b) Plots of C2

τ,` and C2
τ,r, for the three kernel functions (Uniform,

Epanechnikov and Triangular).

2.2 Estimation procedures

Qiu (2003) recently proposed the following estimator of f(x):

f̂1(x) =





â`,0(x) if WRMS`(x) < WRMSr(x)

âr,0(x) if WRMS`(x) > WRMSr(x)

(â`,0(x) + âr,0(x))/2 if WRMS`(x) = WRMSr(x),

(2.10)

which is defined by one of the left and right estimates with smaller WRMS value. Qiu (2003)

proved that f̂1(x) is a consistent estimator of f(x) in the entire design interval. In practice it

appears that this estimator preserves jumps well, but is quite noisy in continuity regions of f ,

due to the fact that only one-sided (left- or right-sided) observations are used in its construction.

In order to get a better insight into the different behaviour of the three estimators â`,0(x),

âr,0(x) and âc,0(x), next we look at their asymptotic bias and variance expressions, in cases

when x is far away from any jump points and when x is close to a jump point. The following

two propositions formally state the asymptotic Mean Squared Error (MSE) expressions for the

three estimates.

Proposition 2.3 Assume that f has continuous second-order derivatives in [0, 1]\
m⋃
q=1

[
sq − hn

2 ,

sq + hn
2

]
; the kernel function K is uniformly Lipschitz continuous; hn → 0 and nhn →∞. Then

at any x ∈ [hn2 , 1− hn
2 ] \

m⋃
q=1

[
sq − hn

2 , sq + hn
2

]
, we have

MSE(âj,0(x)) = [
h2
n

2
f ′′(x)Bj,K ]2 +

σ2

nhn
Vj,K + o(h4

n +
1

nhn
), j = `, r, c , (2.11)
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where

B`,K =
v2

2,` − v1,`v3,`

v0,`v2,` − v2
1,`

, V`,K =

∫ 0

−1/2
K2(u)[

v2,` − v1,`u

v2,`v0,` − v2
1,`

]2 du,

Br,K =
v2

2,r − v1,rv3,r

v0,rv2,r − v2
1,r

, Vr,K =

∫ 1/2

0
K2(u)[

v2,r − v1,ru

v2,rv0,r − v2
1,r

]2 du,

Bc,K =

∫ 1/2

−1/2
u2K(u) du = v2,c, Vc,K =

∫ 1/2

−1/2
K2(u) du, (2.12)

with vk,` and vk,r (k = 1, 2, 3) as defined in (2.7).

For a formal proof of these results readers are referred to Fan and Gijbels (1996). From

Proposition 2.3 we can conclude that the three estimators are consistent in mean square sense

and have the same rate of convergence in continuity regions of f . The only differences among

them appear in the terms of (2.12). For the Epanechnikov kernel, as an example, we have

B`,K = Br,K ≈ −0.02, Bc,K = 0.05, V`,K = Vr,K ≈ 8.995 and Vc,K = 1.2. So asymptotically the

right or the left estimator with the same hn increases variance by a factor of 7.5 compared to

the conventional estimator, while decreases bias by a factor of 2.5.

Proposition 2.4 below provides expressions for asymptotic biases and variances of the three

estimators â`,0(x), âr,0(x) and âc,0(x) on a left-sided or right-sided interval around a jump point

s.

Proposition 2.4 Assume that f has continuous second-order derivatives in [s − hn
2 , s + hn

2 ]

except at s at which f has a second-order left derivative (for (i) below) or a second-order right

derivative (for (ii) below); the kernel function K is uniformly Lipschitz continuous; hn → 0 and

nhn →∞. Then, we have

(i). for any x = s+ τ hn with τ ∈ [− 1
2 , 0):

MSE(â`,0(x)) = [
h2
n

2
f ′′(s−)B`,K ]2 +

σ2

nhn
V`,K + o(h4

n +
1

nhn
),

MSE(âr,0(x)) = [d

∫ 1/2

|τ |
Kr(u)

v2,r − v1,ru

v0,rv2,r − v2
1,r

du]2 +
σ2

nhn
Vr,K + o(1),

MSE(âc,0(x)) = [d

∫ 1/2

|τ |
K(u) du]2 +

σ2

nhn
Vc,K + o(1); (2.13)

(ii). for any x = s+ τ hn with τ ∈ [0, 1
2 ]:

MSE(â`,0(x)) = [−d
∫ −|τ |

−1/2
K`(u)

v2,` − v1,`u

v0,`v2,` − v2
1,`

du]2 +
σ2

nhn
V`,K + o(1),

MSE(âr,0(x)) = [
h2
n

2
f ′′(s+)Br,K]2 +

σ2

nhn
Vr,K + o(h4

n +
1

nhn
),

MSE(âc,0(x)) = [−d
∫ −|τ |

−1/2
K(u) du]2 +

σ2

nhn
Vc,K + o(1), (2.14)

where f ′′(s−) (respectively f ′′(s+)) denotes the left-hand (respectively right-hand) second-order

derivative of f at s and d is the jump magnitude of f at the point s.
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A formal proof for the result about MSE(âc,0(x)) can be found in Hamrouni (1999) and

Grégoire and Hamrouni (2002). The results about MSE(â`,0(x)) and MSE(âr,0(x)) can be proved

along the same lines. The asymptotic expressions in (2.13) reveal that âc,0(x) and âr,0(x) are

not consistent at any point in the neighborhood [s − hn/2, s) which is τhn away from s with

τ ∈ [−1
2 , 0). A similar discussion can be given for points on the right-side interval of the jump

point s by using expressions (2.14). Since these left and right neighbourhoods tend to the empty

set when n tends to ∞, the Mean Integrated Squared Error of the three estimates all tends to

zero as n tends to ∞. See Hamrouni (1999) for details about this result.

As an illustration of these asymptotic expressions, we plot in Figure 2.2 the asymptotic bias

functions, as function of x on [0.1, 0.9], for the three estimators and the regression function

f = g1 considered in Section 5 (see (5.1) and the top left panel of Figure 5.1). From Figure 2.2

it can be seen that all three estimates have relatively low biases in continuity regions (equal to

zero in linear regions and depending on the second derivative and the constants Bj,K as in (2.12)

in the sinusoidal regions). Note also that one of the two one-sided estimates has a considerably

smaller bias than the other one near a jump point.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.2: Asymptotic bias functions of âc,0(x) (solid curve), â`,0(x) (dotted curve) and âr,0(x)

(dashed-dotted curve) for the regression function f = g1 defined in (5.1), using hn = 0.078.

Based on this detailed discussion about the MSEs of the three estimators and the discussion

about their weighted residual mean squares, provided in Propositions 2.1 and 2.2, next we

propose some curve estimation procedures which try to balance jump-preservation and local

smoothing.

As mentioned above, f̂1 is quite noisy in continuity regions of f .

To overcome this problem, we propose two different modifications. By the first modification
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we introduce the conventional estimator âc,0 in (2.10), and define

f̂2(x) =





âc,0(x) if WRMSc(x)
C ≤ min(WRMS`(x),WRMSr(x))

â`,0(x) if WRMSc(x)
C > min(WRMS`(x),WRMSr(x)) = WRMS`(x)

âr,0(x) if WRMSc(x)
C > min(WRMS`(x),WRMSr(x)) = WRMSr(x)

(â`,0(x) + âr,0(x))/2 if WRMSc(x)
C > WRMS`(x) = WRMSr(x).

(2.15)

The constant C should be chosen such that the conventional estimate is selected in continuity

regions of f (i.e., WRMSc(x)
C ≤ min(WRMS`(x),WRMSr(x)) in such cases), and one of the two

one-sided estimates is selected near a jump point (i.e., WRMSc(x)
C > min(WRMS`(x),WRMSr(x))).

The case C ≤ 1 should be avoided since it can be shown that often WRMSc(x) > min(WRMS`(x),

WRMSr(x)) under some regularity conditions (cf. Lemma A.1 in the Appendix), which implies

that the conventional linear estimate will almost never be selected in the continuity regions

of f by the above definition. By Propositions 2.1 and 2.2, the above two requirements are

asymptotically equivalent to

1 < C < 1 +
d2

σ2
C2
τ,c, (2.16)

which depends on the signal-to-noise ratio d/σ.

By the second modification, the three WRMS’s are compared by their differences instead of

ratios in (2.15), and the resulting estimate is defined by:

f̂3(x) =





âc,0(x) if diff(x) ≤ u
â`,0(x) if diff(x) > u and WRMS`(x) < WRMSr(x)

âr,0(x) if diff(x) > u and WRMS`(x) > WRMSr(x)

(â`,0(x) + âr,0(x))/2 if diff(x) > u and WRMS`(x) = WRMSr(x),

(2.17)

where u is a threshold value and

diff(x) = max(WRMSc(x)−WRMS`(x),WRMSc(x)−WRMSr(x)). (2.18)

In continuity regions of f , WRMS`(x), WRMSr(x) and WRMSc(x) are all consistent es-

timates of σ2. So diff(x) is close to zero in such cases. From Proposition 2.2 we know that

diff(x) = d2C2
τ,c + o(1), a.s., near a jump point. By combining these two properties of diff(x),

the threshold value u needs to be selected such that

0 < u < d2C2
τ,c. (2.19)

In contrast to the (asymptotic) constraint on C (cf. (2.16)), we can see that the (asymptotic)

constraint on u does not have the error variance σ2 involved, which leads to certain advantages

for the second modification, as shown by the simulation study in Section 5.

It should be mentioned that in case of multiple jump points, the constraints (2.16) and (2.19)

should be replaced by

1 < C < 1 +
d2
q

σ2
C2
τq ,c and 0 < u < d2

qC
2
τq ,c,

for q = 1, 2, . . . ,m, where τq is defined by τq =
x−sq
hn

.

Practical choices of the parameters hn, C, u involved in the modified estimates will be

discussed in Section 4.
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3 Consistency

From our extensive simulation study in Section 5, it appears that f̂3 has some preferable proper-

ties compared to the other estimates f̂1 and f̂2. In this section, its strong consistency is proved.

First, we establish the uniform strong consistency of the three estimates âc,0(x), â`,0(x) and

âr,0(x), on which f̂3 is based.

Theorem 3.1 If f is second-order differentiable on [0, 1], f ′′ is uniformly bounded on [0, 1], the

kernel function K is uniformly Lipschitz continuous, and hn → 0, nh3
n →∞ and

√
nh5

n
lnn → 0 as

n goes to ∞, then for any 0 < ρ < 1 we have:

sup
x∈[ρ,1−ρ]

√
nhn
lnn
|âc,0(x)− f(x)| = O(1), a.s.,

sup
x∈[ρ,1]

√
nhn
lnn
|â`,0(x)− f(x)| = O(1), a.s.,

sup
x∈[0,1−ρ]

√
nhn
lnn
|âr,0(x)− f(x)| = O(1), a.s.,

for n sufficiently large.

Theorem 3.2 below states that f̂3 is uniformly strong consistent on the interval [0, 1] excluding

all neighbourhoods of jumps points. In the neighbourhoods of jump points, it is pointwise

consistent. Finally, in the neighbourhoods of jump points excluding any small regions around

the neighborhood endpoints and centers, it is still uniformly consistent. The three different

regions mentioned above are denoted by:

D1 = [ρ, 1− ρ]\
m⋃

q=1

[sq − hn/2, sq + hn/2]

D2 =
m⋃

q=1

[sq − hn/2, sq + hn/2]

D2,δ =

m⋃

q=1

{
[sq − (1/2 − δ)hn, sq − δhn]

⋃
[sq + δhn, sq + (1/2 − δ)hn]

}
, (3.1)

where 0 < ρ < 1 and 0 < δ < 1/4 are two constants.

Theorem 3.2 Suppose that f is second-order differentiable and f ′′ is uniformly bounded on

[0, 1] except the jump points {sq, q = 1, . . . ,m} at which f has left and right bounded second-order

derivatives. It is further assumed that the kernel function K is uniformly Lipschitz continuous,

the bandwidth hn satisfies the conditions that hn → 0, nh3
n → ∞ and

√
nh5

n
lnn → 0, and the

threshold u = un → 0 as n goes to ∞. Then we have:

(i)

sup
x∈D1

√
nhn
lnn
|f̂3(x)− f(x)| = O(1), a.s.;

11



(ii) For any x ∈ D2, √
nhn
lnn
|f̂3(x)− f(x)| = O(1), a.s.;

(iii)

sup
x∈D2,δ

√
nhn
lnn
|f̂3(x)− f(x)| = O(1), a.s.,

for n sufficiently large.

The proofs of Theorems 3.1 and 3.2 are given in the Appendix. It can be proved along

the same lines that the other two estimates f̂1 and f̂2 are also strong consistent for estimating

f . A way to compare these estimates theoretically is via studying their biases and variances.

However, it is not an easy task to derive useful formulas for their biases and variances, because

of their complicated definitions in which weighted residual mean squares are used in indicator

functions. In this paper, we compared these estimates by studying their finite-sample biases and

variances through an extensive simulation study in Section 5.

4 Error criteria and choice of procedure parameters

We discuss two important issues in this section. To compare different curve estimation proce-

dures, an error criterion is needed for measuring their performance. This is discussed in Section

4.1. Then in Section 4.2, we discuss selection of the procedure parameters.

4.1 Error criteria for comparison

Recall that the main objective of the curve estimation procedures discussed in Section 2 is to give

good overall reconstruction of the regression function f . Therefore a natural criterion for evaluat-

ing an estimate f̂ is the Mean Integrated Squared Error, MISE = E
[∫ 1

0 (f̂(x)− f(x))2 fX(x) dx
]
,

where fX(x) denotes the design density in the random design case, and equals one in the fixed

design case. For estimating a jump regression curve, the curve estimates also need to be jump-

preserving. To measure jump-preserving around a given jump point s, we propose to use the

following local MISE:

MISEs = E

[∫ s+0.05

s−0.05
(f̂(x)− f(x))2 fX(x) dx

]
, (4.1)

which measures the MISE between f̂ and f in the interval [s− 0.05, s+ 0.05]. The half-width of

this interval, 0.05, is subjectively selected. In applications a reasonable choice for this number

is hn/2, by which 0.05 is reasonable for most numerical examples in Section 5.

From Proposition 2.4, âc,0(x) is not pointwise consistent when x is in the neighborhood

[s− hn/2, s+ hn/2], i.e., x = s+ τ hn with τ ∈ [−1/2, 1/2]. So by the local MISE criterion, this

estimate would not perform well. However, due to the facts that the width of this neighborhood

is small and it often performs better than the other estimates in continuity regions of f , its

global performance measured by MISE would be good. As a matter of fact, it can be checked

12



that its MISE is of order O(hn + 1
nhn

), which implies that âc,0 is L2-consistent on the entire

design interval [0, 1].

4.2 Choice of procedure parameters

4.2.1 Bandwidth parameter hn

The choice of the bandwidth parameter hn is crucial. There exist many bandwidth selection

procedures in the literature. Some of them are difficult to use here (e.g., the plug-in procedures).

Some others are complicated to compute (e.g., the bootstrap procedures). For simplicity we opt

for the cross-validation procedure, i.e. we select hn as

ĥn = arg min
hn

n∑

i=1

[
Yi − f̂−i(xi)

]2
, (4.2)

where f̂−i(xi) is one of the proposed estimates of f(xi) based on all data except the i-th obser-

vation (xi, Yi).

4.2.2 Thresholds C and u

The threshold parameters C = Cn and u = un used in f̂2 and f̂3 can be selected, together with

the bandwidth hn, by the cross-validation procedure:

(ĥn, Ĉn) = arg min
hn,Cn

n∑

i=1

[
Yi − f̂−i(xi)

]2
, (ĥn, ûn) = arg min

hn,un

n∑

i=1

[
Yi − f̂−i(xi)

]2
, (4.3)

where f̂−i is one of f̂−i2 and f̂−i3 .

To solve the minimization problems in (4.3), we need to specify a grid for the Cn-values and

a grid for the un-values. Recall that the (asymptotic) constraint (2.16) needs to be imposed on

Cn, which has two unknown quantities |d| and σ2 involved. The quantity |d| can be estimated

by maxx∈[ρ,1−ρ] |â`,0(x) − âr,0(x)| where ρ > 0 is a small constant, and σ2 can be estimated by

the residual mean square 1
n

∑n
i=1(Yi − f̂1(xi))

2 of f̂1 (recall that f̂1 preserves the jumps well).

Then the range for Cn-values can be specified by (2.16). We know that when C = 1, f̂2(x) is

close to f̂1(x) in such a case, which is good in preserving the jumps. If C is large, then f̂2(x)

is close to âc,0(x), which behaves best in the continuity regions. Therefore the cross-validation

procedure considers many estimates that behave in between the two estimates f̂1(x) and âc,0(x).

By selecting Cn, we would automatically end up with a compromise between local smoothing

and jump preserving. Similar remarks can be made regarding the choice of the grid for the

un-values, although selection of un is generally simpler since the (asymptotic) constraint (2.19)

does not have σ2 involved.

One might think that choosing both parameters h and C (or u) by the CV procedure (4.3)

would require a big computational demand, but this is not true. In view of (2.15) and (2.17),

once we have the three estimators (âc,0, âl,0 and âr,0) (for fixed h), we do not have to re-compute

these estimators for different values of C (or u), which saves a great amount of computation.
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5 Simulation Study

In this section we investigate the performance of the curve estimation procedures discussed in

Section 2.2 by a simulation study. We also provide some comparison with performances of other

methods.

5.1 Simulation models and results
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Figure 5.1: Left panel: graphs of the functions g1, g2 and g3. Right panel: simulated data from

model (2.1) with f = g1 (n = 200, ε ∼ N(0; 0.22)); f = g2 (n = 100, ε ∼ N(0; 0.42)), and f = g3

(n = 100, ε ∼ N(0; 0.42)).

In model (2.1), suppose that ε1 ∼ N(0;σ2) and the regression function f is one of the

following three functions:

g1(x) =





−3x+ 2, on [0, 0.3)

−3x+ 3− sin((x− 0.3)π/0.2), on [0.3, 0.7)

x/2 + 1.55, on [0.7, 1]

g2(x) = (3x2 + 0.93)I[0.3 ≤ x < 0.7] + (4x2 + 1.24)I[0.7 ≤ x ≤ 1]

g3(x) = cos(8π(0.5 − x))I[0 ≤ x < 0.5] − cos(8π(0.5 − x))I[x ≥ 0.5]. (5.1)
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The left panels of Figure 5.1 depict the three regression functions. Note that g1 has two

jump points at positions 0.3 and 0.7 with the same jump magnitude 1. The function g2 has two

jumps at 0.3 and 0.7, with respective jump magnitudes 1.2 and 0.8. This function is chosen to

investigate the effect of jumps with different sizes on the performance of the proposed estimates.

The function g3 has one discontinuity at x = 0.5 with jump size −2. This function might be most

difficult to estimate among the three functions, because it is steep at several different locations

and these locations could be confused with jump locations by the curve estimation procedures.

The right panels of Figure 5.1 present noisy versions of the three regression functions with n

and σ values as specified in the figure caption.

For a given regression function f , N = 200 samples are then generated from model (2.1)

with ε1 ∼ N(0;σ2). We use the Epanechnikov kernel: K(x) = 1.5(1 − 4x2)I[−1/2 ≤ x ≤ 1/2].

The MISE value of a curve estimate f̂ is estimated by

M̂ISE =
1

N

N∑

k=1

ÎSEk , with ÎSEk =
n−1∑

i=1

SEk(xi) + SEk(xi+1)

2n
, (5.2)

where SEk(xi) = (f(xi)− f̂k(xi))2 with f̂k denoting the curve estimate f̂ constructed from the

k-th simulated sample.

Around a jump point s, the local MISE value, MISEs, of f̂ (cf. (4.1)) can be estimated by

M̂ISEs =
1

N

N∑

k=1

ÎSEs,k, (5.3)

where

ÎSEs,k =
n−1∑

i=1

SEk(xi) + SEk(xi+1)

2n
I[s− 0.05 < xi < xi+1 < s+ 0.05].

When f = g1, 6 different values of σ2 are considered, with a fixed sample size n = 200. The

performance of the curve estimation procedures is evaluated by their M̂ISE and M̂ISEs=0.3 +

M̂ISEs=0.7 values, which are presented in Table 5.1, in the first and second columns respectively.

The procedure parameters are selected as described in Section 4.2. From the table, it can be seen

that âc,0 has decent M̂ISE values, but its local MISE values around the jump points are relatively

large, due to its bias caused by two-sided smoothing around jump points. The estimate f̂1 has

opposite behaviour, namely, it has relatively small M̂ISEs=0.3 + M̂ISEs=0.7 values (i.e., good

jump-preserving), but relatively large M̂ISE values (caused by its large variation in continuity

regions). The other curve estimates behave in between, which implies that they indeed found

the compromise between local smoothing and jump-preserving. Further, we can see that for all

estimates M̂ISE increases with σ2. For a large value of σ2 all estimates (except f̂1) show similar

results. This means that for such a large value of σ2 smoothing might be more important than

jump-preserving, and all these estimates behave like the conventional estimate in such cases.

We also remark that f̂3 behaves better than f̂2 for median values of σ. This is no surprise since

from their definitions provided in Section 2.2, it is already clear that σ2 is less involved in f̂3

(also see the constraints (2.16) and (2.19)).

Figure 5.2 gives a graphical display of the performance of the four estimates âc,0, f̂1, f̂2

and f̂3 when f = g1. In each plot, the true regression function g1 is represented by the solid
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Table 5.1: M̂ISE (first columns) and M̂ISEs=0.3 + M̂ISEs=0.7 values (second columns) when

f = g1, N = 200, n = 200 and ε1 ∼ N(0;σ2).

Method σ=0.1 σ=0.15 σ=0.2 σ=0.25 σ= 0.3 σ= 0.4

âc,0 0.0056 0.0039 0.0084 0.0054 0.0113 0.0069 0.0144 0.0084 0.0179 0.0099 0.0247 0.0128

f̂1 0.0039 0.0008 0.0075 0.0015 0.0125 0.0029 0.0190 0.0050 0.0267 0.0077 0.0444 0.0139

f̂2 0.0025 0.0011 0.0065 0.0040 0.0108 0.0070 0.0146 0.0093 0.0180 0.0110 0.0243 0.0143

f̂3 0.0027 0.0014 0.0055 0.0030 0.0088 0.0048 0.0127 0.0068 0.0168 0.0090 0.0248 0.0126
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Figure 5.2: Plots of four curve estimates when f = g1, n = 200, σ = 0.2 and N = 200. In each

plot, the true regression function is denoted by the solid curve. The average of N replicated fits

is denoted by the dashed curve. The corresponding 5th percentile and the 95th percentile curves

are denoted by dotted curves. Estimates: (a) âc,0; (b) f̂1; (c) f̂2; and (d) f̂3.
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curve. The dashed curve represents the average of N = 200 replicated fits. The dotted curves

represent the corresponding 5th percentile and the 95th percentile. The curve of the averaged

fit can be seen as an estimator of Bias(f̂(x)), and the difference between the upper and lower

dotted curves can be regarded as a measure of Var(f̂(x)). From the plots, it can be seen that the

conventional estimator âc,0 blurs the two jumps, but its variance is quite small. The estimate f̂1

preserves the jumps very well, but its variance is quite large in continuity regions. For f̂2 and

f̂3, their variances are close to that of âc,0, and they preserve the jumps much better than the

conventional estimate (but not as good as the estimate f̂1). We also notice that their variances

near the two jumps have been increased, which is mainly due to the fact that in these regions

they take the value of one of the two one-sided estimates which have larger asymptotic variances

than the conventional estimate if all of them use the same bandwidth.

Table 5.2: M̂ISE, M̂ISEs=0.3 and M̂ISEs=0.7 values and their integrated squared bias (ÎSBs) and

integrated variance (ÎVs)decompositions when f = g2, N = 200 and ε1 ∼ N(0; 0.16).

sample size Method M̂ISE M̂ISEs=0.3 ÎSBs=0.3 ÎVs=0.3 M̂ISEs=0.7 ÎSBs=0.7 ÎVs=0.7

n = 200 âc,0 0.0242 0.0092 0.0074 0.0018 0.0047 0.0033 0.0014

f̂1 0.0311 0.0054 0.0006 0.0048 0.0052 0.0009 0.0043

f̂2 0.0235 0.0090 0.0048 0.0042 0.0055 0.0035 0.0020

f̂3 0.0235 0.0077 0.0025 0.0052 0.0054 0.0026 0.0028

n = 500 âc,0 0.0145 0.0057 0.0047 0.0010 0.0029 0.0021 0.0008

f̂1 0.0153 0.0033 0.0005 0.0029 0.0034 0.0007 0.0027

f̂2 0.0125 0.0039 0.0012 0.0027 0.0037 0.0016 0.0021

f̂3 0.0121 0.0036 0.0008 0.0028 0.0036 0.0014 0.0022

When f = g2, we consider two different sample sizes n = 200, 500 and one error variance

value σ2 = 0.16. The global and local MISE values of various estimates are presented in

Table 5.2. In addition we show here how the estimated M̂ISEs=0.3 and M̂ISEs=0.7 decompose

into estimated Integrated Squared Bias (ÎSB) and Integrated Variance (ÎV), providing as such

information on the separate contributions of bias and variance. We can see that for all estimates

M̂ISE decreases as n increases. Furthermore, the estimate f̂1 has the largest M̂ISE, and all

other estimates have similar M̂ISE values when n is small due to the fact that σ2 is quite

large here. For the local measure M̂ISEs=0.3 around the jump point s = 0.3, which has a large

jump size, we remark that âc,0 has the largest M̂ISEs=0.3 values (due to jump blurring) and f̂1

has the smallest M̂ISEs=0.3 values (i.e., good jump preserving). The other estimates behave in

between them. Around the second jump point, it can be seen that âc,0 performs the best and

all other estimates have similar performance. For both jumps points the integrated squared bias

is largest for the conventional estimator (not jump preserving) and smallest for the estimator

f̂1 (priviledges jump preserving). On the other hand, the estimator âc,0 shows the smallest

contribution from the integrated variance (priviledge smoothing). Since the noise level is quite

large in this example the smoothing operation results in a bigger impact on the MISE-measures,

especially for the jump point with the smallest jump size (the point 0.7).

Figure 5.3 depicts the performance of the four estimates âc,0, f̂1, f̂2 and f̂3 when f = g2. The
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Figure 5.3: Plots of four curves f̂ − f when f = g2, n = 200, σ = 0.4 and N = 200. In each

plot, the zero line is denoted by the solid curve. The average of f̂ − f using N replicated fits is

denoted by a dashed curve. The corresponding 5th percentile and the 95th percentile are denoted

by dotted curves. Correponding estimates: (a) âc,0; (b) f̂1; (c) f̂2; and (d) f̂3.
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dashed curve represents the average of f̂ − f using N = 200 replicated fits. The dotted curves

represent the corresponding 5th percentile and the 95th percentile. The solid line represents the

zero line. Similar conclusions to those from Figure 5.2 can be drawn here, except that the first

jump seems to be better preserved by f̂1, f̂2 and f̂3.

When f = g3, we also use three different sample sizes n = 100, 200, 300 and one error variance

σ2 = 0.16, as in the previous example. The simulation results are summarized in Table 5.3. We

can see that for all estimates M̂ISE decreases as n increases. Values of M̂ISE are larger than

those in the previous examples when f = g1 and g2, because g3 is more difficult to estimate as

explained before. Once again, it can be noticed that f̂1 has the largest M̂ISE values but the

smallest M̂ISEs values, âc,0 shows the opposite behaviour, and the other estimates behave in

between them. We can also see that f̂3 performs considerably better than f̂2 in this case.

Table 5.3: M̂ISE and M̂ISEs=0.5 values when f = g3, N = 200 and ε1 ∼ N(0; 0.16).

Method n = 100 n = 200 n = 300

M̂ISE M̂ISEs=0.5 M̂ISE M̂ISEs=0.5 M̂ISE M̂ISEs=0.5

âc,0 0.0531 0.0224 0.0346 0.0158 0.0275 0.0132

f̂1 0.0909 0.0082 0.0572 0.0048 0.0433 0.0041

f̂2 0.0743 0.0226 0.0355 0.0155 0.0252 0.0115

f̂3 0.0484 0.0168 0.0277 0.0094 0.0210 0.0073

Figure 5.4 depicts the performance (using f̂ − f) of the four estimates âc,0, f̂1, f̂2 and f̂3

when f = g3. Similar conclusions to those from Figures 5.2 and 5.3 can be drawn here. Note

that the bias of the four estimates in the continuous regions has some sinusoidal behaviour. This

can be explained by the sinusoidal behaviour of the second derivative of g3 which appears in the

expression of the asymptotic bias of âc,0, âr,0 and â`,0 (see Propositions 2.3 and 2.4).

Figure 5.5 presents the estimated bias (left panels) and variance (right panels) functions of

âc,0, f̂1 and f̂3 when f equals g1. It can be seen from the plots that the conventional estimator

âc,0 has the largest bias around jump points, as seen in Figure 2.2, and the bias of f̂1 is the

smallest at such places. In continuity regions, f̂1 has relatively large bias, and the biases of f̂3

and âc,0 are similar and small, due to the fact that f̂3 most probably equals âc,0 in such cases.

For the estimated variance functions, we can see that f̂1 has the largest variance in continuity

regions, which is consistent with the asymptotic results obtained in Section 2.2. The variances

f̂2 and f̂3 are bigger around the jump points because they have to choose among three estimates

at such places, which increases their variances.

In Section 4 we proved the consistency of f̂3, in which the threshold un is required to tend

to zero as n tends to infinity. In the practical implementation of f̂3, un is selected by cross-

validation, as explained in Section 4.2. To investigate the behaviour of the selected ûn values

when n increases, we performed N = 20 replicated simulations in each case when f = g1,

σ2 = 0.04 and n = 100, 200, 400, 600, 1000 and 5000. For each sample size n, the 20 selected ûn

values from the 20 replicated simulations were retained and presented by a boxplot in Figure

5.6. From the plot, it can be seen that the cross-validation choice of un does tend to zero when
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Figure 5.4: Plots of four curves f̂ − f when f = g3, n = 200, σ = 0.4 and N = 200. In each

plot, the zero line is denoted by the solid curve. The average of f̂ − f using N replicated fits is

denoted by a dashed curve. The corresponding 5th percentile and the 95th percentile are denoted

by dotted curves. Correponding estimates: (a) âc,0; (b) f̂1; (c) f̂2; and (d) f̂3.
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Figure 5.5: Plots of the estimated bias function (left panel) and variance function (right panel) of

the estimates âc,0 (solid curves), f̂1 (dashed curves) and f̂3 (dotted curves) for f = g1, n = 200,

σ = 0.2 and N = 200 simulated samples.
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Figure 5.6: Boxplots of ûn values obtained from 20 replicated simulations in cases when f = g1,

σ2 = 0.04 and n = 100, 200, 400, 600, 1000 and 5000.

n gets larger, which coincides with the theoretical condition imposed on un in Theorem 3.2.

Based on the extensive simulation study presented above, we recommend to use the estimate

f̂3 for estimating a jump curve because it seems to provide a good compromise between local

smoothing and jump-preserving, and in most cases performs best among all estimates that were

designed to search for such a compromise.

5.2 Comparison with some other existing methods

We now run some simulations to compare our estimator f̂3 to some existing procedures in the

literature which include the Sigma filter (Lee 1983), the M -constant smoother (Chu et al. 1998),

and the adaptive weight smoothing (AWS) procedure (Polzehl and Spokoiny 2002, 2003). This

last method is based on a similar idea to that in Spokoiny (1998). The three existing methods

mentioned above are all direct methods, in the sense that they estimate jump regression functions

without first detecting jump positions explicitly. The conventional local linear kernel estimator

is used as a reference in this comparison.

Each related procedure has one or more parameters to select. Not all methods discuss data-

driven choices for the involved parameters. Therefore, for each method, their optimum values are

chosen such that they minimize the estimated MISE value based on N = 200 simulations. More

specifically, we choose hn and un in f̂3, two bandwidths in the Sigma filter and the M -constant

smoother, and hmax in the AWS procedure. In the AWS procedure, there are a number of other

parameters which are taken to be their default values (see Polzehl and Spokoiny (2002, 2003) for

more explanations). The AWS procedure is run for four different values of p, i.e., p = 0, 1, 2, 3,

where p is the degree of local polynomial used in local function approximation.

The MISE results are reported in Table 5.4. In the table, f̂3 (local constant fit) corresponds

to the same procedure as (2.17) except that the local constant estimator (i.e., the Nadaraya-

Watson estimator) instead of the local linear estimator is used. In Section 1, we mentioned that

the local linear estimator has preferable asymptotic properties near a boundary point. But,

when the sample size is small to moderate, the Nadaraya-Watson estimator often leads to better

MISE results because it has smaller variability. A referee also suggested to modify the proposed

estimator such that the three estimates are all based on data from intervals of length hn. The
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Table 5.4: M̂ISE values for several jump-preserving curve estimation procedures in the case

when n = 200 and N = 200.

Method g1 (σ = 0.2) g2 (σ = 0.4) g3 (σ = 0.4)

f̂3 0.0063 0.0230 0.0232

f̂3 (modified) 0.0055 0.0199 0.0214

f̂3 (local constant fit) 0.0069 0.0170 0.0200

Sigma filter 0.0078 0.0186 0.0264

M-constant smoother 0.0083 0.0174 0.0238

AWS (p = 0) 0.0072 0.0159 0.0325

AWS (p = 1) 0.0093 0.0212 0.0282

AWS (p = 2) 0.0067 0.0168 0.0219

AWS (p = 3) 0.0077 0.0201 0.0211

âc,0 0.0105 0.0230 0.0328

second line in Table 5.4 (entitled f̂3 (modified)) reports the results for this modified estimator.

The results are slightly better. Note however that for such an estimator the boundary regions are

enlarged, and that the theoretical behaviours of the Weighted Residual Mean Square quantities

as well as of the difference function are more involved and need to be studied.

From the table it can be seen that all jump-preserving methods outperform the conventional

local linear kernel estimator âc,0, which is not a surprise due to the discontinuity feature of

the three models considered. We can also see that f̂3 outperforms the Sigma filter and the

M -constant smoother, except for model 2 when local linear estimation is used in f̂3. The AWS

procedure and f̂3 seem to be quite competitive depending on the models and the value of p.

Overall, the proposed method gives reasonably good results and thus is a good competitor of

the existing ones. It also has the advantage of simple computation.

6 Real data analysis

The data set consists of measurements in mils of the thickness of 90 US Lincoln pennies. There

are two measurements each year, from 1945 through 1989. Penny thickness was reduced in

World War II and restored to its original thickness sometime around 1960 and reduced again in

the 70’s. These data are given in Scott (1992) and are displayed in Figure 6.1. Speckman (1994)

found that there were changes in thickness around the years 1958 and 1974. Similar findings

were obtained by Gijbels and Goderniaux (2004) using their jump detection procedure. We

depict in Figure 6.1 the three estimates âc,0, f̂1 and f̂3. As expected, the conventional estimator

(presented as a dotted curve) blurrs the discontinuities. The estimate f̂1 (the dashed curve)

preserves the discontinuities well but is quite noisy in continuity regions. Finally, the estimate

f̂3 (the solid curve) is close to f̂1 in the discontinuity regions and close to âc,0 in the continuous

regions. Hence f̂3 preserves well the discontinuities and removes the noise efficiently in continuity

regions.
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Figure 6.1: The data (small dots) and the estimates âc,0(x) (dotted curve), f̂1(x) (dashed curve)

and f̂3(x) (solid curve). The cross-validation scores of the three estimates are 0.8475, 1.0568

and 0.7380, respectively.

Appendix

In this section, we provide proofs for Theorems 3.1 and 3.2. We first give two lemmas which

will be used in the proofs of the theorems.

Lemma A.1 For any x ∈ [0, 1], we have

WRMSc(x) ≥ min(WRMS`(x),WRMSr(x)).

Proof: Let g`(x; a, b), gr(x; a, b) and gc(x; a, b) denote the objective functions in (2.2). Then it

is easy to see that

gc(x; a, b) = g`(x; a, b) + gr(x; a, b), for any a, b, x. (A.1)

The three WRMS’s in (2.3) can be written as

WRMS`(x) = g`(x; â`,0(x), â`,1(x))/
∑

xi<x

ki(x), (A.2)

where ki(x) = K((xi − x)/hn) ≥ 0 for all i. For WRMSr(x) (respectively WRMSc(x)) replace

the index ` by r (respectively c) and
∑

xi<x
by
∑

xi≥x (respectively
∑

xi
) in (A.2). By (A.1)

and (A.2), we find

WRMSc(x) = {g`(x; âc,0(x), âc,1(x)) + gr(x; âc,0(x), âc,1(x))}/
∑

xi

ki(x)

≥ {g`(x; â`,0(x), â`,1(x)) + gr(x; âr,0(x), âr,1(x))}/
∑

xi

ki(x)

=

∑
xi<x

ki(x)∑
xi
ki(x)

(
g`(x; â`,0(x), â`,1(x))∑

xi<x
ki(x)

)
+

∑
xi≥x ki(x)∑
xi
ki(x)

(
gr(x; âr,0(x), âr,1(x))∑

xi≥x ki(x)

)

≥ min(WRMS`(x),WRMSr(x)).

This finishes the proof. �
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Before discussing the next lemma, we first notice that the three estimates âc,0(x), âr,0(x)

and â`,0(x) have the following expressions:

âj,0(x) =
n∑

i=1

YiKj

(
xi − x
hn

)
w2,j − w1,j(xi − x)

w2,jw0,j − w2
1,j

, (A.3)

for x ∈ [0, 1], j = c, r, ` and

wk,j =

n∑

i=1

Kj

(
xi − x
hn

)
(xi − x)k, for k = 0, 1, 2, 3. (A.4)

Please notice that w3,j does not appear in (A.3). But it will be used in the proof below. So we

also give its definition here. Clearly wk,j depends on x, which is not explicit in its notation for

simplicity. For the three estimates, their interior and boundary regions, which are referred to

several times below, are listed explicitly in Table A.1, for readers’ convenience.

Table A.1: Interior and boundary regions of the three estimates.

Estimate Interior region Boundary region(s)

âc,0
(
hn
2 , 1− hn

2

) [
0, hn2

]⋃ [
1− hn

2 , 1
]

âr,0
[
0, 1− hn

2

) [
1− hn

2 , 1
]

â`,0
(
hn
2 , 1

] [
0, hn2

]

Lemma A.2 If the kernel function K is uniformly Lipschitz continuous, then for any interior

point x, we have
wk,j

nhk+1
n

= vk,j +O(
1

nhn
), (A.5)

where vk,j =
∫ 1/2
−1/2 u

kKj(u) du, j = c, r, ` and k = 0, 1, 2, 3. For each j, this equation is uniformly

true for all interior points.

The proof of Lemma A.2 is quite straightforward, by using the uniform Lipschitz continuity

property of the kernel function K. It is therefore omitted. We are now ready to prove Theorems

3.1 and 3.2. The proof of Theorem 3.1 is based on some ideas from the proof of Theorem 3.1 in

Qiu (2003) and some ideas from Masry (1996).

Proof of Theorem 3.1:

First, we can write

âj,0(x)− f(x) = [âj,0(x)−Eâj,0(x)] + [Eâj,0(x)− f(x)] . (A.6)
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By (A.3) and Lemma A.2, we find

Eâj,0(x) =

n∑

i=1

Kj

(
xi − x
hn

)
w2,j − w1,j(xi − x)

w2,jw0,j − w2
1,j

f(xi)

=
1

nhn

n∑

i=1

Kj

(
xi − x
hn

)
v2,j − v1,j(

xi−x
hn

)

v2,jv0,j − v2
1,j

f(xi) +O(1/nhn)

=

∫
Kj(u)

v2,j − v1,ju

v2,jv0,j − v2
1,j

f(x+ uhn) du+O(1/nhn)

=

∫
Kj(u)

v2,j − v1,ju

v2,jv0,j − v2
1,j

[
f(x) + uhnf

′(x) +
(uhn)2

2
f ′′(x) + o(h2

n)

]
du+O(1/nhn)

= f(x) +
(v2

2,j − v1,jv3,j)f
′′(x)

2(v2,jv0,j − v2
1,j)

h2
n + o(h2

n) +O(1/nhn).

Since f ′′(x) is bounded uniformly, the above equation implies

sup
x∈(hn/2,1−hn/2)

|Eâc,0(x)− f(x)| = O(h2
n),

sup
x∈(hn/2,1]

|Eâ`,0(x)− f(x)| = O(h2
n),

sup
x∈[0,1−hn/2)

|Eâr,0(x)− f(x)| = O(h2
n), (A.7)

for n sufficiently large.

The first term on the right hand side of (A.6) can be written as:

âj,0(x)−Eâj,0(x) =
n∑

i=1

Kj

(
xi − x
hn

)
w2,j − w1,j(xi − x)

w2,jw0,j − w2
1,j

εi

=

w2,j

nh3
n

w2,j

nh3
n

w0,j

nhn
−
(
w1,j

nh2
n

)2 r0(x)−
w1,j

nh2
n

w2,j

nh3
n

w0,j

nhn
−
(
w1,j

nh2
n

)2 r1(x), (A.8)

where for s = 0, 1,

rs(x) =
1

nhn

n∑

i=1

Kj(
xi − x
hn

)(
xi − x
hn

)sεi. (A.9)

By Lemma A.2, for k = 1, 2,

wk,j

nhk+1
n

w2,j

nh3
n

w0,j

nhn
−
(
w1,j

nh2
n

)2 =
vk,j

v2,jv0,j − v2
1,j

+O(
1

nhn
). (A.10)

Next we study the properties of r0(x) and r1(x). Toward this end, we define, for any given

δ ∈ (0, 1),

ε̃i = εiI[|εi| < ti], where ti =
√
i ln i(ln ln i)1+δ when i ≥ 3, and t1 = t2 = t3. (A.11)

Let r̃s(x) be the truncated version of rs(x), defined by

r̃s(x) =
1

nhn

n∑

i=1

Kj

(
xi − x
hn

)(
xi − x
hn

)s
ε̃i.
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Then rs(x) can be written as

rs(x) = [rs(x)− r̃s(x)] + [r̃s(x)−Er̃s(x)] + [Er̃s(x)−Ers(x)] ≡ As(x)+Bs(x)+Cs(x). (A.12)

Obviously,

As(x) =
1

nhn

n∑

i=1

Kj

(
xi − x
hn

)(
xi − x
hn

)s
[εi − ε̃i].

Since P (|εn| ≥ tn) ≤ t−2
n Eε2

1 = σ2t−2
n ,

∑∞
n=1 P (|ε| ≥ tn) ≤ 2 + σ2

∑∞
n=3 t

−2
n < ∞. By the

Borel-Cantelli lemma, P (|εn| ≥ tn i.o.) = 0, or equivalently. P (εn 6= ε̃n, i.o.) = 0. So there

exists a full set Ω0 (i.e., P (Ω0) = 1) such that for every ω ∈ Ω0 there exists a finite integer

N(ω) > 0 with the property that: εn(ω) = ε̃n(ω) when n ≥ N(ω). So for any ω ∈ Ω0,

|As(x)| ≤ 1

nhn

N(ω)−1∑

i=1

Kj

(
xi − x
hn

)(
xi − x
hn

)s
|εi(ω)− ε̃i(ω)| ≤ C(N(ω),K)

nhn
,

where C(N(ω),K) is a constant depending on ω and K, but not on x. Therefore

lim
n→∞

sup
x

√
nhn
lnn
|As(x)| = 0, a.s. (A.13)

For the term Cs(x) in (A.12), we have

|Cs(x)| = | 1

nhn

n∑

i=1

Kj

(
xi − x
hn

)(
xi − x
hn

)s
E(ε̃i − εi)|

≤ 1

nhn

n∑

i=1

Kj

(
xi − x
hn

)
E(| − εiI(|εi| ≥ ti)|)

≤ 1

nhn

n∑

i=1

Kj

(
xi − x
hn

)
1

ti
E(|εi|2I(|εi| ≥ ti)|)

≤ σ2

nhn

n∑

i=1

Kj

(
xi − x
hn

)
1

ti
, since E(|εi|2I(|εi| ≥ ti)|) ≤ E(ε2

i ) = σ2

=
σ2||K||
nhn

j0∑

i=i0+1

1

ti
,

where ‖K‖ = sup
x∈[−1/2,1/2]

|K(x)|, and where i0 ≤ j0 are two integers such that {xi0+1, . . . , xj0−1}

is the longest sequence of the design points at which the weights K((xi − x)/hn) are non-zero.

Obviously, j0 − i0 ≤ nhn + 2, 1/ti < 1/
√
i, and

∑j0
i=i0+1

1√
i
≤ ∑bnhn+2c

i=1
1√
i
, where bxc denotes

the integer part of x. So

|Cs(x)| ≤ σ2||K||
nhn

bnhn+2c∑

i=1

1√
i

≤ σ2||K||
nhn

[
1 +

∫ nhn+2

1

1√
u
du

]
, since

a∑

i=1

1√
i
≤ 1 +

∫ a

1

1√
u
du

≤ 2σ2||K||
nhn

[
√
nhn + 2].
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Therefore,

lim
n→∞

sup
x

√
nhn
lnn
|Cs(x)| ≤ 2σ2||K|| lim

n→∞

(
nhn

nhn
√

lnn
+

2√
nhn lnn

)
= 0. (A.14)

To handle the term Bs(x), we define Gn = { i
dn

; i = 1, . . . , dn} with dn = d
√

n2(ln lnn)1+δ

h3
n

e.
Then for any x ∈ [0, 1], there exists v(x) ∈ Gn such that |x− v(x)| ≤ d−1

n . We first write

r̃s(x)−Er̃s(x) = [r̃s(x)− r̃s(v(x))] + [r̃s(v(x)) −Er̃s(v(x))] + [Er̃s(v(x)) −Er̃s(x)]

≡ Q1,s(x) +Q2,s(v(x)) +Q3,s(x). (A.15)

For Q1,s(x), by using the uniform Lipschitz continuity of Kj(x)xs we have

|Q1,s(x)| ≤ 1

nhn

n∑

i=1

|ε̃i||Kj

(
xi − x
hn

)(
xi − x
hn

)s
−Kj

(
xi − v(x)

hn

)(
xi − v(x)

hn

)s
|

≤ 1

nhn

n∑

i=1

tnCK

∣∣∣∣
v(x)− x
hn

∣∣∣∣

≤ CK
nhn

n∑

i=1

tn
hndn

≤ CK
1

hn

√
n lnn(ln lnn)1+δh3

n

hn
√
n2(ln lnn)1+δ

≤ CK

√
lnn

nhn
,

where CK is a constant depending on K only. The same result is true forQ3,s(x), since E|ε̃i| ≤ tn.

Therefore

sup
x

√
nhn
lnn
|Q1,s(x)| = O(1), a.s., and sup

x

√
nhn
lnn
|Q3,s(x)| = O(1). (A.16)

The other term Q2,s(v(x)) can be written as

Q2,s(v(x)) =
1

nhn

n∑

i=1

(ε̃i −Eε̃i)Kj

(
xi − v(x)

hn

)(
xi − v(x)

hn

)s
≡ 1

n

n∑

i=1

Un,i.

Let us divide the sequence {Un,i; i = 1, . . . , n} into 2qn blocks of size `n each, and a residual

block of size < 2`n. Then n = 2qn`n + νn with νn < 2`n. Let `n = b
√
nhn

tn
√

lnn
c → 0 as n→∞, and

Vn(m) =
1

n

m`n∑

t=(m−1)`n+1

Un,t, W ′n(v(x)) =

qn∑

m=1

Vn(2m− 1),

W ′′n (v(x)) =

qn∑

m=1

Vn(2m), W ′′′n (v(x)) =
1

n

n∑

t=2qn`n+1

Un,t.

Then

Q2,s(v(x)) = W ′(v(x)) +W ′′(v(x)) +W ′′′(v(x)). (A.17)
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For any η > 0, since #Gn ≤ dn, we get

P (max
a∈Gn

|Q2,s(a)| > η) ≤ dn[max
a∈Gn

P (|W ′n(a)| > η/3|) + max
a∈Gn

P (|W ′′n (a)| > η/3|) +

max
a∈Gn

P (|W ′′′n (a)| > η/3|)]

≡ I1 + I2 + I3. (A.18)

We next study the three terms on the right-hand side of (A.18). First, notice that

|Vn(m)| ≤ `n2tn||K||
nhn

=
2||K||√
nhn lnn

,

and hence by choosing λn = 1
4||K||

√
nhn lnn, we have λn|Vn(m)| ≤ 1/2. Using the inequalities

exp(u) ≤ 1 + u+ u2 for |u| ≤ 1/2, and 1 + x2 ≤ exp(x2), and the fact that E(Un,t) = 0, we get

exp(±λnVn(m)) ≤ 1± λnVn(m) + λ2
nV

2
n (m)

E(exp(±λnVn(2m− 1))) ≤ 1 + λ2
nE(V 2

n (2m− 1)) ≤ exp(λ2
nE(V 2

n (2m− 1))). (A.19)

For any a ∈ Gn, by the Chebyshev’s inequality, we have

P (|W ′n(a)| > η/3) = P (λn|W ′n(a)| > λnη/3|)

≤ exp

(−λnη
3

)
E

(
exp

(
λn|

qn∑

m=1

Vn(2m− 1)|
))

≤ exp

(−λnη
3

){
E

(
exp

(
λn

qn∑

m=1

Vn(2m− 1)

))
+

E

(
exp

(
−λn

qn∑

m=1

Vn(2m− 1)

))}

≤ 2 exp

(−λnη
3

)
exp

(
λ2
n

qn∑

m=1

E(V 2
n (2m− 1))

)
,

where (A.19) and the fact that Vn’s are independent random variables have been used. Further-

more,

qn∑

m=1

E(V 2
n (2m− 1)) =

1

n2

qn∑

m=1

E






(2m−1)`n∑

t=(2m−1−1)`n+1

Un,t




2


≤ 1

n2

n∑

t=1

E(U2
n,t)

≤ 1

n2h2
n

n∑

i=1

Kj

(
xi − v(x)

hn

)2(xi − v(x)

hn

)2s

σ2

≤ σ2
∫
Kj(u)2u2s du+O(1/nhn)

nhn

=
A1 + o(1)

nhn
,

where A1 is a constant depending on K and σ2. So we obtain

I1 ≤ 2dn exp

(−λnη
3

+ 2
λ2
n

nhn
A1

)
. (A.20)
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The same bound can be found for I2 in (A.18). It works for I3 as well since

|W ′′′n (v(x))| ≤ 1

n

n∑

t=2qn`n+1

|Un,t| ≤
2

nhn
||K|| 2 `n tn = 4||K|| 1√

nhn lnn
.

By (A.18) and (A.20), if we take η = A2

√
lnn
nhn

with A2 > 0, then we have

P

(√
nhn
lnn

max
a∈Gn

|Q2,s(a)| > A2

)
≤ 6dn exp

(
−1

12||K||
√
nhn lnnA2

√
lnn

nhn
+

2A1

16||K||2
nhn lnn

nhn

)

= 6dn exp

( −A2

12||K|| lnn+
A1

8||K||2 lnn

)

= 6dnn
−2A2||K||+3A1

24||K||2 .

By choosing A2 such that
∑∞

n=1 P (
√

nhn
lnn maxa∈Gn |Q2(a)| > A2) ≤∑∞n=1 6dnn

−2A2||K||+3A1
24||K||2 <

∞, we have P (maxa∈Gn

√
nhn
lnn |Q2(a)| > A2, i.o) = 0. This means that

max
a∈Gn

√
nhn
lnn
|Q2,s(a)| = O(1), a.s. (A.21)

Combining (A.15), (A.16) and (A.21), we have

sup
x

√
nhn
lnn
|Bs(x)| = O(1), a.s. (A.22)

By (A.12), (A.13), (A.14) and (A.22), we get

sup
x

√
nhn
lnn
|rs(x)| = O(1), a.s. (A.23)

From (A.8), (A.10) and (A.23), we get

sup
x∈(hn/2,1−hn/2)

|âc,0(x)−Eâc,0(x)| = O(

√
lnn

nhn
), a.s.

sup
x∈(hn/2,1]

|â`,0(x)−Eâ`,0(x)| = O(

√
lnn

nhn
), a.s.

sup
x∈[0,1−hn/2)

|âr,0(x)−Eâr,0(x)| = O(

√
lnn

nhn
), a.s. (A.24)

Finally, by (A.7), (A.24) and the condition that

√
nh5

n
lnn → 0, we can conclude that

(

√
nhn
lnn

) sup
x∈(hn/2,1−hn/2)

|âc,0(x)− f(x)| = O(1), a.s.,

and analogue statements for â`,0(x) and âr,0(x). This completes the proof of Theorem 3.1. �

Proof of Theorem 3.2.

We can rewrite the estimate f̂3(x), defined in (2.17), as:

f̂3(x) = âc,0(x)I(An(x))+â`,0(x)I(Bn(x))+âr,0(x)I(Cn(x))+
â`,0(x) + âr,0(x)

2
I(Dn(x)), (A.25)

29



whereAn(x), Bn(x), Cn(x) andDn(x) are the corresponding inequalities in its definition. Clearly,

for any x ∈ [0, 1],

I(An(x)) + I(Bn(x)) + I(Cn(x)) + I(Dn(x)) = 1. (A.26)

Therefore one and only one inequality is true in all cases.

Recall that the remainder terms Rn,a,i(x) in Propositions 2.1 and 2.2, for a = c, `, r and

i = 1, 2, 3, tend to zero almost surely and uniformly with respect to x. So there exists a

full set Ω1 such that for every ω ∈ Ω1, limn→∞ supx∈[ρ,1−ρ]; a=c,`,r; i=1,2,3Rn,a,i(x, ω) = 0 (for

convenience of explanation, we sometimes make ω explicit in the notation).

The remaining part of the proof is divided into three parts, which correspond to the three

regions defined in (3.1).

Part One:

First, let us consider x ∈ D1. Then x is in a continuity region of f and it is at least hn/2

away from any jump point. By similar arguments to those in the proof of Theorem 3.1,

√
nhn
lnn

sup
x∈D1

|âc,0(x)− f(x)| ≤ C, a.s.

where C is a constant. We find the same statement for â`,0(x) and âr,0(x) involving the same

constant C. Then we have

sup
x∈D1

√
lnn

nhn
|f̂3(x)− f(x)| = sup

x∈D1

√
lnn

nhn
|âc,0(x)− f(x)|I(An(x)) +

sup
x∈D1

√
lnn

nhn
|â`,0(x)− f(x)|I(Bn(x)) +

sup
x∈D1

√
lnn

nhn
|âr,0(x)− f(x)|I(Cn(x)) +

sup
x∈D1

√
lnn

nhn

∣∣∣∣
â`,0(x) + âr,0(x)− 2f(x)

2

∣∣∣∣ I(Dn(x))

≤ 4C, a.s..

So

sup
x∈D1

√
lnn

nhn
|f̂3(x)− f(x)| = O(1), a.s.

Part Two:

In this part, we prove the uniform consistency of f̂3 in D2,δ with 0 < δ < 1/4, which consists

of two mutually exclusive sets: D2,δ,` and D2,δ,r, defined by

D2,δ,` =

m⋃

j=1

[sj − (1/2 − δ)hn, sj − δhn], D2,δ,r =

m⋃

j=1

[sj + δhn, sj + (1/2 − δ)hn].

We first focus on D2,δ,`. Any point x in this set has the expression x = s + τhn where τ ∈
[−1/2+δ,−δ] and s is one of sj’s. We know that in this region supx∈D2,δ,`

√
nhn
lnn |â`,0(x)−f(x)| =

O(1), a.s. So we can find a full set Ω2 ⊂ Ω1 such that for any ω ∈ Ω2 there exists an integer
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n(ω) =: n1 which has the property that when n ≥ n1, we have supx∈D2,δ,`

√
nhn
lnn |â`,0(x, ω) −

f(x)| ≤ C.

For any x ∈ D2,δ,` and ω ∈ Ω2, the r.v. diff(x, ω) defined in (2.18) becomes

diff(x, ω) = max(d2C2
τ,c +Rn,c,2(x, ω)−Rn,`,2(x, ω), d2[C2

τ,c−C2
τ,r] +Rn,c,2(x, ω)−Rn,r,2(x, ω)),

where d2C2
τ,c, d

2C2
τ,r > 0 for τ ∈ (−1/2, 0). Since ω ∈ Ω2 ⊂ Ω1, we have

lim
n→∞

[
d2C2

τ,c +Rn,c,2(x, ω)−Rn,`,2(x, ω)
]

= d2C2
τ,c =: aτ

lim
n→∞

[
d2[C2

τ,c − C2
τ,r] +Rn,c,2(x, ω)−Rn,r,2(x, ω)

]
= d2[C2

τ,c − C2
τ,r] =: aτ − bτ =: cτ ,

which implies that

lim
n→∞

diff(x, ω) = max(aτ , cτ ) = aτ .

So for any η > 0, there exists n(ω, η) > 0 such that when n ≥ n(ω, η)

| diff(x, ω) − aτ | < η, or equivalently, aτ − η < diff(x, ω) < aτ + η.

Moreover, we have aτ ≥ bτ ≥ b, where b = infτ∈(−1/2+δ,−δ) bτ = infτ∈(δ,1/2−δ) bτ > 0, which is

demonstrated by Figure A.1. Let us take η = b
2 . Then when n ≥ n(ω, b2 ) =: n2,

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0
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τ

 Cτ,c
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2
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2

b 

 −0.5+ δ −δ δ 0.5−δ 

b 

Figure A.1: A graphical illustration of the definition of b used in the proof of Theorem 3.2.

diff(x, ω) > aτ −
b

2
≥ b

2
.

Moreover, since un → 0, for any ζ > 0 there exists n(ζ) > 0 such that when n ≥ n(ζ)

−ζ < un < ζ.

If we take ζ = b
4 , we have, for n ≥ n3 = max(n2, n( b4 )),

diff(x, ω)− un >
b

2
− un >

b

2
− b

4
=
b

4
> 0,

which is equivalent to

I(An(x, ω)) = 0.
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Now let us investigate whether the conditions Cn(x, ω) and Dn(x, ω) hold in such cases,

which are equivalent to

diff(x, ω) > un

WRMS`(x, ω) ≥ WRMSr(x, ω).

By the above argument, the first inequality is true when n ≥ n3. The second inequality can be

written as :

bτ = d2C2
τ,r ≤ Rn,`,2(x, ω)−Rn,r,2(x, ω).

Since ω ∈ Ω1, for any κ > 0 there exists an integer n(ω, κ) > 0 such that for n ≥ n(ω, κ)

|Rn,`,2(x, ω)−Rn,r,2(x, ω)| < κ.

Let κ = b
2 . Then when n ≥ n4 := max(n3, n(ω, b2)), we have

diff(x, ω) > un

Rn,`,2(x, ω)−Rn,r,2(x, ω) <
b

2
< bτ = d2C2

τ,r.

Thus the conditions An(x, ω), Cn(x, ω) and Dn(x, ω) cannot be satisfied, which implies that

I(An(x, ω)) = I(Cn(x, ω)) = I(Dn(x, ω)) = 0. By (A.26), we have I(Bn(x, ω)) = 1. Therefore

when n ≥ n5 := max(n4, n1),

sup
D2,δ,`

√
nhn
lnn
|f̂3(x, ω)− f(x)| = sup

D2,δ,`

√
nhn
lnn
|â`,0(x, ω)− f(x)| ≤ C.

Similarly, we can prove that

sup
D2,δ,r

√
nhn
lnn
|f̂3(x)− f(x)| = O(1), a.s.

So

sup
D2,δ

√
nhn
lnn
|f̂3(x)− f(x)| = O(1), a.s.

Part Three: When x ∈ D2\D2,δ, f̂3 can be proved to be strong consistent in a similar way to

the above arguments. But the consistency is not uniform with respect to x because we cannot

find a unique, strictly positive, lower bound for aτ and bτ in such cases (cf. Figure A.1). �
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