
A Jump-Preserving Curve Fitting Procedure Based On Local

Piecewise-Linear Kernel Estimation

Peihua Qiu

School of Statistics

University of Minnesota

313 Ford Hall

224 Church St. S.E.

Minneapolis, MN 55455

Abstract

It is known that the fitted regression function based on conventional local smoothing pro-

cedures is not statistically consistent at jump positions of the true regression function. In this

article, a curve-fitting procedure based on local piecewise-linear kernel estimation is suggested.

In a neighborhood of a given point, a piecewise-linear function with a possible jump at the given

point is fitted by the weighted least squares procedure with the weights determined by a kernel

function. The fitted value of the regression function at this point is then defined by one of the

two estimators provided by the two fitted lines (the left and right lines) with the smaller value

of the weighted residual sum of squares. It is proved that the fitted curve by this procedure is

consistent in the entire design space. In other words, this procedure is jump-preserving. Several

numerical examples are presented to evaluate its performance in small-to-moderate sample size

cases.

Key Words: Jump-preserving curve fitting; Local piecewise-linear kernel estimation; Local

smoothing; Nonparametric regression; Strong consistency.

1 Introduction

Regression analysis provides a tool to build functional relationships between dependent and inde-

pendent variables. In some applications, regression models with jumps in the regression functions

appear to be more appropriate to describe the data. For example, it was confirmed by several

statisticians that the annual volume of the Nile river had a jump around year 1899 (Cobb, 1978).
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The December sea-level pressure in Bombay India was found to have a jump discontinuity around

year 1960 (Shea at al. 1994). Some physiological parameters can likewise jump after physical

or chemical shocks. As an example, the percentage of time a rat in rapid-eye-movement state in

each five-minute interval will most probably have an abrupt change after the lighting condition is

suddenly changed (Qiu et al. 1999). The objective of this article is to provide a methodology to

fit regression curves with jumps preserved.

Suppose that the regression model concerned is

yi = f(xi) + εi, for i = 1, 2, · · · , n, (1.1)

where 0 < x1 < x2 < · · · < xn < 1 are design points, εi are i.i.d. random errors with mean 0 and

variance σ2. The regression function f(·) is continuous in [0, 1] except at positions 0 < s1 < s2 <

· · · < sm < 1 where f(·) has jumps with magnitudes dj 6= 0 for j = 1, 2, · · · ,m. Figure 1.1 below

presents a case when m = 2.

It is known that the fitted curve by the conventional local smoothing procedures is not statis-

tically consistent at positions where f(·) has jumps. For example, the local linear kernel smoother

is based on the following minimization procedure (cf. Fan and Gijbels 1996):

min
a∗

0
,a∗

1

n∑

i=1

{yi − [a∗0 + a∗1(xi − x)]}2 K(
xi − x

hn
), (1.2)

where K(·) is a kernel function with support [−1/2, 1/2] and hn is a bandwidth parameter. Then

the solution of (1.2) for a∗
0 is defined as the local linear kernel estimator of f(x). In Figure 1.1, the

solid curve denotes the true regression function. It has two jumps at x = 0.3 and x = 0.7. The

dashed curve denotes the conventional fit by the local linear kernel smoothing procedure. It can

be seen that “blurring” is present in the curve fitting around the two jumps. As a comparison, the

fitted curve by the procedure suggested in this paper is represented by the dotted curve. The two

jumps are preserved well by our procedure. More explanation of this plot is given in Section 4.

A major reason for the local linear kernel smoothing procedure (1.2) not to preserve jumps is

that it uses a local “continuous” function (a linear function) to approximate the true regression

function in a neighborhood of a given point x even if there is a jump at x. A natural idea to

overcome this limitation is to fit a local piecewise-linear function at x as follows:
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Figure 1.1: Small dots denote noisy data. The solid curve represents the true regression model.
The dashed and dotted curves denote the conventional fit by the local linear kernel smoothing
procedure and the fit by the procedure suggested in this paper.

min
al,0,al,1;ar,0,ar,1

n∑

i=1

{yi − [al,0 + al,1(xi − x)] −

[(ar,0 − al,0)I(xi − x) + (ar,1 − al,1)(xi − x)I(xi − x)]}2K(
xi − x

hn
), (1.3)

where I(·) is an indicator function defined by I(a) = 1 if a ≥ 0 and = 0 otherwise. The minimization

procedure (1.3) fits a piecewise-linear function al,0 + al,1(u − x) + (ar,0 − al,0)I(u − x) + (ar,1 −

al,1)(u − x)I(u − x) in u ∈ [x − hn/2, x + hn/2] with a possible jump at x. This is equivalent to

fitting two different lines al,0 + al,1(u − x) and ar,0 + ar,1(u − x) in [x − hn/2, x) and [x, x + hn/2],

respectively. Let {âl,j(x), âr,j(x), j = 0, 1} denote the solution of (1.3). Then âl,0(x) and âr,0(x)

are estimated from observations in [x−hn/2, x) and [x, x+hn/2], respectively. Thus they are good

estimators of f−(x) and f+(x), the left and right limits of f(·) at x, in the case when x is a jump

point. When there is no jump in [x−hn/2, x +hn/2], both of them estimate f(x) well. In the case

when x itself is not a jump point but a jump point exists in its neighborhood [x− hn/2, x + hn/2],

only one of âl,0(x) and âr,0(x) provides a good estimator of f(x). Therefore we need to choose one

of them as an estimator of f(x) in such case. By combining all these considerations, we define

f̂(x) = âl,0(x)I∗(RSSr(x) − RSSl(x)) + âr,0(x)I∗(RSSl(x) − RSSr(x)) (1.4)

as an estimator of f(x) for x ∈ [hn/2, 1− hn/2], where I∗(a) is defined by I∗(a) = 1 if a > 0, 1/2 if

a = 0 and 0 if a < 0; RSSl(x) and RSSr(x) are the weighted residual sums of squares (RSS) with

3



respect to observations in [x − hn/2, x) and [x, x + hn/2], respectively. That is,

RSSl(x) =
∑

xi<x

{yi − âl,0(x) − âl,1(x)(xi − x)}2 K(
xi − x

hn
);

RSSr(x) =
∑

xi≥x

{yi − âr,0(x) − âr,1(x)(xi − x)}2 K(
xi − x

hn
).

Basically f̂(x) is defined by one of âl,0(x) and âr,0(x) with the smaller RSS value.

In the literature, there are several existing procedures to fit regression curves with jumps

preserved. McDonald and Owen (1996) proposed an algorithm based on three local ordinary least

squares estimates of the regression function, corresponding to the observations on the right, left

and both sides of a given point, respectively. They then constructed their “split linear fit” as a

weighted average of these three estimates, with weights determined by the goodness-of-fit values

of the estimates. Hall and Titterington (1992) suggested an alternative but simpler method by

establishing some relations among three local linear smoothers and using them to detect the jumps.

The regression curve was then fitted as usual in regions separated by the detected jumps. Our

procedure is different from these two procedures in that we put the problem to fit regression curves

with jumps preserved in the same framework as that of local linear kernel estimation except that a

local piecewise-linear function is fitted at a given point in our procedure, making the curve estimator

(1.4) easier to use.

Most other jump-preserving curve fitting procedures in the literature consist of two steps:

(i) detecting possible jumps under the assumption that the number of jumps is known (it is often

assumed to be 1) and (ii) fitting the regression curve as usual in design subintervals separated by the

detected jump points. Various jump detectors are based on one-sided constant kernel smoothing

(Müller 1992, Qiu et al. 1991, Wu and Chu 1993), one-sided linear kernel smoothing (Loader

1996), local least squares estimation (Qiu and Yandell 1998), wavelet transformation (Wang 1995),

semiparametric modeling (Eubank and Speckman 1994) and smoothing spline modeling (Koo 1997,

Shiau et al. 1986). The case when the number of jumps is unknown is considered by several authors

including Qiu (1994) and Wu and Chu (1993). They first estimated the number of jumps and

jump positions by performing a series of hypothesis tests and then fitted the regression curve in

subintervals separated by the detected jump points. Comparing with the above mentioned methods,

the method presented in this paper automatically accommodates the jumps in fitting the regression

curve without knowing the number of jumps and without performing any hypothesis tests.

4



This paper is organized as follows. In next section, we discuss the jump-preserving curve fitting

procedure (1.4) in some detail. Properties of the fitted curve are discussed in Section 3. In Section

4, we present some numerical examples concerning the goodness-of-fit and bandwidth selection.

The procedure is applied to a real-life dataset in Section 5. Section 6 contains some concluding

remarks.

2 The Jump-Preserving Curve Fitting Procedure

First we notice that the minimization procedure (1.3) is equivalent to the combination of:

min
al,0,al,1

n∑

i=1

{yi − al,0 − al,1(xi − x)}2 Kl(
xi − x

hn
) (2.1)

and

min
ar,0,ar,1

n∑

i=1

{yi − ar,0I(xi − x) − ar,1(xi − x)I(xi − x)}2 Kr(
xi − x

hn
), (2.2)

where Kl(·) is defined by Kl(x) = K(x) if x ∈ [−1/2, 0) and 0 otherwise and Kr(·) is defined by

Kr(x) = K(x) if x ∈ [0, 1/2] and 0 otherwise. Clearly, (2.1) is equivalent to the local linear kernel

smoothing procedure to fit f−(x) by the observations in [x−hn/2, x), the left half of [x−hn/2, x+

hn/2], and (2.2) is equivalent to the local linear kernel smoothing procedure to fit f+(x) by the

observations in [x, x + hn/2], the right half of [x − hn/2, x + hn/2]. The subscripts “l” and “r” in

notations {al,j, ar,j , j = 0, 1}, Kl(·) and Kr(·) represent “left” and “right”, respectively, which are

also used in other notation defined below.

Solutions of (2.1) and (2.2) can be written as:

âl,0(x) =
n∑

i=1

yiKl(
xi − x

hn
)
wl,2 − wl,1(xi − x)

wl,0wl,2 − w2
l,1

âl,1(x) =
n∑

i=1

yiKl(
xi − x

hn
)
wl,0(xi − x) − wl,1

wl,0wl,2 − w2
l,1

âr,0(x) =
n∑

i=1

yiKr(
xi − x

hn
)
wr,2 − wr,1(xi − x)

wr,0wr,2 − w2
r,1

âr,1(x) =
n∑

i=1

yiKr(
xi − x

hn
)
wr,0(xi − x) − wr,1

wr,0wr,2 − w2
r,1

where wl,j =
∑n

i=1 Kl(
xi−x
hn

)(xi − x)j and wr,j =
∑n

i=1 Kr(
xi−x
hn

)(xi − x)j for j = 0, 1, 2.
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Figure 2.1 presents âl,0(·), âr,0(·) and f̂(·) by the dotted, dashed and solid curves in the case

of Figure 1.1 except that the noise in the data has been ignored by setting σ = 0. It can be seen

that blurring occurs in [x0, x0 + hn/2] if âl,0(·) is used to fit f(·) and point x0 is a jump point.

Similarly, blurring occurs in [x0 − hn/2, x0) if âr,0(·) is used to fit f(·) and point x0 is a jump

point. Our estimator f̂(·), however, can preserve the jumps well because f̂(·) is defined as âl,0(·)

in [x0 − hn/2, x0) and as âr,0(·) in [x0, x0 + hn/2] when x0 is a jump point.
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Figure 2.1: The dotted, dashed and solid curves denote âl,0(·), âr,0(·) and f̂(·) in the case of Figure
1.1 except that the noise in data has been ignored by setting σ = 0.

When x is in boundary regions [0, hn/2) and (1 − hn/2, 1], estimator of f(x) is not defined by

(1.4). In such case there are several possible approaches to estimate f(x) if no jumps exist in [0, hn)

and (1−hn, 1]. For example, f̂(x) could be defined by the conventional local linear kernel estimator

constructed from observations in [0, x + hn/2] or [x − hn/2, 1] depending on whether x ∈ [0, hn/2)

or x ∈ (1 − hn/2, 1]. In the following sections, we define f̂(x) = âr,0(x) when x ∈ [0, hn/2) and

f̂(x) = âl,0(x) when x ∈ (1−hn/2, 1] for simplicity. If there are jump points in [0, hn) (or (1−hn, 1]),

however, estimation of f(x) in boundary region [0, hn/2) (or (1−hn/2, 1]) is still an open problem.

In the literature, there are several existing data-driven bandwidth selection procedures such as

the plug-in procedures, the cross-validation procedure, the Mellow’s Cp criterion and the Akaike’s

information criterion (cf. e.g., Chu and Marron 1991; Loader 1999). Since the exact expressions

for the mean and variance of the jump-preserving estimator f̂(·) in (1.4) are not available at this

moment, the plug-in procedures are not considered here. In the numerical examples presented in

Sections 4 and 5, we determine the bandwidth hn by the cross-validation procedure. That is, the
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optimal hn is chosen by minimizing the following cross-validation criterion:

CV (hn) =
1

n

n∑

i=1

(
yi − f̂−i(xi)

)2
, (2.3)

where f̂−i(x) is the “leave-1-out” estimator of f(x) with bandwidth hn. Namely, the observation

(xi, yi) is left out in constructing f̂−i(x), for i = 1, 2, · · · , n. A numerical example in Section 4

shows that the chosen bandwidth based upon (2.3) performs well.

3 Strong Consistency

The conventional local smoothing estimators of f(·) such as the one from (1.2) are not statistically

consistent at jump positions. In this section we establish the almost sure consistency of the jump-

preserving estimator f̂(·) which says that f̂(·) converges almost surely to the true regression function

in the entire design space [0, 1] under some regularity conditions. That is, f̂(·) is jump-preserving.

First we have the following result for âl,0(·) and âr,0(·).

Theorem 3.1 Suppose that f(·) has a continuous second-order derivative in [0, 1]; max1≤i≤n+1(xi−

xi−1) = O(1/n) where x0 = 0 and xn+1 = 1; the kernel function K(·) is Lipschitz (1) continuous;

the bandwidth hn = O(n−1/5). Then

n2/5

log n log log n
‖âl,0 − f‖[hn/2,1] = o(1), a.s. (3.1)

n2/5

log n log log n
‖âr,0 − f‖[0,1−hn/2] = o(1), a.s. (3.2)

where ‖g‖[a,b] denotes maxa≤x≤b |g(x)|.

Theorem 3.1 establishes the almost sure uniform consistency of âl,0(·) and âr,0(·) when f(·) is

continuous in the design space [0, 1]. Its proof is given in Appendix A. When f(·) has jumps in [0, 1]

as specified by model (1.1), Theorem 3.1 also gives almost sure consistency of f̂(·) in continuous

regions D1 := [0, 1]\
⋃m

j=1(sj−hn/2, sj +hn/2) since ‖f̂−f‖D1
≤ max(‖âl,0−f‖D1

, ‖âr,0−f‖D1
) by

(1.4). In the neighborhood of jump points D2 :=
⋃m

j=1(sj −hn/2, sj +hn/2), we have the following

result.

Theorem 3.2 Suppose that x is a given point in (0, 1); max1≤i≤n+1(xi − xi−1) = O(1/n) where

x0 = 0 and xn+1 = 1; the kernel function K(·) is Lipschitz (1) continuous; limn→∞ hn = 0 and
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limn→∞ nhn = ∞. If f(·) has a continuous first-order derivative in [x, x + hn/2], then

RSSr(x) = vr,0σ
2nhn + o(nhn), a.s. (3.3)

If f(·) has a jump in [x, x + hn/2] at xτ := x + τhn with magnitude dτ where 0 ≤ τ ≤ 1/2 and

f(·) has a continuous first-order derivative in [x, x + hn/2] except at xτ at which f(·) has a right

(when τ = 0) or left (when τ = 1/2) or both (when 0 < τ < 1/2) first-order derivatives f ′
+(xτ ) and

f ′
−(xτ ), then

RSSr(x) = (vr,0σ
2 + d2

τC2
τ )nhn + o(nhn), a.s., (3.4)

where

C2
τ =

1

(vr,0vr,2 − v2
r,1)

2

∫ τ

0

[∫ 1/2

τ
(vr,2 − vr,1x)Kr(x)dx + u

∫ 1/2

τ
(vr,0x − vr,1)Kr(x)dx

]2

Kr(u)du +

1

(vr,0vr,2 − v2
r,1)

2

∫ 1/2

τ

[∫ τ

0
(vr,2 − vr,1x)Kr(x)dx − u

∫ 1/2

τ
(vr,0x − vr,1)Kr(x)dx

]2

Kr(u)du

and vr,j =
∫ 1/2
0 xjKr(x)dx for j = 0, 1, 2.

Similar results could be derived for RSSl(x). It can be checked that C2
τ is positive when

τ ∈ (0, 1/2) and 0 when τ = 0 or 1/2. If the kernel function K(·) is chosen to be the Epanechnikov

function defined by K(x) = 1.5(1 − 4x2) when x ∈ [−1/2, 1/2] and 0 otherwise (cf. Section 3.2.6,

Fan and Gijbels 1996), then C2
τ as a function of τ is displayed in Figure 3.1.

tau

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
01

0
0.

02
0

0.
03

0

Figure 3.1: C2
τ as a function of τ when K(·) is chosen to be the Epanechnikov function.

By (3.3) and (3.4), if there is a jump in [x − hn/2, x + hn/2], a neighborhood of a given point

x, and this jump point is located on the right side of x, then RSSl(x) < RSSr(x), a.s., when n is
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large enough. Consequently, f̂(x) = âl,0(x), a.s., when n is large enough. On the other hand, if

the jump point is located on the left side of x, then RSSl(x) > RSSr(x), a.s., and f̂(x) = âr,0(x),

a.s., when n is large enough. By combining this fact and (3.1)-(3.2) in Theorem 3.1, we have the

following results.

Theorem 3.3 Suppose that f(·) has a continuous second-order derivative in [0, 1] except at the

jump positions {sj , j = 1, 2, · · · ,m} where f(·) has left and right second-order derivatives; max1≤i≤n+1(xi−

xi−1) = O(1/n) where x0 = 0 and xn+1 = 1; the kernel function K(·) is Lipschitz (1) continuous;

and the bandwidth hn = O(n−1/5). Then

(i)

n2/5

log n log log n
‖f̂ − f‖D1

= o(1), a.s.;

(ii) for each x ∈ D2,
n2/5

log n log log n
(f̂(x) − f(x)) = o(1), a.s.;

(iii) for any small number 0 < δ < 1/4,

n2/5

log n log log n
‖f̂ − f‖D2,δ

= o(1), a.s.,

where D2,δ =
⋃m

j=1 {[sj − (1/2 − δ)hn, sj − δhn]
⋃

[sj + δhn, sj + (1/2 − δ)hn]}.

Theorem 3.3 says that f̂(·) is uniformly consistent in continuous regions D1 with rate o(n−2/5

log n log log n). In the neighborhood of jump points, it is consistent pointwise with the same rate.

Because C2
τ has a positive lower bound when τ ∈ [δ, 1/2−δ] for any given number 0 < δ < 1/4, f̂(·)

is also uniformly consistent with rate o(n−2/5 log n log log n) in D2,δ which equals to D2\Dδ where

Dδ =
⋃m

j=1 [(sj − hn/2, sj − (1/2 − δ)hn)
⋃

(sj − δhn, sj + δhn)
⋃

(sj + (1/2 − δ)hn, sj + hn/2)].

4 Simulation Study

We present some simulation results regarding bandwidth selection and the numerical performance

of the jump-preserving curve fitting procedure (1.4) in this section. Let us revisit the example of

Figure 1.1 first. The true regression function in this example is f(x) = −3x + 2 when x ∈ [0, 0.3);

f(x) = −3x+3−sin((x−0.3)π/0.2) when x ∈ [0.3, 0.7); and f(x) = 0.5x+1.55 when x ∈ [0.7, 1]. It
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has two jump points at x = 0.3 and x = 0.7. Both jump magnitudes are equal to 1. Observations

are generated from model (1.1) with εi ∼ N(0, σ2) for i = 1, 2, · · · , n. The bandwidth used in

procedure (1.4) is assumed to have the form hn = k/n, where k is an odd integer, for convenience.

Without confusion, k is sometimes called the bandwidth in this section.

Figure 4.1 presents the MSE values of the fitted curve by the jump-preserving procedure (1.4)

with several k values when n = 200 and σ = 0.2. To remove some randomness in the results, all

MSE values presented in this section are actually averages of 1000 replications. It can be seen from

the plot that the MSE value first decreases and then increases when k increases. The bandwidth

k works as a tuning parameter to balance “underfit” and “overfit” as in the conventional local

smoothing procedures. The best bandwidth in this case is k = 29 which makes the MSE reach the

minimum. The dotted curve in Figure 1.1 shows one realization of the fitted curve with the best

bandwidth k = 29. The dashed curve shows the conventional local linear kernel estimator with the

same bandwidth.

k

M
SE

20 30 40 50

0.
02

0
0.

02
4

0.
02

8

Figure 4.1: MSE values of the fitted curve by the jump-preserving procedure (1.4) with several k
values when n = 200 and σ = 0.2.

We then perform simulations with several different n and σ values. The optimal bandwidths

and the corresponding MSE values are presented in Figures 4.2(a) and 4.2(c), respectively. From

the plots, it can be seen that (1) the optimal k increases when sample size n increases or σ increases

and (2) the corresponding MSE value decreases when n increases or σ decreases. The first finding

suggests that the bandwidth should be chosen larger when the sample size is larger or the data

is noisier, which is intuitively reasonable. The second finding might reflect the consistency of the

fitted curve.
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Figure 4.2: (a) The optimal bandwidths by the MSE criterion; (b) the optimal bandwidths by the
CV criterion; (c) the corresponding MSE values when the bandwidths in plot (a) are used; (d) the
corresponding CV values when the bandwidths in plot (b) are used.

As a comparison, the optimal bandwidths by the cross-validation procedure are presented

in Figure 4.2(b). The corresponding CV values (defined by equation (2.3)) are shown in Figure

4.2(d). By comparing Figures 4.2(a) and 4.2(b), it can be seen that bandwidths selected by the

cross-validation procedure are close to the optimal bandwidths based on the MSE criterion.

From Figure 1.1, it can be seen that bluring occurs around the jump points if f(·) is estimated

by the conventional local linear kernel estimator. The jump-preserving estimator (1.4) preserves

the jumps quite well, which is further confirmed by Figure 4.3. In Figure 4.3(a), the solid curve

denotes the true regression model, the dotted curve denotes the averaged estimator by the jump-

preserving procedure which is calculated from 1000 replications. The lower and upper dashed

11



curves represent the 2.5 and 97.5 percentiles of these 1000 replications. We can see that the two

sharp jumps are preserved well by the procedure (1.4). As a comparison, the averaged estimator

and the corresponding percentiles by the conventional local linear kernel smoothing procedure with

the same bandwidth are presented in Figure 4.3(b). It can be seen that the two jumps are blurred.

x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
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2.
0

2.
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3.
0

(a)

x

0.0 0.2 0.4 0.6 0.8 1.0

0.
0
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5

1.
0

1.
5

2.
0

2.
5

3.
0

(b)

Figure 4.3: The solid curve denotes the true regression model, the dotted curve denotes the averaged
estimator which is calculated from 1000 replications. The lower and upper dashed curves represent
the 2.5 and 97.5 percentiles of these 1000 replications. (a) Results from the jump-preserving
procedure (1.4); (b) results from the conventional local linear kernel smoothing procedure.

5 An Application

In this section, we apply the jump-preserving curve fitting procedure (1.4) to a sea-level pressure

dataset. In Figure 5.1, small dots denote the December sea-level pressures during 1921-1992 ob-

served by the Bombay weather station in India. Meteorologists (cf. Shea et al. 1994) noticed a

jump around year 1960 in this dataset and the existence of this jump was confirmed by Qiu and

Yandell (1998) with their local polynomial jump detection algorithm.

In Figure 5.1, the solid curve denotes the fitted regression curve by our jump-preserving curve

fitting procedure (1.4). In the procedure, the bandwidth is chosen to be k = 25 which is determined

by the cross-validation procedure (2.3). As indicated by the plot, the jump around year 1960 is

preserved well by our procedure.
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Figure 5.1: Small dots denote the December sea-level pressures during 1921-1992 observed by the
Bombay weather station in India. The solid curve is the jump-preserving estimator by the procedure
(1.4).

6 Concluding Remarks

We have presented a jump-preserving curve fitting procedure which automatically accommodates

possible jumps of the regression curve without knowing the number of jumps. The fitted curve

is proved to be statistically consistent in the entire design space. Numerical examples show that

it works reasonably well in applications. The following issues related to this topic need further

investigation. First, the procedure (1.4) works well in boundary regions [0, hn/2) and (1 − hn/2, 1]

only under the condition that there are no jumps in [0, hn) and (1 − hn, 1]. This condition can

always be satisfied when the sample size is large. When the sample size is small, however, this

condition may not be true in some cases and it is still an open problem to fit f(·) when jumps exist

in the boundary regions. Second, the plog-in procedures to choose bandwidth of a local smoother

are often based on the bias-variance trade-off of the fitted regression model. Exact expressions for

the mean and variance of the jump-preserving procedure (1.4) are not available yet, which needs

further research.

Acknowledgement: The author would like to thank Mr. Alexandre Lambert of the Institut

de Statistique at Universite catholique de Louvain in Belgium for pointing out a mistake in the

expression of C2
τ appeared in (3.4).
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Appendix

A Proof of Theorem 3.1

We only prove equation (3.1) here. Equation (3.2) can be proved similarly. First of all,

E(âl,0(x)) =
n∑

i=1

f(xi)Kl(
xi − x

hn
)
wl,2 − wl,1(xi − x)

wl,0wl,2 − w2
l,1

. (A.1)

We notice that the summation on the right hand side of (A.1) is only for those xi in [x − hn/2, x).

By Taylor’s expansion,

f(xi) = f(x) + f ′(x)(xi − x) +
1

2
f ′′(x)(xi − x)2 + o(h2

n), (A.2)

where xi ∈ [x − hn/2, x). By combining (A.1) and (A.2), we have

E(âl,0(x)) = f(x) + f ′′(x)
w2

l,2 − wl,1wl,3

2(wl,0wl,2 − w2
l,1)

+ o(h2
n), (A.3)

where wl,3 =
∑n

i=1 Kl(
xi−x
hn

)(xi − x)3. Furthermore it can be checked that

wl,0

nhn
= vl,0 + o(1),

wl,1

nh2
n

= vl,1 + o(1),
wl,2

nh3
n

= vl,2 + o(1),
wl,3

nh4
n

= vl,3 + o(1), (A.4)

where vl,j =
∫ 0
−1/2 xjKl(x)dx for j = 0, 1, 2, 3. By combining (A.3) and (A.4), we have

E(âl,0(x)) = f(x) + f ′′(x)
v2
l,2 − vl,1vl,3

2(vl,0vl,2 − v2
l,1)

h2
n + o(h2

n).

Therefore

E(âl,0(x)) − f(x) = f ′′(x)
v2
l,2 − vl,1vl,3

2(vl,0vl,2 − v2
l,1)

h2
n + o(h2

n). (A.5)

Now let

ε̃i = εiI(i1/2 − |εi|), i = 1, 2, · · · , n

gn(x) =
n∑

i=1

Kl(
xi − x

hn
)
wl,2 − wl,1(xi − x)

wl,0wl,2 − w2
l,1

εi

g̃n(x) =
n∑

i=1

Kl(
xi − x

hn
)
wl,2 − wl,1(xi − x)

wl,0wl,2 − w2
l,1

ε̃i

=:
n∑

i=1

g̃n(i)

14



For any ε > 0,

P (
n2/5

log n log log n
[g̃n(x) − E(g̃n(x))] > ε)

≤ exp(log n−ε(log log n)1/2

)E(Πn
i=1 exp(

n2/5

(log log n)1/2
[g̃n(i) − E(g̃n(i))]))

≤ n−ε(log log n)1/2

exp(
n4/5

log log n

n∑

i=1

V ar(g̃n(i)))

by an application of the Chebyshev’s inequality of the exponential form. Now

n∑

i=1

V ar(g̃n(i)) ≤ σ2
n∑

i=1

K2
l (

xi − x

hn
)[

wl,2 − wl,1(xi − x)

wl,0wl,2 − w2
l,1

]2

=
σ2

nhn

∫ 0

−1/2
K2

l (x)(
v2
l,2 − vl,1x

vl,0vl,2 − v2
l,1

)2dx

=
σ2

nhn
Cl,1(K),

where Cl,1(K) is a constant. So

P (
n2/5

log n log log n
[g̃n(x) − E(g̃n(x))] > ε) = O(n−ε(log log n)1/2

) (A.6)

for all x ∈ [hn/2, 1].

We now define Dn = {x : |x| ≤ n1/δ + 1, x ∈ R}, for some δ > 0. Let En be a set such that,

for any x ∈ Dn, there exists some Z(x) ∈ En such that |x − Z(x)| < n−2, and En has at most

Nn = [2n2(n1/δ + 1)] + 1 elements, where [x] denotes the integral part of x. Then

n2/5

log n log log n
‖g̃n − E(g̃n)‖[hn/2,1]

⋂
Dn

≤ S1n + S2n + S3n,

where

S1n =
n2/5

log n log log n
sup

x∈[hn/2,1]
⋂

Dn

|g̃n(x) − g̃n(Z(x))|

S2n =
n2/5

log n log log n
sup

x∈[hn/2,1]
⋂

Dn

|g̃n(Z(x)) − E(g̃n(Z(x)))|

S3n =
n2/5

log n log log n
sup

x∈[hn/2,1]
⋂

Dn

|E(g̃n(Z(x))) − E(g̃n(x))|

From (A.6), P (S2n > ε) = O(Nnn−ε(log log n)1/2

). By the Borel-Cantelli Lemma,

lim
n→∞

S2n = 0, a.s. (A.7)
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Now

S1n =
n2/5

log n log log n
sup

x∈[hn/2,1]
⋂

Dn

|
n∑

i=1

[Kl(
xi − x

hn
)
wl,2 − wl,1(xi − x)

wl,0wl,2 − w2
l,1

−

Kl(
xi − Z(x)

hn
)
wl,2 − wl,1(xi − Z(x))

wl,0wl,2 − w2
l,1

]ε̃i|

≤
n2/5n1/2

log n log log n
sup

x∈[hn/2,1]
⋂

Dn

|
1

nhn

n∑

i=1

[Kl(
xi − x

hn
)
vl,2 − vl,1(xi − x)/hn

vl,0vl,2 − v2
l,1

−

Kl(
xi − Z(x)

hn
)
vl,2 − vl,1(xi − Z(x))/hn

vl,0vl,2 − v2
l,1

]|

≤
n2/5+1/2

log n log log n

Cl,2(K)

n2hn
,

where Cl,2(K) is a constant. In the last inequality above, we have used the Lipschitz (1) property

of Kl(·). Therefore

lim
n→∞

S1n = 0, a.s. (A.8)

Similarly,

lim
n→∞

S3n = 0. (A.9)

By combining (A.7)-(A.9), we have

n2/5

log n log log n
‖g̃n − E(g̃n)‖[hn/2,1]

⋂
Dn

= o(1), a.s. (A.10)

Now,

‖gn − E(gn)‖[hn/2,1] ≤ ‖gn − g̃n‖[hn/2,1] + ‖g̃n − E(g̃n)‖[hn/2,1] + ‖E(g̃n) − E(gn)‖[hn/2,1].

Since E(ε2
1) < ∞, there exists a full set Ω0 such that for each ω ∈ Ω0 there exists a finite positive

integer Nω and for n ≥ Nω,

εn(ω) = ε̃n(ω).

So for all n ≥ Nω,

|gn(x) − g̃n(x)| ≤
1

nhn

Nω∑

i=1

Kl(
xi − x

hn
)|

vl,2 − vl,1(xi − x)/hn

vl,0vl,2 − v2
l,1

||εi − ε̃i|

≤
C(Nω)

nhn
,

where C(Nω) is a constant. Therefore,

n2/5

log n log log n
‖gn − g̃n‖[hn/2,1] = o(1), a.s. (A.11)
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Similarly,
n2/5

log n log log n
‖E(g̃n) − E(gn)‖[hn/2,1] = o(1). (A.12)

By (A.10)-(A.12), we have

n2/5

log n log log n
‖gn − E(gn)‖[hn/2,1] = o(1), a.s. (A.13)

By (A.5) and (A.13), we get equation (3.1).

B Proof of Theorem 3.2

By the definition of RSSr(x),

RSSr(x) =
n∑

i=1

[yi − âr,0(x) − âr,1(x)(xi − x)]2Kr(
xi − x

hn
)

=
n∑

i=1

[εi + f(xi) − âr,0(x) − âr,1(x)(xi − x)]2Kr(
xi − x

hn
)

=
n∑

i=1

ε2
i Kr(

xi − x

hn
) + 2

n∑

i=1

εi[f(xi) − âr,0(x) − âr,1(x)(xi − x)]Kr(
xi − x

hn
) +

n∑

i=1

[f(xi) − âr,0(x) − âr,1(x)(xi − x)]2Kr(
xi − x

hn
)

=: I1 + I2 + I3

Let us first prove equation (3.3) under the condition that f(·) has continuous first-order deriva-

tive in [x, x + hn/2]. By similar auguments to those in Appendix A,

I1 = vr,0σ
2nhn + o(nhn), a.s. (B.1)

Now

I2 = 2
n∑

i=1

εi[f(x) + f ′(x)(xi − x) − âr,0(x) − âr,1(x)(xi − x) + o(hn)]Kr(
xi − x

hn
)

= 2(f(x) − âr,0(x))
n∑

i=1

εiKr(
xi − x

hn
) + 2(f ′(x) − âr,1(x))

n∑

i=1

εiKr(
xi − x

hn
)(xi − x) + o(nhn)

= o(nhn) + o(h−1
n ) × O(nhn) × O(hn) + o(nhn)

= o(nhn) (B.2)

In the third equation above, we have used the results that f(x) − âr,0(x) = o(1), a.s., and f ′(x) −

âr,1(x) = o(1/hn), a.s., where the first result is from Theorem 3.1 and the second result can be
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derived by similar arguments to those in Appendix A. It can be similarly checked that

I3 = o(nhn), a.s. (B.3)

By combining (B.1)-(B.3), we get equation (3.3).

Next we prove equation (3.4) under the condition that f(·) has a jump in [x, x + hn/2] at

xτ = x + τhn where 0 ≤ τ ≤ 1/2 is a constant. First,

âr,0(x) =
n∑

i=1

yiKr(
xi − x

hn
)
wr,2 − wr,1(xi − x)

wr,0wr,2 − w2
r,1

=
∑

xi<xτ

f(xi)Kr(
xi − x

hn
)
wr,2 − wr,1(xi − x)

wr,0wr,2 − w2
r,1

+
∑

xi≥xτ

f(xi)Kr(
xi − x

hn
)
wr,2 − wr,1(xi − x)

wr,0wr,2 − w2
r,1

+
n∑

i=1

εiKr(
xi − x

hn
)
wr,2 − wr,1(xi − x)

wr,0wr,2 − w2
r,1

=
∑

xi<xτ

(f−(xτ ) + o(1))Kr(
xi − x

hn
)
wr,2 − wr,1(xi − x)

wr,0wr,2 − w2
r,1

+
∑

xi≥xτ

(f−(xτ ) + dτ + o(1))Kr(
xi − x

hn
)
wr,2 − wr,1(xi − x)

wr,0wr,2 − w2
r,1

+ o(1), a.s.

= f−(xτ ) +
dτ

∫ 1/2
τ Kr(x)(vr,2 − vr,1x)dx

vr,0vr,2 − v2
r,1

+ o(1), a.s. (B.4)

In the last equation above, we have used (A.4). Similarly we can check that

âr,1(x) =
dτ

∫ 1/2
τ Kr(x)(vr,0x − vr,1)dx

hn(vr,0vr,2 − v2
r,1)

+ o(1/hn), a.s. (B.5)

Then

I2 = 2
∑

xi<xτ

εi[f(xi) − f−(xτ ) −
dτ

∫ 1/2
τ Kr(x)(vr,2 − vr,1x)dx

vr,0vr,2 − v2
r,1

]Kr(
xi − x

hn
) +

2
∑

xi≥xτ

εi[f(xi) − f−(xτ ) −
dτ

∫ 1/2
τ Kr(x)(vr,2 − vr,1x)dx

vr,0vr,2 − v2
r,1

]Kr(
xi − x

hn
) −

2
n∑

i=1

εi(xi − x)Kr(
xi − x

hn
) ×

dτ
∫ 1/2
τ Kr(x)(vr,0x − vr,1)dx

hn(vr,0vr,2 − v2
r,1)

+ o(nhn)

= −2
dτ

∫ 1/2
τ Kr(x)(vr,2 − vr,1x)dx

vr,0vr,2 − v2
r,1

∑

xi<xτ

εiKr(
xi − x

hn
) +

2dτ (1 −

∫ 1/2
τ Kr(x)(vr,2 − vr,1x)dx

vr,0vr,2 − v2
r,1

)
∑

xi≥xτ

εiKr(
xi − x

hn
) + o(nhn), a.s.

= o(nhn), a.s. (B.6)

18



and

I3 =
∑

xi<xτ

[f(xi) − f−(xτ ) −
dτ

∫ 1/2
τ Kr(x)(vr,2 − vr,1x)dx

vr,0vr,2 − v2
r,1

−

dτ
∫ 1/2
τ Kr(x)(vr,0x − vr,1)dx

hn(vr,0vr,2 − v2
r,1)

(xi − x)]2Kr(
xi − x

hn
) +

∑

xi≥xτ

[f(xi) − f−(xτ ) −
dτ

∫ 1/2
τ Kr(x)(vr,2 − vr,1x)dx

vr,0vr,2 − v2
r,1

−

dτ
∫ 1/2
τ Kr(x)(vr,0x − vr,1)dx

hn(vr,0vr,2 − v2
r,1)

(xi − x)]2Kr(
xi − x

hn
) + o(nhn), a.s.

= nhn

∫ τ

0
[
dτ

∫ 1/2
τ Kr(x)(vr,2 − vr,1x)dx

vr,0vr,2 − v2
r,1

+
dτ

∫ 1/2
τ Kr(x)(vr,0x − vr,1)dx

vr,0vr,2 − v2
r,1

u]2Kr(u)du +

nhn

∫ 1/2

τ
[
dτ

∫ τ
0 Kr(x)(vr,2 − vr,1x)dx

vr,0vr,2 − v2
r,1

−
dτ

∫ 1/2
τ Kr(x)(vr,0x − vr,1)dx

vr,0vr,2 − v2
r,1

u]2Kr(u)du +

o(nhn), a.s.

= d2
τC

2
τ nhn + o(nhn), a.s. (B.7)

By combining (B.1), (B.6) and (B.7), we get equation (3.4).
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