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Abstract

Curve estimation from observed noisy data has broad applications. In certain applications,

the underlying regression curve may have singularities, including jumps and roofs/valleys (i.e.,

jumps in the first order derivative of the regression curve), at some unknown positions, repre-

senting structural changes of the related process. Detection of such singularities is important

for understanding the structural changes. In the literature, a number of jump detection proce-

dures have been proposed, most of which are based on estimation of the (one-sided) first order

derivatives of the true regression curve. In this paper, motivated by certain related research in

image processing, we propose an alternative jump detection procedure. Besides the first order

derivatives, we suggest using helpful information about jumps in the second order derivatives as

well. Theoretical justifications and numerical studies show that this jump detector works well in

applications. This procedure is then extended for detecting roofs/valleys of the regression curve.

Using detected jumps/roofs/valleys, a curve estimation procedure is also proposed, which can

preserve possible jumps/roofs/valleys when removing noise. Note that the printed paper only

provides outlines of proofs of several theorems in the paper. Complete proofs of the theorems are

available online as supplemental materials.

Key Words: Curve estimation; Derivatives; Discontinuities; Function estimation; Jump pre-

serving; Jumps; Local polynomial kernel smoothing; Nonparametric regression; Roof edges.

1 Introduction

Curve estimation from observed noisy data has broad applications. Nonparametric regression

analysis provides a major statistical tool for handling this problem (cf., e.g., Fan and Gijbels

1996). In some applications, the underlying regression curve may have jumps and roofs/valleys
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(i.e., jumps in the first-order derivative of the regression curve) at certain unknown positions,

representing structural changes of the related process. For instance, a quality index of a product

could have a downward or upward shift after an unknown time point when the production line goes

out-of-control (cf., e.g., Hawkins and Olwell 1998). It has been demonstrated that the sea-level

pressures observed by a Bombay weather station in India have a jump around the year 1960 (Qiu

and Yandell 1998). In these examples, jumps/roofs/valleys are an important part of the related

process. This paper focuses on accurate detection of them, and on estimation of the regression

curve with these important structures preserved.

In the literature, several jump detection procedures have been proposed. Some of them are

under the assumption that the number of jumps is known (cf., e.g., Shiau 1987, Qiu et al. 1991,

Müller 1992, Wu and Chu 1993, Eubank and Speckman 1994, Wang 1995, Loader 1996, Gijbels

et al. 1999, Grégoire and Hamrouni 2002, Müller 2002). Some others allow the number of jumps

to be unknown (cf., e.g., Hall and Titterington 1992, Qiu 1994, Qiu and Yandell 1998). Wu and

Zhao (2007) discussed the jump detection problem in the context of time series analysis. Most of

these procedures detect jumps based on estimation of the first order derivative (or, the difference

between the right-sided and left-sided limits) of the underlying regression curve at a given point,

using the properties that the first order derivative at a given point would be relatively large if that

point is a jump point and relatively small if it is a certain distance away from any jump points.

See Chapter 3 in Qiu (2005) for a detailed introduction of these procedures.

When detecting jumps in regression curves, availability of prior information about the number

of jumps plays an important role. When the number of jumps is known, jump detection becomes

easier to handle. For instance, if we know that there is a single jump point in the entire design

interval, then we can simply locate the maximizer of a jump detection criterion for estimating

the jump location. However, in many applications, it is difficult to know the number of jumps

beforehand. In such cases, a typical jump detector (cf., e.g., Hall and Titterington 1992, Qiu 1994,

Qiu and Yandell 1998) would flag a design point as a detected jump point if the value of the related

jump detection criterion is larger than a threshold value. By doing so, there would be deceptive

jumps detected. Some deceptive jumps are located around true jumps, due to the fact that the

related jump detection criterion would have large values at some (instead of just one) design points

close to a true jump point and they could be detected simultaneously. Other deceptive jumps are

scattered in the entire design space, due to the nature of thresholding, which is similar to type-I
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errors in the hypothesis testing context. Although a modification step is often adopted in a typical

jump detector mentioned above to delete these deceptive jumps, such modifications are often ad

hoc in nature.

In the image processing literature, besides first order derivatives of the image intensity function,

certain edge detectors also use estimated second order derivatives for detecting edges (e.g., Marr

and Hildreth 1980, Clark 1989, Fleck 1992, Sun and Qiu 2007). A major reasoning behind these

methods is that the directional second order derivative in the direction orthogonal to an edge

segment would have the following zero-crossing properties: (i) it is zero at the edge location, and

(ii) it changes its sign from positive to negative when the image intensity jumps from a lower level

to a higher level across the edge segment. See Figure 1 for a demonstration. Compared to the first

order derivatives, it is found that edge detectors based on the second order derivatives would have

better localization in their detected edges (i.e., their detected edges would be thinner). For detailed

discussion about this topic, see Chapter 6 in Qiu (2005).
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Figure 1: (a) 1-D profile of an image intensity function around an edge. (b) First-order derivative
of the 1-D profile. (c) Second-order derivative of the 1-D profile.

Motivated by the above mentioned research in image processing, in this paper, we demon-

strate that the jump detection problem when the number of jumps is unknown can also be handled

efficiently if we combine useful information about the jumps in both the first order and the sec-

ond order derivatives of the regression curve. Compared the 1-dimensional (1-D) jump detection

problem considered here and the 2-dimensional (2-D) edge detection problem considered in image

processing, we notice some substantial differences between the two problems. For instance, in edge

detection, detected edge pixels are often scattered in the whole design space, and the total number
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of edge pixels is usually not our major concern. But, in the current 1-D problem, the number of

jumps is an important parameter to estimate, besides the jump positions and jump sizes. Also, in

1-D cases, the right and left sides of a given point in the design interval is well defined, and thus

jump detection should make use of one-sided features of the underlying regression curve, which are

not readily available in 2-D problems. In this paper, besides detection of jumps, we also discuss

detection of roofs/valleys and estimation of regression curves with possible jumps/roofs/valleys

preserved. The corresponding problems in 2-D image analysis are still under research and have not

been well addressed yet, due to many challenges involved. See Qiu (2007) for related discussion.

In the literature on 1-D regression curve estimation, there are a number of existing procedures for

estimating curves with possible jumps preserved (cf., e.g., McDonald and Owen 1992, Chu et al.

1998, Qiu 2003, Gijbels et al. 2007). However, we are not aware of any existing curve estimation

procedures which can also accommodate potential roofs/valleys. Theoretically speaking, our pro-

posed approach can be generalized for detecting/preserving jumps in derivatives of any order. In

practice, jumps in the second order or higher order derivatives are hardly visible. So, they are not

discussed here.

We can find some existing research related to the jump/roof/valley detection problem con-

sidered here. For instance, Marron and co-authors suggest a graphical approach called SiZer for

displaying potential structures in curves, such as peaks and valleys, using a SiZer map (Chaudhuri

and Marron 1999). That map is constructed using estimated first order derivative of the regression

curve alone. It displays regions in which the first order derivative is significantly positive, signifi-

cantly negative, and insignificant from 0, respectively, and traces these regions when the bandwidth

used in their method changes. Kim and Marron (2006) show that SiZer is also helpful in displaying

jumps in curves; but, they admit that “This type of jump detection is intended as exploratory.”

They suggest using a conventional jump detection approach to further investigate the existence of

jumps after jumps are found by SiZer. Another research that is closely related to the topic of this

paper concerns estimation of a jump point in a parametric regression curve when the sampling

scheme is adaptive (Lan et al. 2009). Lan et al. show that their proposed multistage procedure

has certain good properties.

The remaining part of the paper is organized as follows. Our proposed jump detection pro-

cedure is introduced in detail in Section 2. Its generalization for detecting roofs/valleys and the

proposed curve estimation procedure are also described there. Some theoretical properties of these

4



procedures are discussed in Section 3. A simulation study for evaluating their numerical perfor-

mance is presented in Section 4. A real-data example is discussed in Section 5. Some concluding

remarks are given in Section 6. Proofs of some theorems are outlined in Appendix.

2 Jump/Roof/Valley Detection and Curve Estimation

This section consists of four parts. In Subsection 2.1, our proposed procedure for detecting jumps in

f is described. Its extention for detecting roofs/valleys is discussed in Subsection 2.2. In Subsection

2.3, we discuss curve estimation with possible jumps/roofs/valleys preserved. Selection of procedure

parameters is discussed in Subsection 2.4.

2.1 Detection of jumps

Assume that {(xi, Yi), i = 1, ..., n} are observed data from the regression model

Yi = f(xi) + εi, for i = 1, ..., n, (1)

where f is the unknown regression function, {xi = i/n, i = 1, . . . , n} are the equally spaced design

points in [0, 1], and {εi, i = 1, . . . , n} are i.i.d. random errors with mean 0 and unknown variance

σ2. We further assume that the regression function f has the following expression:

f(x) = g(x) +
p∑

j=1

djI(x > sj) +
q∑

k=1

d̃k(x − s̃k)+, for x ∈ [0, 1], (2)

where g is a continuous function with continuous first order derivative g′ in the entire design interval,

p is the number of jumps in f , {sj , j = 1, . . . , p} and {dj , j = 1, . . . , p} are the corresponding

jump positions and jump sizes, q is the number of jumps in f ′ (i.e., roofs/valleys of f), and

{s̃k, k = 1, . . . , q} and {d̃k, k = 1, . . . , q} are the corresponding jump positions and jump sizes.

Note that, in (2), the two sets {sj, j = 1, . . . , p} and {s̃k, k = 1, . . . , q} could have certain points in

common. At those common points, both f and f ′ have jumps, although our visual perception of the

jumps in f usually dominates that of the jumps in f ′. In model (1), the assumption that the design

points are equally spaced is made for simplicity of presentation only. Our proposed procedure should

still perform well when they are unequally spaced but satisfy certain homogeneity conditions. In

expression (2), both the continuity part g and the terms in the jump part, i.e., p, {sj , j = 1, . . . , p},
{dj , j = 1, . . . , p}, q, {s̃k, k = 1, . . . , q}, and {d̃k, k = 1, . . . , q}, are assumed unknown.
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At a given point x ∈ [hn, 1 − hn], we consider the following local quadratic kernel smoothing

procedure:

min
a,b,c∈R

n∑

i=1

{
Yi − [a + b(xi − x) + c(xi − x)2/2]

}2
K

(
xi − x

hn

)
, (3)

where K is a non-negative kernel function with support [−1, 1], and hn is a bandwidth parameter.

The solution to a, b, and c of the minimization problem (3) is denoted as â(x), b̂(x), and ĉ(x). They

have the following expressions:

b̂(x) =
n∑

i=1

(r2r3 − r1r4) + (r0r4 − r2
2)(xi − x) + (r1r2 − r0r3)(xi − x)2

r0r2r4 − r3
2 + 2r1r2r3 − r2

1r4 − r0r
2
3

K

(
xi − x

hn

)
Yi,

ĉ(x) = 2
n∑

i=1

(r1r3 − r2
2) + (r1r2 − r0r3)(xi − x) + (r0r2 − r2

1)(xi − x)2

r0r2r4 − r3
2 + 2r1r2r3 − r2

1r4 − r0r2
3

K

(
xi − x

hn

)
Yi,

â(x) =
n∑

i=1

∑n
i=1 K

(
xi−x
hn

)
Yi − r1b̂(x) − 2r2ĉ(x)

r0
, (4)

where rk =
∑n

i=1(xi − x)kK
(

xi−x
hn

)
, for k = 0, 1, 2, 3, 4. Then, â(x), b̂(x), and ĉ(x) are the local

quadratic kernel estimators of f(x), f ′(x), and f ′′(x), respectively (cf., e.g., Fan and Gijbels 1996).

In (3), a quadratic function is fitted in the local neighborhood [x − hn, x + hn] of the given

point x, using the weighted least squares procedure, with the weights determined by the kernel

function K. Intuitively, if x is a jump point, then observations on two different sides of x would be

quite different in their values, the fitted quadratic curve by (3) would be steep, and consequently

|̂b(x)| would be large. Furthermore, in such cases, ĉ(x) would be close to 0, and the values of ĉ

would change signs on two different sides of x, as discussed in Section 1 about the zero-crossing

properties of f ′′. By combining such helpful information in both b̂(x) and ĉ(x) about the jumps in

f , we suggest the following jump detection procedure:

Proposed Procedure for Detecting Jumps in f

Step 1 For a given design point xi ∈ [hn, 1−hn], it is flagged as a detected jump point if (i) |̂b(xi)| ≥
un, (ii) |ĉ(xi)| ≤ vn, and (iii) there exist two design points xi1 and xi2 in [xi−hn, xi +hn] such

that |ĉ(xi1)| > vn, |ĉ(xi2)| > vn, and ĉ(xi1)ĉ(xi2) < 0, where un and vn are two non-negative

threshold values.

Step 2 Assume that the detected jumps from Step 1 are {x∗
i , i = 1, 2, . . . ,m}. If there are integers

1 ≤ t1 < t2 ≤ m such that x∗
j − x∗

j−1 ≤ hn, for j = t1 + 1, . . . , t2, x∗
t1 − x∗

t1−1 > hn, and
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x∗
t2+1 − x∗

t2 > hn, then the set {x∗
t1 , x

∗
t1+1, . . . , x

∗
t2} forms a tie in {x∗

i , i = 1, 2, . . . ,m} and the

entire tie set is replaced by its central point (x∗
t1 + x∗

t2)/2 for estimating the jump positions.

In the above procedure, condition (i) in Step 1 is on the estimated first order derivative of f ,

and conditions (ii) and (iii) are based on the zero-crossing properties of the estimated second order

derivatives. Note that the estimated second order derivatives are random. Therefore, theoretically

speaking, the chance that their values are exactly zero is zero, and estimated second order deriva-

tives may change signs on two different sides of a continuity point of f as well. Inclusion of the

threshold value vn in conditions (ii) and (iii) is mainly for handling these practical issues. Step 2

is for deleting certain deceptive jump points. See Qiu (1994) for related discussion.

To demonstrate the above jump detection procedure, let us consider a simple regression function

shown in Figure 2(a) by the solid line, which has two jumps at x = 0.25 and x = 0.75. A set of

observations generated from model (1) with ε1 ∼ N(0, 0.252) are also shown in that plot by small

circles. The estimated first order and second order derivatives {b̂(xi)} and {ĉ(xi)} by (3) are shown

in Figures 2(b) and 2(c), respectively, using hn = 0.1 and the Epanechnikov kernel function defined

in Section 4. When un = σ̂n

√
χ2

1,0.9(δ̂n) and vn = σ̂∗
n

√
χ2

1,0.7, the detected jumps by Step 1 of

the above jump detection procedure are shown in Figure 2(d), where σ̂n and χ2
1,0.9(δ̂n) are defined

in Section 2.4 below, σ̂∗
n is the standard error of ĉ(x) when x is a continuity point of f , defined

similarly to σ̂n, and χ2
1,0.7 is the 0.7-th quantile of the χ2

1 distribution. The detected jumps shown

in Figure 2(d) form two ties. After Step 2 of the jump detection procedure, all points in each tie

are replaced by the central point of the tie. The modified detected jumps are shown in Figure 2(e).

It can be seen that they estimate the true jumps well.

2.2 Detection of roofs/valleys

The jump detection procedure described in the previous subsection can be extended for detecting

roofs/valleys of f . A natural idea is to replace estimators of f ′ and f ′′ in the above jump detection

procedure by estimators of f ′′ and f (3), respectively, since roofs/valleys of f are actually jumps

in f ′. In the local quadratic kernel smoothing procedure (3), the bandwidth hn used for jump

detection could be replaced by another bandwidth h̃n for roof/valley detection. Then, for a given

point x ∈ [h̃n, 1− h̃n], f ′′(x) is estimated by ĉ(x). But, f (3) is not estimated in (3). One possibility

is to replace (3) with the local cubic kernel smoothing, which would add much extra computation to

the roof/valley detection procedure. As an alternative, we suggest using the zero-crossing properties
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Figure 2: (a) True regression function (solid line) and a set of observations (small circles). (b)
{b̂(xi)}. (c) {ĉ(xi)}. (d) Detected jumps by Step 1 of the jump detection procedure. (e) Modified
detected jumps by Step 2 of the jump detection procedure.

of

f̂ (3)(x) = [ĉ+(x) − ĉ−(x)]/h̃n,

where ĉ+(x) and ĉ−(x) are solutions to c of the minimization problem (3) after
∑n

i=1 is replaced by
∑

xi∈(x,x+h̃n] and
∑

xi∈[x−h̃n,x), respectively. Therefore, f̂ (3)(x) is relatively convenient to obtain.

Then, roofs/valleys of f can be detected by the following procedure:

Proposed Procedure for Detecting Roofs/Valleys of f

Step 1 For a given design point xi ∈ [h̃n, 1 − h̃n], it is flagged as a detected roof/valley point if

(i) |ĉ(xi)| ≥ ũn, (ii) |f̂ (3)(xi)| ≤ ṽn, and (iii) there exist two design points xi1 and xi2 in

[xi − h̃n, xi + h̃n] such that |f̂ (3)(xi1)| > ṽn, |f̂ (3)(xi2)| > ṽn, and f̂ (3)(xi1)f̂
(3)(xi2) < 0, where

ũn and ṽn are two non-negative threshold values.

Step 2 Assume that the detected roofs/valleys from Step 1 are {x∗
i , i = 1, 2, . . . ,m}. If there are
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integers 1 ≤ t1 < t2 ≤ m such that x∗
j − x∗

j−1 ≤ h̃n, for j = t1 + 1, . . . , t2, x∗
t1 − x∗

t1−1 > h̃n,

and x∗
t2+1 −x∗

t2 > h̃n, then the set {x∗
t1 , x

∗
t1+1, . . . , x

∗
t2} forms a tie in {x∗

i , i = 1, 2, . . . ,m} and

the entire tie set is replaced by its central point (x∗
t1 + x∗

t2)/2 for estimating the roof/valley

positions.

2.3 Curve estimation with possible jumps/roofs/valleys preserved

After all the jumps/roofs/valleys are detected, we have estimators p̂, {ŝj , j = 1, . . . , p̂}, q̂, and

{̂̃sk, k = 1, . . . , q̂} of the true numbers and positions of jumps/roofs/valleys. The jump sizes {dj , j =

1, . . . , p} and {d̃k, k = 1, . . . , q} can be estimated by

d̂j = â+(ŝj) − â−(ŝj),
̂̃
dk = b̂+(̂̃sk) − b̂−(̂̃sk), (5)

where â+(x) and â−(x) are the local quadratic kernel estimators of f(x) obtained in the right-sided

neighborhood (x, x + hn,1] and the left-sided neighborhood [x − hn,1, x), respectively. Similarly,

b̂+(x) and b̂−(x) are the one-sided local quadratic kernel estimators of f ′(x), obtained from the

neighborhoods (x, x + h̃n,1] and [x − h̃n,1, x), respectively. The two bandwidths hn,1 and h̃n,1 used

here could be different from hn and h̃n used in detecting jumps/roofs/valleys. Then, we define

Y ∗
i = Yi −

p̂∑

j=1

d̂jI(xi > ŝj) −
q̂∑

k=1

̂̃
dk(xi − ̂̃sk)+, for i = 1, ..., n.

From models (1) and (2), {(xi, Y
∗
i ), i = 1, 2, . . . , n} can be regarded as observations from a model

with regression function g. A natural estimator of g(x), for x ∈ [0, 1], is then the local linear

kernel estimator, denoted as ĝ(x) and defined to be the solution to a∗ of the following minimization

problem:

min
a∗,b∗∈R

n∑

i=1

{Y ∗
i − [a∗ + b∗(xi − x)]}2 K

(
xi − x

h∗
n

)
,

where h∗
n is a bandwidth that could be different from hn and h̃n used in detecting jumps/roofs/valleys.

Finally, our proposed curve estimator is defined by

f̂(x) = ĝ(x) +
p̂∑

j=1

d̂jI(x > ŝj) +
q̂∑

k=1

̂̃
dk(x − ̂̃sk)+, for x ∈ [0, 1]. (6)

2.4 Selection of procedure parameters

In the proposed procedures for detecting jumps, for detecting roofs/valleys, and for estimating the

regression curve, there are three sets of parameters {hn, un, vn), (h̃n, ũn, ṽn), and (hn,1, h̃n,1, h
∗
n) to
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choose. From description about the related procedures given above, the first two sets of parameters

can be chosen separately while the last one is chosen after the first two sets of parameters are

determined.

We first discuss selection of hn, un and vn used in the proposed jump detection procedure. The

parameter un is a threshold value for |̂b(xi)|. We notice that b̂(x) is a linear combination of all

observations. Therefore, it has an asymptotic Normal distribution. When the kernel function is

chosen to be symmetric and hn satisfies the condition that 1/(nhn) = o(1), it is not difficult to

check that, at a continuity point x of f , the asymptotic mean of b̂(x) is f ′(x) and its variance is

σ2
n = σ2

n∑

i=1

(xi − x)2

r2
2

K2
(

xi − x

hn

)
+ o

(
1

nhn

)
.

Thus, we have

lim
n→∞

(
b̂(x) − f ′(x)

)2

σ̂2
n

D
= χ2

1,

where
D
= denotes equality in distribution, and σ̂2

n is an estimator of σ2
n, obtained by replacing σ2 in

its expression above by a consistent estimator σ̂2 and by ignoring the term o
(

1
nhn

)
. Therefore, a

natural choice for un is

un = σ̂n

√
χ2

1,1−αn
(δ̂n), (7)

where χ2
1,1−αn

(δ̂n) is the (1 − αn)-th quantile of the χ2
1 distribution with non-centrality parameter

δ̂n = (f̂ ′(x))2/σ̂2
n, σ̂2

n = σ̂2∑n
i=1

(xi−x)2

r2
2

K2
(

xi−x
hn

)
, and f̂ ′(x) is an estimator of f ′(x). In this paper,

we compute σ̂2 and f̂ ′(x) based on the idea of one-sided function estimation originally suggested by

Qiu (2003), described briefly below. We first make local linear kernel smoothing in the left-sided

neighborhood [x − hn, x) and the right-sided neighborhood (x, x + hn], respectively; then, σ̂2 is

defined by the smaller one of the two weighted residual mean squares obtained from the two one-

sided local fits, and f̂ ′(x) is defined by the slope estimator obtained from the selected one-sided

local fit. This procedure is chosen due to its simplicity. Otherwise, alternative procedures, including

the ones by Chu et al. (1998) and Gijbels et al. (2007), can also be used. To choose un by (7),

we still need to choose αn. We found from numerical studies that the default level 0.05 often gives

reasonably good results. Therefore, we suggest using αn = 0.05 in applications, although αn can

always be chosen together with hn and vn.

To choose parameters hn and vn properly, we should first choose a performance measure of

the detected jumps. Let J = {s1, s2, . . . , sp} and Ĵn be the sets of true and detected jump points,

10



respectively. Then, a reasonable measure that is commonly used in the literature is the following

Hausdorff distance:

dH(Ĵn, J ;hn, vn) = max

{
max
x∈Ĵn

min
x′∈J

|x − x′|, max
x∈J

min
x′∈Ĵn

|x − x′|
}

.

Because J is unknown, the Hausdorff distance dH(Ĵn, J ;hn, vn) can not be computed directly. To

overcome this difficulty, we suggest using the following bootstrap procedure. Suppose that there

are B bootstrap samples, and the set of detected jumps from the k-th bootstrap sample is Ĵ
(k)
n , for

k = 1, 2, . . . , B. Then, dH(Ĵn, J ;hn, vn) can be estimated by

d̂H(Ĵn, J ;hn, vn) =
1

B

B∑

k=1

dH(Ĵ (k)
n , Ĵn;hn, vn), (8)

and the optimal values of hn and vn are approximated by the solution of the problem

min
hn>0

min
vn>0

d̂H(Ĵn, J ;hn, vn). (9)

To generate a bootstrap sample, the following two-step procedure can be used:

Step 1 Obtain a jump-preserving estimator f̂(x) of the true regression function f(x), using the

procedure by Qiu (2003), as described several paragraphs earlier for estimating f ′(x), except

that f̂(x) is defined by the intercept estimator obtained from the selected one-sided local fit.

Then, define residuals ε̂i = Yi − f̂(xi), for i = 1, 2, . . . , n.

Step 2 Draw with replacement a sample {ε̂∗i , i = 1, 2, . . . , n} from the set of residuals {ε̂i, i =

1, 2, . . . , n}. Then, the bootstrap sample is defined by {(xi, Y
∗
i ), i = 1, 2, . . . , n}, where Y ∗

i =

f̂(xi) + ε̂∗i , for i = 1, 2, . . . , n.

Based on our numerical experience, this scheme for obtaining bootstrap samples would provide

better jump detection results, compared to the natural scheme to resample the original data

{(xi, Yi), i = 1, 2, . . . , n} directly.

Parameters h̃n, ũn, and ṽn can be chosen similarly. After studying the asymptotic distribution

of ĉ(x), ũn can be chosen to be

ũn = ̂̃σn

√
χ2

1,1−αn
(
̂̃
δn),

where ̂̃σ2
n = 4σ̂2∑n

i=1
{r0(xi−x)2−r2}2

(r0r4−r2
2)2

K2
(

xi−x
h̃n

)
, χ2

1,1−αn
(
̂̃
δn) is the (1 − αn)-th quantile of the χ2

1

distribution with non-centrality parameter
̂̃
δn = (f̂ ′′(x))2/̂̃σ2

n, and f̂ ′′(x) is an estimator of f ′′(x)
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obtained similarly to f̂ ′(x) used in (7). As in (7), we suggest using αn = 0.05. The same bootstrap

procedure described above for choosing hn and vn can be used for choosing h̃n and ṽn, except that

J and Ĵn should be replaced by R = {s′1, s′2, . . . , s′q} and its estimator R̂n, and Ĵ
(k)
n should be

replaced by R̂
(k)
n which is the set of detected roofs/valleys from the k-th bootstrap sample.

When computing the curve estimator f̂(x) defined in (6), the jumps/roofs/valleys have been

detected beforehand. So, the bandwidths hn,1, h̃n,1 and h∗
n used in (5) and (6) can be determined

simply by minimizing the following cross validation (CV) score:

CV (hn,1, h̃n,1, h
∗
n) =

1

n

n∑

i=1

[Y ∗
i − ĝ−i(xi)]

2 ,

where ĝ−i(xi) is the leave-one-out local linear kernel estimator of g(xi), computed from all modified

observations {(xj , Y
∗
j ), j = 1, 2, . . . , n}, except the i-th one (xi, Y

∗
i ).

3 Some Statistical Properties

In this section, we provide some statistical properties of the proposed jump/roof/valley detection

and curve estimation procedures. Theorem 1 below is concerned about the asymptotic properties of

the local quadratic estimators (cf., expressions in (4)) in regions where the true regression function

f is continuous.

Theorem 1. Assume that the regression function f has continuous third-order derivatives in

[0, 1] except at the jump/roof/valley points in J
⋃

R, the kernel function K is a Lipschitz continuous

and symmetric density function in [−1, 1], and the bandwidth hn satisfies the conditions that

hn = o(1) and 1/(nh4
n) = o(1). Then,

‖ â − f ‖Ωn = o
(
h2

n

)
+ O




√

ln(n)

nhn



 , a.s.,

‖ b̂ − f ′ ‖Ωn = o(hn) + O

(√
ln(n)

nh3
n

)
, a.s.,

‖ ĉ − f ′′ ‖Ωn = o(hn) + O

(√
ln(n)

nh5
n

)
, a.s.,

where Ωn = {x : x ∈ [hn, 1 − hn] and |x − x′| ≥ hn for any x′ ∈ J
⋃

R }, and ‖ f ‖Ωn=

maxx∈Ωn |f(x)|.

By Theorem 1, in continuity regions Ωn of f , â, b̂, and ĉ are almost surely consistent estimators

of f , f ′, and f ′′, respectively, if we further assume that
√

ln(n)/(nh5
n) = o(1). It is clear that

12



one-sided estimators â+, â−, b̂+, b̂−, ĉ+, and ĉ−, used in detecting roofs/valleys and in estimating f

(cf., expressions of f̂ (3)(x), d̂j , and
̂̃
dk in Subsections 2.2 and 2.3), would have the same asymptotic

properties as those described in Theorem 1. Around the jump/roof/valley points, we have the

following results in Theorems 2 and 3.

Theorem 2. Let s be a given jump point, x be a point in (s− hn, s + hn), and the Euclidean

distance between x and s is τhn, where 0 ≤ τ < 1 is a constant. (Note that x depends on n

although it is not made explicit in notation.) Let Q
(1)
n (x) and Q

(2)
n (x) be the left and right parts

of [x− hn, x + hn], separated by s. For j = 1, 2, Q(j) = {u : u ∈ [−1, 1] and x + uhn ∈ Q
(j)
n (x)} are

the corresponding parts of the support of K. The jump size of f at s is denoted as d. Then, under

the conditions in Theorem 1 and the extra condition that ln(n)/(nh3
n) = o(1), we have

(i) b̂(x) = d
hnν2

∫
Q(2) uK(u)du + o(1/hn), a.s., and

(ii) ĉ(x) =






O(1/hn), a.s., if τ = 0,

C/h2
n + O(1/hn), a.s., if 0 < τ < 1 and x ∈ Q

(1)
n (x),

−C/h2
n + O(1/hn), a.s., if 0 < τ < 1 and x ∈ Q

(2)
n (x),

where ν2 =
∫ 1
−1 u2K(u)du and C is a positive constant.

Theorem 3. Let s̃ be a given roof/valley point, x be a point in (s̃ − h̃n, s̃ + h̃n), and the

Euclidean distance between x and s̃ be τ h̃n, where 0 ≤ τ < 1 is a constant. Let d̃ be the jump size

of f ′ at s̃, and Q̃
(1)
n (x), Q̃

(2)
n (x), Q̃(1) and Q̃(2) are defined similarly to Q

(1)
n (x), Q

(2)
n (x), Q(1) and

Q(2) in Theorem 2. Then, if f is continuous in [x − h̃n, x + h̃n] and h̃n satisfies the conditions that

1/(nh̃2
n) = o(1) and ln(n)/(nh̃5

n) = o(1), we have

(i) ĉ(x) = 2d̃
h̃n(ν4−ν2

2 )

∫
Q̃(2)(u3 − ν2u)K(u)du + o(1/h̃n), a.s., and

(ii) ĉ+(x) − ĉ−(x) =






o(1/h̃n), a.s., if τ = 0,

C̃/h̃n + o(1/h̃n), a.s., if 0 < τ < 1 and x ∈ Q̃
(1)
n (x),

−C̃/h̃n + o(1/h̃n), a.s., if 0 < τ < 1 and x ∈ Q̃
(2)
n (x),

where νk =
∫ 1
−1 ukK(u)du, for k = 2, 4, and C̃ is a positive constant.

Based on results in Theorems 1 and 2, we have the following consistency result for the detected

jumps of the proposed jump detection procedure.
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Theorem 4. Given the conditions in Theorems 1 and 2, and the extra conditions that (i)

αn = o(1), (ii) Z1−αn/2/
√

nhn = o(1), (iii) 1/(vnhn) = o(1), and (iv) vnh2
n = o(1), we have

dH(Ĵn, J ;hn, vn) = O(hn), a.s.

Theorem 4 says that, under some generality conditions, the Hausdorff distance between the

set of detected jump points and the set of true jumps points would converge to zero almost surely.

Notice that, when n is large enough, Ĵn ⊆ On(J) and J ⊆ Ĵn (cf., expressions (31) and (32) in

Appendix), and that there would not be more than one detected jumps in [sj −hn, sj +hn], for each

j = 1, 2, . . . , p, after the modification step (i.e., Step 2) of the jump detection procedure. Therefore,

when n is large enough, the number of detected jump points would equal the true number of jumps,

and the positions of detected jump points would be within hn of the true jump positions, almost

surely. For the detected roofs/valleys, we have similar results summarized in the following theorem.

Theorem 5. Under the conditions in Theorems 1 and 3, and the extra conditions that (i)

αn = o(1), (ii) Z1−αn/2/
√

nh̃3
n = o(1), (iii) 1/(ṽnh̃n) = o(1), and (iv) ṽnh̃n = O(1), we have

dH(R̂n, R; h̃n, ṽn) = O(h̃n), a.s.

Similar to the explanations given after Theorem 4, by Theorem 5, when n is large enough, the

number of detected roof/valley points would equal the true number of roof/valley points, and the

positions of detected roof/valley points would be within h̃n of the true roof/valley positions, almost

surely. Regarding the estimated jump sizes in both f and f ′, we have the following results.

Theorem 6. Under the conditions in Theorems 1–5, and the extra conditions that (i)

hn/hn,1 = o(1) and (ii) h̃n/h̃n,1 = o(1), we have, for j = 1, 2, . . . , p,

|d̂j − dj | = O

(
hn

hn,1

)
+ o(h2

n,1) + O

(√
ln(n)

nhn,1

)
, a.s.,

|̂̃dk − d̃k| = O

(
h̃n

h̃n,1

)
+ o(h̃n,1) + O

(√
ln(n)

nh̃3
n

)
, a.s.

Finally, based on Theorems 1–6, we have the following result for the estimated regression curve

f̂ . Proofs of all the theorems are outlined in Appendix.

Theorem 7. Under the conditions in Theorems 1–6, and the extra conditions that (i) h∗
n =

o(1), and (ii) 1/(nh∗
n) = o(1), we have

∫

Hn

(
f̂(x) − f(x)

)2
dx = O

(
hn + h̃n + h∗

n

)
+ O

(
1

n2(h∗
n)2

)
+
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O

(
ln(n)

nhn,1
+

ln(n)

nh̃n,1

+
ln(n)

nh∗
n

)
+

O

(
h2

n

h2
n,1

+
h̃2

n

h̃2
n,1

)
+ o

(
h4

n,1 + h̃4
n,1

)
, a.s.,

where Hn = [h∗
n, 1 − h∗

n].

4 A Simulation Study

In this section, we present some simulation results regarding the numerical performance of the pro-

posed jump/roof/valley detection procedures and the jump/roof/valley-preserving curve estimation

procedure. In the simulation study, the following two true regression functions are considered:

f1(x) =






4x, if 0 ≤ x < 0.25,

4x + 1, if 0.25 ≤ x < 0.5,

−4x + 5, if 0.5 ≤ x < 0.75,

4x, if 0.75 ≤ x ≤ 1;

f2(x) =






1, if 0 ≤ x < 0.25,

4x − 1, if 0.25 ≤ x < 0.5,

−4x + 3, if 0.5 ≤ x < 0.75,

1 − exp{−15(x − 0.75)}, if 0.75 ≤ x ≤ 1.

The function f1 has two jumps at 0.25 and 0.75, and two jumps in its first-order derivative (i.e.,

roofs/valleys) at 0.5 and 0.75. The function f2 has one jump at 0.25, and three jumps in its

first-order derivative at 0.25, 0.5, and 0.75 with different magnitudes. The two functions cover

several different patterns of jumps/roofs/valleys. With either regression function, n observations

are generated from model (1), in which {εi, i = 1, 2, . . . , n} are i.i.d. from N(0, σ2) distribution.

When n = 100 and σ = 0.5, one realization of the observations from f1 is shown in Figure 3(a),

and one realization from f2 is shown in Figure 3(b), along with the true regression functions.

To use the proposed jump/roof/valley detection procedures, the kernel function is chosen to be

the Epanechnikov function K(x) = (3/4)(1−x2)I(|x| ≤ 1), and αn used in defining un (cf., (7)) and

ũn is fixed at 0.05. Procedure parameters (hn, vn) and (h̃n, ṽn) are first chosen by minimizing the

Hausdorff distance between Ĵn and J and the Hausdorff distance between R̂n and R, respectively.

Although we can not choose parameter values in this way in practice because both J and R are

often unknown, performance of the proposed procedures with such optimal parameter values (the

corresponding jump/roof/valley detection procedures are denoted as PPOPT) can be used as a

reference in evaluating performance of the same procedures when their parameters are chosen by

the suggested bootstrap procedure (the corresponding jump/roof/valley detection procedures are

denoted as PPBST). In PPBST, the bootstrap sample size is fixed at B = 100 (cf., equation (8)).
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Figure 3: (a) Small diamonds denote the observations and solid lines denote the true regression
function f1. (b) Small diamonds denote the observations and solid lines denote the true regression
function f2. In both plots, n = 100 and σ = 0.5.

As comparisons, we also consider two existing methods. One is the jump detection method by

Loader (1996), which is based on local linear kernel estimation. The original version of this method

only handles cases when the number of jumps is known. Here, we make the following modifications

to make it comparable with our proposed method. First, a threshold parameter is used, as in

(7), for the jump detection criterion by Loader, and αn is fixed at 0.05. Second, detected jumps

are modified by the same modification procedure discussed in Section 2.1. Third, its bandwidth

parameter is chosen by a bootstrap procedure similar to the one described in Section 2.4. To detect

roofs/valleys by this method, we simply use f̂ ′
+(x) − f̂ ′

−(x) as the detection criterion, where f̂ ′
+(x)

and f̂ ′
−(x) are local linear kernel estimators of f ′(x) constructed from a right-sided and a left-sided

neighborhoods, respectively. This method is denoted as Loader hereafter. The second method

detects jumps using zero-crossing properties of ĉ(x) obtained in (4), and detects roofs/valleys using

zero-crossing properties of f̂ (3)(x), in similar ways to that described in Section 2. This procedure

has two parameters to choose: the bandwidth used in local smoothing and the threshold value. It

can be regarded as a modified version of the zero-crossing edge detectors used in image processing

(cf., e.g., Fleck 1992), and is denoted as Zero-Crossing hereafter.

The following eight cases are considered in this study: n =100 or 200, σ =0.25 or 0.5, and

f = f1 or f2. In each case, 100 replicated simulations are performed. Tables 1 and 2 present

frequency tables of the numbers of detected jump/roof/valley points by each method, averaged

16



values of the Hausdorff distances between Ĵn and J , or between R̂n and R, over 100 simulations,

and the averaged values of the selected procedure parameters (i.e., (hn, vn) or (h̃n, ṽn) for procedures

PPOPT, PPBST, and Zero-Crossing, and a bandwidth for procedure Loader).

From the tables, we can have the following conclusions. (i) The performance of PPBST is a

little worse than the performance of PPOPT; the two sets of results are compatible in all cases

considered, implying that the proposed bootstrap procedure for selecting parameter values works

reasonably well in this example. As a matter of fact, selected parameter values by the bootstrap

procedure are close to the optimal values in all cases. (ii) From the presented frequency tables of the

numbers of detected jumps/roofs/valleys, we can see that numbers of detected jumps/roofs/valleys

by both procedures equal to the correct numbers in most replicated simulations, and the results

become more impressive when n gets larger or σ gets smaller, which is due to the consistency of Ĵn

and R̂n (cf., Theorems 4 and 5 in Section 3). (iii) Results about the averaged Hausdorff distances

between Ĵn and J and between R̂n and R are also reasonably good. (iv) PPBST performs uniformly

better than procedures Loader and Zero-Crossing.

To further study the ability of the proposed procedure PPBST in detecting jumps/roofs/valleys,

Figure 4 presents the bar charts of the frequencies of the detected jumps/roofs/valleys that are

within 0.02 of the true jumps/roofs/valleys in various cases. From the bar charts, we can see that

the sample size n, the noise level σ, and the jump size in f or f ′ all have certain impact on the

performance of PPBST. PPBST would perform better when n is larger, σ is smaller, or jump size

is larger (e.g., the jump size in f ′
2 at 0.75 is larger than that at 0.5), which is intuitively reasonable.

Furthermore, the first jump in f1 at 0.25 seems easier to detect, compared to its second jump

at 0.75, which implies that in finite sample cases slope of the regression curve f has an impact

on detection of jumps in f . Similarly, the roof/valley in f1 at 0.5 seems easier to detect than

its roof/valley at 0.75. These results are not revealed well in the large-sample properties of the

proposed procedures that are given in Section 3.

Next, we consider curve estimation with jumps/roofs/valleys preserved. Three competitive

methods are considered here. One is the proposed estimator (6) based on jump/roof/valley de-

tection by PPBST. The second one is the estimator (6) based on jump/roof/valley detection by

procedure Loader. These two curve estimators are denoted as f̂BST and f̂L, respectively, and

their parameters are chosen by the CV procedure described in Section 2.4. The third one is the

method by Gijbels et al. (2007), which was shown to perform well in various cases, compared to
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Table 1: When f = f1, n = 100 or 200, and σ=0.25 or 0.5, this table presents frequency tables of
the numbers of detected jumps, frequency tables of the numbers of detected roofs/valleys, averaged
Hausdorff distances between Ĵn and J , averaged Hausdorff distances between R̂n and R, and
averaged values of selected procedure parameters, for various methods based on 100 replicated
simulations.

Method Jump Detection Roof/Valley Detection
n σ Frequency Table dH Frequency Table dH

0.25

PPOPT 2 3 0.021 2 3 0.038
95 5 (0.11, 15.29) 87 13 (0.12, 54.15)

PPBST 2 3 0.024 2 3 0.039
93 7 (0.11, 23.81) 87 13 (0.12, 83.51)

Loader 2 3 4 0.078 2 3 0.082
86 11 3 (0.11) 85 15 (0.11)

Zero-Crossing 2 3 4 0.101 2 3 4 0.154
100 79 16 5 (0.12, 15.49) 76 23 1 (0.13, 32.78)

0.5

PPOPT 1 2 3 0.047 1 2 3 0.044
3 85 12 (0.11, 29.68) 18 74 8 (0.12, 90.67)

PPBST 1 2 3 4 0.052 1 2 3 0.056
9 79 11 1 (0.11, 39.96) 22 72 6 (0.13, 121.50)

Loader 2 3 4 5 0.107 2 3 4 0.110
68 23 8 1 (0.11) 71 18 11 (0.11)

Zero-Crossing 1 2 3 4 0.115 2 3 4 0.295
3 60 33 4 (0.12, 26.12) 62 23 15 (0.14, 70.02)

0.25

PPOPT 2 3 0.015 2 3 0.034
98 2 (0.11, 14.83) 95 5 (0.11, 36.65)

PPBST 2 3 0.019 2 3 0.037
97 3 (0.11, 13.45) 93 7 (0.10, 75.18)

Loader 1 2 3 0.063 2 3 0.057
1 92 7 (0.10) 89 11 (0.10)

Zero-Crossing 2 3 4 5 0.081 2 3 4 0.106
200 89 5 4 2 (0.12, 11.34) 81 17 2 (0.13, 21.12)

0.5

PPOPT 1 2 3 0.034 1 2 3 0.040
7 91 2 (0.11, 25.81) 1 85 14 (0.12, 73.19)

PPBST 1 2 3 0.042 1 2 3 0.047
9 89 2 (0.11, 34.03) 2 83 15 (0.12, 92.13)

Loader 1 2 3 0.074 2 3 4 0.066
12 83 5 (0.10) 78 13 9 (0.11)

Zero-Crossing 1 2 3 0.075 2 3 4 0.149
19 76 5 (0.12, 21.35) 74 20 6 (0.13, 43.37)
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Table 2: When f = f2, n = 100 or 200, and σ=0.25 or 0.5, this table presents frequency tables of
the numbers of detected jumps, frequency tables of the numbers of detected roofs/valleys, averaged
Hausdorff distances between Ĵn and J , averaged Hausdorff distances between R̂n and R, and
averaged values of selected procedure parameters, for various methods based on 100 replicated
simulations.

Method Jump Detection Roof/Valley Detection
n σ Frequency Table dH Frequency Table dH

0.25

PPOPT 1 2 0.031 3 4 0.037
94 6 (0.11, 10.72) 93 7 (0.12, 54.10)

PPBST 1 2 0.034 3 4 0.041
87 13 (0.12, 15.84) 94 6 (0.13, 69.71)

Loader 1 2 3 0.097 3 4 5 0.111
85 14 1 (0.11) 83 12 5 (0.13)

Zero-Crossing 1 2 3 0.114 2 3 4 0.145
100 69 26 5 (0.11, 11.89) 2 71 26 (0.13, 53.31)

0.5

PPOPT 1 2 3 0.039 1 2 3 4 0.058
82 12 6 (0.12, 25.81) 3 9 71 17 (0.12, 113.24)

PPBST 1 2 3 0.054 1 2 3 4 0.077
83 14 3 (0.12, 31.23) 3 6 69 22 (0.13, 132.66)

Loader 1 2 3 0.134 1 2 3 4 0.142
70 26 4 (0.12) 1 11 58 30 (0.13)

Zero-Crossing 1 2 3 4 0.174 2 3 4 0.215
62 28 8 2 (0.13, 19.97) 7 55 38 (0.13, 126.56)

0.25

PPOPT 1 2 0.023 3 4 0.029
99 1 (0.11, 7.29) 98 2 (0.12, 44.36)

PPBST 1 2 0.027 3 4 0.032
96 4 (0.12, 8.42) 96 4 (0.12, 53.77)

Loader 1 2 3 0.053 3 4 5 0.062
87 11 2 (0.11) 88 10 2 (0.12)

Zero-Crossing 1 2 3 0.084 2 3 4 0.102
200 73 20 7 (0.10, 10.46) 4 74 22 (0.13, 39.75)

0.5

PPOPT 1 2 3 0.035 2 3 4 0.047
88 8 4 (0.12, 14.83) 3 84 13 (0.12, 74.51)

PPBST 1 2 3 0.044 2 3 4 0.058
81 13 6 (0.12, 20.01) 6 78 16 (0.13, 75.76)

Loader 1 2 3 0.116 2 3 4 0.128
76 18 6 (0.11) 5 71 24 (0.13)

Zero-Crossing 1 2 3 4 0.145 2 3 4 0.182
67 21 11 1 (0.12, 13.55) 3 64 33 (0.13, 77.39)
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Figure 4: Bar charts of the frequencies of the detected jumps(J) and roofs/valleys(R) that are
within 0.02 of the true jumps/roofs/valleys in various cases. (a) n = 100 and σ = 0.25. (b) n = 100
and σ = 0.5. (c) n = 200 and σ = 0.25. (d) n = 200 and σ = 0.5. These four plots are in cases
when f = f1. Plots (e)–(h) present corresponding results in cases when f = f2.

the sigma filter and M-smoother by Chu et al. (1998). Its curve estimator is denoted as f̂G. For

each estimator, we compute an approximation of the mean integrated squared error (MISE), which

is defined to be the sample mean of ISE = 1
n

∑n
i=1

[
f̂(xi) − f(xi)

]2
for estimator f̂ , based on 100

replications. To further investigate jump/roof/valley preservation, we also compute approximations

of local MISE, defined in the same way as the approximations of MISE except that the former is

computed within 0.05 of each true jump/roof/valley point. Related results are presented in Tables

3 and 4. From the tables, we can see that f̂BST performs uniformly better than f̂L and f̂G in

both MISE and local MISE. The typical estimators by the three methods, defined to be the ones

with median ISE values among 100 replications, are shown in Figure 5. From the plots, we can see

that f̂BST does preserve jumps/roofs/valleys reasonably well.

5 A Real-Data Example

In this section, we demonstrate the proposed method using a real-data example about daily ex-

change rates between Korean currency Won and US currency Dollar between January 2, 1997 and
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Table 3: MISE, local MISE and their standard errors (in parenthesis) of various curve estimators
when f = f1.

Local MISE
n σ Method MISE 0.25 ± 0.05 0.5 ± 0.05 0.75 ± 0.05

0.25
f̂BST 0.0041 (0.0003) 0.0044 (0.0005) 0.0069 (0.0008) 0.0073 (0.0006)

f̂L 0.0211 (0.0004) 0.0770 (0.0021) 0.0113 (0.0009) 0.0540 (0.0014)

100 f̂G 0.0189 (0.0004) 0.0572 (0.0019) 0.0125 (0.0011) 0.0660 (0.0021)

0.5
f̂BST 0.0123 (0.0009) 0.0098 (0.0011) 0.0094 (0.0011) 0.0087 (0.0012)

f̂L 0.0441 (0.0013) 0.1067 (0.0046) 0.0539 (0.0050) 0.1169 (0.0056)

f̂G 0.0444 (0.0012) 0.0947 (0.0040) 0.0354 (0.0032) 0.1239 (0.0060)

0.25
f̂BST 0.0018 (0.0002) 0.0021 (0.0002) 0.0013 (0.0002) 0.0013 (0.0002)

f̂L 0.0122 (0.0002) 0.0460 (0.0008) 0.0060 (0.0006) 0.0415 (0.0008)

200 f̂G 0.0149 (0.0002) 0.0509 (0.0008) 0.0061 (0.0005) 0.0595 (0.0010)

0.5
f̂BST 0.0071 (0.0006) 0.0059 (0.0009) 0.0054 (0.0009) 0.0052 (0.0008)

f̂L 0.0245 (0.0008) 0.0667 (0.0028) 0.0286 (0.0032) 0.0625 (0.0030)

f̂G 0.0298 (0.0007) 0.0748 (0.0029) 0.0198 (0.0020) 0.0877 (0.0033)

Table 4: MISE, local MISE and their standard errors (in parenthesis) of various curve estimators
when f = f2.

Local MISE
n σ Method Global MISE 0.25 ± 0.05 0.5 ± 0.05 0.75 ± 0.05

0.25
f̂BST 0.0075 (0.0003) 0.0054 (0.0005) 0.0044 (0.0005) 0.0105 (0.0008)

f̂L 0.0156 (0.0003) 0.0789 (0.0020) 0.0075 (0.0007) 0.0175 (0.0015)

100 f̂G 0.0140 (0.0004) 0.0607 (0.0019) 0.0075 (0.0008) 0.0157 (0.0015)

0.5
f̂BST 0.0260 (0.0011) 0.0183 (0.0024) 0.0182 (0.0021) 0.0264 (0.0023)

f̂L 0.0375 (0.0012) 0.1146 (0.0055) 0.0287 (0.0030) 0.0384 (0.0036)

f̂G 0.0368 (0.0012) 0.1011 (0.0043) 0.0288 (0.0029) 0.0386 (0.0034)

0.25
f̂BST 0.0042 (0.0002) 0.0031 (0.0004) 0.0029 (0.0004) 0.0054 (0.0004)

f̂L 0.0091 (0.0002) 0.0462 (0.0009) 0.0047 (0.0004) 0.0109 (0.0009)

200 f̂G 0.0098 (0.0002) 0.0531 (0.0011) 0.0046 (0.0004) 0.0093 (0.0007)

0.5
f̂BST 0.0147 (0.0007) 0.0103 (0.0013) 0.0090 (0.0009) 0.0129 (0.0010)

f̂L 0.0213 (0.0007) 0.0651 (0.0027) 0.0141 (0.0014) 0.0243 (0.0019)

f̂G 0.0241 (0.0007) 0.0859 (0.0029) 0.0145 (0.0014) 0.0228 (0.0018)
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Figure 5: True regression functions (solid) and their estimators. Plot (a): f1. Plot (b): f2.

December 31, 1998. During this two-year period, the world financial market experienced several

crises and the daily exchange rates between Won and Dollar were unstable. This can be seen from

Figure 6(a) in which 498 daily exchange rates (Won/Dollar) observed in that period are shown.

Our proposed methods are relevant to this example because the proposed jump/roof/valley de-

tection procedures can identify positions where the exchange rates jump and where they change

trends (either from increasing to decreasing, or from decreasing to increasing). Such information is

important to financial research (cf., e.g., Devereux 1999).

In the proposed jump/roof/valley detection procedures, we choose the kernel function and

the value of αn to be the same as those used in the simulation examples in Section 4. After

normalizing the design points such that the normalized design interval is [0,1], and after choosing

procedure parameters properly by the proposed bootstrap procedure, our jump detection procedure

identifies one jump point at the 229-th observation, which corresponds to the date December 01,

1997. This result is consistent with the fact that Korea experienced a financial crisis starting from

December 1997, and the exchange rates from Dollar to Won surged at that time which resulted in

later interventions from the International Monetary Fund (IMF) to stabilize the Korean currency.

Our roof/valley detection procedure finds five roofs/valleys at five time points after December

1997. These results and the corresponding results by procedures Loader and Zero-Crossing are

summarized in Table 5, and the results by PPBST are also shown in Figure 6(a) by vertical lines.

From Table 5 and Figure 6(a), we can see that the five roofs/valleys detected by PPBST correspond

to five places that the exchange rates clearly change their trends. As a comparison, the procedure

22



Table 5: Detected jumps/roofs/valleys by various methods for the daily exchange rates data.

Methods Detected Jumps Detected Roofs/Valleys

PPBST 12/01/1997 01/09/1998, 05/01/1998, 05/15/1998,
07/29/1998, 09/24/1998

Loader 05/13/1998 01/08/1998, 02/03/1998, 04/03/1998,
05/13/1998, 07/23/1998, 09/21/1998

Zero-Crossing 05/29/1997, 12/02/1997, 01/28/1998, 02/09/1998, 03/06/1998,
05/20/1998, 08/31/1998 04/14/1998, 05/15/1998, 07/30/1998,

09/04/1998, 10/05/1998, 11/30/1998

Loader could not detect the sharp jump around December 01, 1997, several detected jumps by

procedure Zero-Crossing do not seem real (e.g., the one at 05/29/1997), and some of their detected

roofs/valleys do not correspond to places that the exchange rates have significant trend shifts

(e.g., the ones at 03/06/1998 and 09/04/1998 by Zero-Crossing). We then apply the three curve

estimation methods considered in the previous section to this data, for estimating the underlying

regression curve of the daily exchange rates. The estimated curve should be useful for economists

to study how the daily exchange rates change over time during that period of time and how the

exchange rates react to certain monetary policies. The estimated curves are shown in Figure 6(b).

From the plot, it can be seen that our proposed procedure f̂BST can preserve jumps/roofs/valleys

well, and the two alternative procedures f̂L and f̂G would blur certain roofs/valleys.
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Figure 6: (a) Daily exchange rates data (small circles) and the detected jump (vertical dashed line)
and detected roofs/valleys (vertical dotted lines) by PPBST. (b) Curve estimators f̂BST, f̂L and

f̂G.
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As a side note, jump (or, shift) detection in a sequential time series is the major research

problem of statistical process control (SPC) (cf., e.g., Choi 2008, Hawkins and Olwell 1998, Qiu

2008). There are several essential differences between that problem and the jump/roof/valley

detection problem considered in this paper. First, in the current problem, the sample size is fixed

beforehand; the data are sequential and the sample size keeps increasing in the SPC problem.

Second, the mean response is assumed to be a constant before or after a potential jump point in

the SPC problem; it is considered as a nonparametric curve in the current problem. Third, the

major goal of a SPC procedure is to signal a jump as soon as possible after it occurs when its

false alarm rate is kept under a fixed level; the major goal in the current problem is to detect

jumps/roofs/valleys accurately. Generally speaking, SPC procedures can not be used for handling

the current problem because they have made use of the special data structure that is commonly

assumed in the SPC problem but invalid in the current problem. On the other hand, our proposed

jump/roof/valley detection procedures would not be efficient to handle the SPC problem because

we have not accommodated the special data structure that is commonly assumed in the SPC

problem. There is some other existing research on jump (or, change point) detection in analysing

time series data with fixed sample sizes (e.g., Horváth 2001, Lin 2007), most of which assumes that

the number of jumps is known and the mean response follows a parametric model. Our proposed

jump/roof/valley detection procedures do not make such assumptions.

6 Concluding Remarks

We have presented procedures for detecting jumps/roofs/valleys in regression curves in cases when

the number of jumps/roofs/valleys is unknown. Jump/roof/valley preserving curve estimation is

also discussed, along with practical selection of procedure parameters. Some theoretical justifi-

cations and numerical studies show that these procedures work reasonably well in applications.

Computer codes of the proposed procedures are available from the authors upon request.

In this paper, procedure parameters are chosen to be the same in the entire design interval,

which may not be ideal for certain applications. Intuitively, in regions where the underlying regres-

sion curve has relatively large curvature, the bandwidth, for instance, should be chosen relatively

small to reduce possible estimation bias, and it should be chosen relatively large in regions where

the regression curve is quite flat. Selection of variable procedure parameters requires much fu-

ture research. Also, we did not discuss jump/roof/valley detection in boundary regions [0, hn) and
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(1 − hn, 1] in this paper. When the sample size is limited, this boundary jump detection problem

could be important, which also requires much future research effort.

Acknowledgments: The authors thank the editor, the associate editor, and two anonymous

referees for many constructive comments and suggestions, which greatly improved the quality of

the paper. This research is supported in part by an NSF grant.

Appendix

In Appendix, we outline the proofs of seven theorems discussed in Section 3. More complete

proofs of these theorems are available online as supplemental materials.

A Outline of the Proof of Theorem 1

For rk used in equation (4), it is easy to check that

rk

nhk+1
n

= νk + O

(
1

nhn

)
, for k = 0, 1, 2, 3, 4, (10)

where νk =
∫ 1
−1 ukK(u) du. Since K is a symmetric density function, ν0 = 1 and ν1 = ν3 = 0. By

(4) and (10), for a given point x ∈ Ωn, we have

E(â(x)) =

∫ 1

−1

ν4 − ν2u
2

ν4 − ν2
2

{
f(x) + f ′(x)uhn +

f ′′(x)

2
u2h2

n + o(h2
n)

}
K(u) du + O

(
1

nhn

)

= f(x) + o(h2
n) + O

(
1

nhn

)
.

So,

|E(â(x)) − f(x)| = o(h2
n) + O

(
1

nhn

)
. (11)

On the other hand, it is easy to check that

â(x) − E(â(x)) =
ν4

ν4 − ν2
2

ξ0(x) − ν2

ν2 − ν2
2

ξ2(x) + O

(
1

nhn

)
, (12)

where ξk(x) =
∑n

i=1(
xi−x
hn

)kK(xi−x
hn

)εi, for k = 0, 1, 2. By (A.23) in Gijbels et al. (2007), we have

sup
x∈[hn,1−hn]

√
nhn

ln(n)
|ξk(x)| = O(1), a.s., for k = 0, 1, 2. (13)

So, by (12), (13), and the condition that 1/(nh4
n) = o(1), we have

|â(x) − E(â(x))| = O




√

ln(n)

nhn



 , a.s.. (14)
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Notice that both (11) and (14) hold uniformly for all x ∈ Ωn. Therefore, we have

‖ â − f ‖Ωn= o(h2
n) + O




√

ln(n)

nhn



 , a.s..

The first equation in Theorem 1 regarding â has been proved.

To prove the second equation in the theorem regarding b̂, by (4) and (10), we have

E(b̂(x)) =
1

hn

∫ 1

−1

u

ν2
f(x + uhn)K(u) du + O

(
1

nh2
n

)
(15)

= f ′(x) + o(hn) + O

(
1

nh2
n

)

So,

|E(b̂(x)) − f ′(x)| = o(hn) + O

(
1

nh2
n

)
. (16)

By (4), (13) and and the condition that 1/(nh4
n) = o(1), we have

b̂(x) − E(b̂(x)) =
1

hn

[
1

ν2
ξ1(x) + O

(
1

nhn

)
ξ0(x)

]
= O

(√
ln(n)

nh3
n

)
, a.s. (17)

Therefore, by (16) and (17), which are uniformly true for x ∈ Ωn, we have

‖ b̂ − f ′ ‖Ωn= o(hn) + O

(√
ln(n)

nh3
n

)
, a.s.

To prove the third equation in Theorem 1 regarding ĉ, from (4), we have

E(ĉ(x)) =
2

h2
n

∫ 1

−1

−ν2 + u2

ν4 − ν2
2

f(x + uhn)K(u) du + O

(
1

nh3
n

)
(18)

= f ′′(x) + o(hn) + O

(
1

nh3
n

)
.

So,

|E(ĉ(x)) − f ′′(x)| = o(hn) + O

(
1

nh3
n

)
. (19)

Meanwhile, by (4), (13) and the condition that 1/(nh4
n) = o(1), we have

ĉ(x) − E(ĉ(x)) =
1

h2
n

[ −ν2

ν4 − ν2
2

ξ0(x) +
1

ν4 − ν2
2

ξ2(x) + O

(
1

nhn

)
ξ0(x)

]
= O

(√
ln(n)

nh5
n

)
(20)

Therefore, by (19), (20) and the condition that 1/(nh4
n) = o(1), we have

‖ ĉ − f ′′ ‖Ωn= o(hn) + O

(√
ln(n)

nh5
n

)
, a.s..
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B Outline of the Proof of Theorem 2

To prove result (i), from expression (15) and the condition that 1/(nhn) = o(1), we have

E(b̂(x)) =
1

hn

{∫

Q(1)
+

∫

Q(2)

}
u

ν2
f(x + uhn)K(u) du + O

(
1

nh2
n

)

=
f−(s)

∫
Q(1) uK(u)du + f+(s)

∫
Q(2) uK(u)du

hnν2
+ o

(
1

hn

)
.

Since
∫ 1
−1 uK(u) du = 0,

∫
Q(1) uK(u)du = −

∫
Q(2) uK(u)du. So, we have

E(b̂(x)) =
d

hnν2

∫

Q(2)
uK(u)du + o

(
1

hn

)
. (21)

Therefore, by (17), (21) and the condition that ln(n)/(nh3
n) = o(1), we have

b̂(x) =
d

hnν2

∫

Q(2)
uK(u)du + o

(
1

hn

)
, a.s.

To prove result (ii) in Theorem 2, by (18) and the condition that 1/(nhn) = o(1), we have

E(ĉ(x)) =
2

h2
n

{∫

Q(1)
+

∫

Q(2)

} −ν2 + u2

ν4 − ν2
2

f(x + uhn)K(u) du} + O

(
1

nh3
n

)

=
2d

h2
n(ν4 − ν2

2)

{∫

Q(2)
u2K(u)du − ν2

∫

Q(2)
K(u)du

}
+ O

(
1

hn

)
. (22)

In the above expression, we have used the result that 1/(nh2
n) = o(1/(nh3

n)) = o(1) and the facts

that
∫
Q(1) K(u)du = 1 −

∫
Q(2) K(u)du and

∫
Q(1) u2K(u)du = ν2 −

∫
Q(2) u2K(u)du.

Next, we notice that ν4−ν2
2 =

∫ 1
−1 u4K(u)du−(

∫ 1
−1 u2K(u)du)2 > 0, by the Hölder’s inequality.

Also, let ρ(τ) =

∫ τ

0
u2K(u)du

2
∫ τ

0
K(u)du

. Then, ρ is a strictly increasing function of τ on (0, 1), and it is

continuous from left at 1. Consequently, ρ(τ) < ρ(1) for any τ ∈ (0, 1), which implies that
∫ τ

0
u2K(u) du < 2

∫ τ

0
K(u) du

∫ 1

0
u2K(u) du = ν2

∫ τ

0
K(u) du.

Therefore, for any τ ∈ (0, 1),

C :=
2d

ν4 − ν2
2

[
ν2

∫ τ

0
K(u) du −

∫ τ

0
u2K(u) du

]
> 0 (23)

By (20), (22) and (23), we have result (ii) in the theorem.

C Outline of the Proof of Theorem 3

To prove result (i) of Theorem 3, from expression (18) and the condition that 1/(nh̃2
n) = o(1), we

have

E(ĉ(x)) =
2

h̃2
n

{∫

Q̃(1)
+

∫

Q̃(2)

} −ν2 + u2

ν4 − ν2
2

f(x + uh̃n)K(u) du + O

(
1

nh̃3
n

)
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=
2d̃

h̃n(ν4 − ν2
2)

{∫

Q̃(2)
u3K(u)du − ν2

∫

Q̃(2)
uK(u)du

}
+ o

(
1

h̃n

)
. (24)

By (20), (24) and the condition that ln(n)/(nh̃5
n) = o(1), we have result (i) of Theorem 3.

To prove result (ii), first, we have the following expressions for ĉ+(x) and ĉ−(x):

ĉ+(x) = 2
n∑

i=1

(r+
1 r+

3 − (r+
2 )2) + (r+

1 r+
2 − r+

0 r+
3 )(xi − x) + (r+

0 r+
2 − (r+

1 )2)(xi − x)2

r+
0 r+

2 r+
4 − (r+

2 )3 + 2r+
1 r+

2 r+
3 − (r+

1 )2r+
4 − r+

0 (r+
3 )2

Kr

(
xi − x

h̃n

)
Yi,

ĉ−(x) = 2
n∑

i=1

(r−1 r−3 − (r−2 )2) + (r−1 r−2 − r−0 r−3 )(xi − x) + (r−0 r−2 − (r−1 )2)(xi − x)2

r−0 r−2 r−4 − (r−2 )3 + 2r−1 r−2 r−3 − (r−1 )2r−4 − r−0 (r−3 )2
Kl

(
xi − x

h̃n

)
Yi,

where r+
k =

∑n
i=1(xi − x)kKr

(
xi−x
h̃n

)
and r−k =

∑n
i=1(xi − x)kKl

(
xi−x
h̃n

)
, for k = 0, 1, 2, 3, 4, and

Kr and Kl are defined by Kr(u) = 2K(u)I(0 < u ≤ 1) and Kl(u) = 2K(u)I(−1 ≤ u < 0).

Similar to (10), it is easy to check that, for k = 0, 1, 2, 3, 4,

r+
k

nh̃k+1
n

= ν+
k + O

(
1

nh̃n

)
,

r−k
nh̃k+1

n

= ν−
k + O

(
1

nh̃n

)
, (25)

where ν+
k =

∫ 1
0 ukKr(u) du and ν−

k =
∫ 0
−1 ukKl(u) du. Also, we can check that ν+

0 = ν−
0 = 1 and

ν−
k = (−1)kν+

k for k = 0, 1, 2, 3, 4. As in (22), by all the results mentioned above and the condition

that 1/(nh̃2
n) = o(1), we have

E(ĉ+(x) − ĉ−(x)) =
2d̃

h̃n

[
ν+
2 ν+

4 − (ν+
2 )3 + 2ν+

1 ν+
2 ν+

3 − (ν+
1 )2ν+

4 − (ν+
3 )2

]

{
(ν+

1 ν+
3 − (ν+

2 )2)

∫

Q̃(2)
u(Kr(u)− Kl(u))du + (ν+

1 ν+
2 − ν+

3 )

∫

Q̃(2)
u2(Kr(u) + Kl(u))du +

(ν+
2 − (ν+

1 )2)

∫

Q̃(2)
u3(Kr(u) − Kl(u))du

}
+ o

(
1

h̃n

)
=:

C̃

h̃n

+ o

(
1

h̃n

)
.

In the above expression, we have used the facts that
∫
Q̃(1) ukKr(u)du = ν+

k −
∫
Q̃(2) ukKr(u)du and

∫
Q̃(1) ukKl(u)du = ν−

k −
∫
Q̃(2) ukKl(u)du, for k = 0, 1, 2, 3. As in (23), by the Hölder’s inequality,

we can show that C̃ > 0 for any τ ∈ (0, 1). Therefore, we have

E(ĉ+(x) − ĉ−(x)) =






o( 1
h̃n

), if τ = 0,

C̃
h̃n

+ o
(

1
h̃n

)
, if 0 < τ < 1 and x ∈ Q̃

(1)
n (x),

− C̃
h̃n

+ o
(

1
h̃n

)
, if 0 < τ < 1 and x ∈ Q̃

(2)
n (x).

(26)

On the other hand, as in (20), (ĉ+(x) − ĉ−(x)) − E(ĉ+(x) − ĉ−(x)) can be expressed as a linear

combination of ξ+
k (x) =

∑n

i=1
(

xi−x

h′

n
)kKr(

xi−x

h′

n
)εi

∑n

i=1
Kr(

xi−x

h′

n
)

and ξ−k (x) =

∑n

i=1
(

xi−x

h′

n
)kKl(

xi−x

h′

n
)εi

∑n

i=1
Kl(

xi−x

h′

n
)

, for k = 0, 1, 2.

As in (13), it can be checked that, for k = 0, 1, 2,

sup
x∈[h′

n,1−h′

n]

√
nh′

n

ln(n)
|ξ+

k (x)| = O(1), a.s., sup
x∈[h′

n,1−h′

n]

√
nh′

n

ln(n)
|ξ−k (x)| = O(1), a.s.. (27)
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Therefore, we have

(ĉ+(x) − ĉ−(x)) − E (ĉ+(x) − ĉ−(x)) = O

(√
ln(n)

nh̃5
n

)
, a.s.. (28)

By (26), (28) and the condition that ln(n)/(nh̃5
n) = o(1), we have proved result (ii) of the theorem.

D Outline of the Proof of Theorem 4

First, by (4) and the condition that 1/(nhn) = o(1), we have

σ̂2
n =

σ̂2

nh3
n

∫ 1

−1

u2

ν2
2

K2(u) du + O

(
1

n2h4
n

)
= O

(
1

nh3
n

)
, a.s., (29)

where σ̂2 is a consistent estimator of σ2. Second, it can be show that

un ∼ u∗
n = σ̂n

√
χ2

1,1−αn
= σ̂nZ1−αn/2, a.s., (30)

where “∼” means that the two terms on its two sides have the same order.

By Theorem 1, we know that ‖ b̂ − f ′ ‖Ωn= O(
√

ln(n)/(nh3
n)), a.s. By this result, results in

(29) and (30), and the condition that Z1−αn/2/
√

nhn = o(1), we have |̂b(x)| < un, a.s., which is

uniformly true for x ∈ Ωn. Therefore, when n is large enough,

Ĵn ⊆ On(J), a.s., (31)

where On(J) =
⋃p

j=1[sj − hn, sj + hn] is the union of the neighborhoods of all jump points.

On the other hand, when x is one of the true jump points, from result (i) of Theorem 2, we can

see that |̂b(x)| = C1/hn + o(1/hn) where C1 = (d/ν2)
∫ 1
0 uK(u) du 6= 0. Therefore, when n is large

enough, |̂b(x)| > un = o(1/hn), a.s., by (29), (30), and the condition that Z1−αn/2/
√

nhn = o(1).

Furthermore, by result (ii) of Theorem 2 and the two conditions on vn stated in Theorem 4, we

have that, when n is large enough, |ĉ(x)| ≤ vn, |ĉ(xi1)| > vn, |ĉ(xi2)| > vn, and ĉ(xi1)ĉ(xi2) < 0,

where xi1 and xi2 are two points in [x − hn, x + hn] that satisfy the following conditions: (i) xi1 is

on the left side of x, (ii) xi2 is on the right side, and (iii) both xi1 and xi2 are τ∗hn away from x

with τ∗ > 0 fixed. Therefore, x would be detected, which implies that, when n is large enough,

J ⊆ Ĵn, a.s. (32)

By combining results (31) and (32), we have d̂H(Ĵn, J ;hn, vn) = O(hn).
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E Proof of Theorem 5

Proof of this theorem is similar to that of Theorem 4. It is therefore omitted.

F Outline of the Proof of Theorem 6

When n is large enough, by Theorem 4, ŝj ∈ [sj − hn, sj + hn], a.s.. Without loss of generality, we

only consider the case when j = 1, and assume that ŝ1 = s1 − δhn with δ ∈ [0, 1]. In such a case,

by Theorem 1,

|â−(ŝ1) − f−(s1)| ≤ |â−(ŝ1) − f−(ŝ1)| + |f−(ŝ1) − f−(s1)|

= O(hn) + o(h2
n,1) + O

(√
ln(n)

nhn,1

)
. (33)

On the other hand, similar to (11) and (14), we have

â+(ŝ1) =

(∑
xi∈[ŝ1,s1]

+
∑

xi>s1

) ν+
4 −ν+

2 (
xi−ŝ1
hn,1

)2

ν+
4 −(ν+

2 )2
f(xi)K

(
xi−ŝ1
hn,1

)

∑n
i=1 K

(
xi−ŝ1
hn,1

) + O

(√
ln(n)

nhn,1

)

= f+(s1) + o(h2
n,1) + O

(
hn

hn,1

)
+ O

(√
ln(n)

nhn,1

)
, a.s. (34)

By (33) and (34), we have

|d̂1 − d1| = O

(
hn

hn,1

)
+ o(h2

n,1) + O

(√
ln(n)

nhn,1

)
, a.s.

Using similar arguments, we can check the results about
̂̃
dj, for j = 1, 2, . . . , p.

G Outline of the Proof of Theorem 7

By Theorems 4 and 5, both p̂ and q̂ would converge almost surely to p and q, respectively. Therefore,

when n is large enough, p̂ = p and q̂ = q, a.s. By (2) and (6), for any x ∈ Hn = [h∗
n, 1 − h∗

n], we

have

ĝ(x) =
n∑

i=1

r2 − r1(xi − x)

r0r2 − r2
1

g(xi)K

(
xi − x

h∗
n

)
+

n∑

i=1




p∑

j=1

djI(xi > sj) −
p∑

j=1

d̂jI(xi > ŝj)



 r2 − r1(xi − x)

r0r2 − r2
1

K

(
xi − x

h∗
n

)
+
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n∑

i=1




q∑

k=1

d̃kI(x > s̃k)+ −
q∑

j=1

̂̃
dkI(x > ̂̃sk)+



 r2 − r1(xi − x)

r0r2 − r2
1

K

(
xi − x

h∗
n

)
+

n∑

i=1

r2 − r1(xi − x)

r0r2 − r2
1

εiK

(
xi − x

h∗
n

)

=: A1(x) + A2(x) + A3(x) + A4(x) (35)

Similar to (11), it can be checked that ‖A1 − g‖Hn = O
(
(h∗

n)2
)
+ O

(
1

nh∗

n

)
. So,

∫ 1−h∗

n

h∗

n

[A1(x) − g(x)]2 dx ≤ ‖A1 − g‖2
Hn

= O
(
(h∗

n)4
)

+ O

(
1

(nh∗
n)2

)
. (36)

Regarding A2(x), we can check that

‖A2‖Hn\
⋃p

j=1
[sj−hn−h∗

n,sj+hn+h∗

n] ≤
p∑

j=1

|dj − d̂j | = O

(
hn

hn,1

)
+ o(h2

n,1) + O

(√
ln(n)

nhn,1

)
. (37)

On the other hand, when x ∈ ⋃p
j=1[sj−hn−h∗

n, sj+hn+h∗
n], |A2(x)| ≤ maxp

j=1(|dj |+|d̂j |+|dj−d̂j|).
Therefore,

‖A2‖⋃p

j=1
[sj−hn−h∗

n,sj+hn+h∗

n] = O(1), a.s. (38)

By (37) and (38), we have

∫

Hn

[A2(x)]2 dx =

[
O

(
hn

hn,1

)
+ o(h2

n,1) + O

(√
ln(n)

nhn,1

)]2

+ O(hn + h∗
n) (39)

Similarly, we have

∫

Hn

[A3(x)]2 dx = (O

(
h̃n

h̃n,1

)
+ o(h̃2

n,1) + O

(√
ln(n)

nh̃n,1

)
)2 + O(h̃n + h∗

n). (40)

Similar to (14), we have ‖A4‖Hn = O(
√

ln(n)/(nh∗
n)). Therefore,

∫

Hn

[A4(x)]2 dx = O

(
ln(n)

nh∗
n

)
. (41)

By (36), (39)–(41), and the fact that (α+β)2 ≤ 2α2 +2β2, for any α, β ∈ R, we have the result

in Theorem 7.

H Supplemental Materials

Proofs.pdf: This pdf file contains complete proofs of theorems 1–7 in the paper.
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