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Nonparametric regression analysis provides statistaabktfor estimating regression
curves or surfaces from noisy data. Conventional nonparamegression proce-
dures, however, are only appropriate for estimating cootirs regression functions.
When the underlying regression function has jumps, funstiestimated by the con-
ventional procedures are not statistically consistenhatjump positions. Recently,
regression analysis for estimating jump regression fonstis under rapid develop-
ment [1], which is briefly introduced here.

1-D Jump Regression Analysis  In one-dimensional (1-D) cases, fluenp regression
analysis (JRA) model has the form
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where{y;, i = 1,2,...,n} are observations of the response variatd¢ design points
{z;, i=1,2,...,n}, fis an unknown regression function, afd, i = 1,2,...,n}
are random errors. For simplicity, we assume that the destgrval is[0, 1]. In (1), f
is assumed to have the expression

fla)=g(x)+ Y dI(z > s;), forz € [0, 1], )

j=1

whereg is a continuous function in the entire design interyak the number of jump
points,{s;, j =1,2,...,p} are the jump positions, andl,;, j =1,2,...,p} are the
corresponding jump magnitudes. fdf= 0, then f is continuous in the entire design
interval. In (2), the functiory is called thecontinuity part of f, and the summation
Zle d;I(xz > s;) is called thejump part of f. The major goal of JRA is to esti-
mateg, p, {s;, 7 = 1,2,...,p} and{d;, j = 1,2,...,p} from the observed data
{(mi7yi)7 1= 1, 2, ceey n}

A natural jump detection criterion is
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whereh,, is a positive bandwidth parametdf; and K, are two density kernel func-
tions with supportg0, 1] and[—1, 0), respectively. Obviously)/,(x) is a difference
of two one-sided kernel estimators. The first kernel estimator in equatigng3ight-

sided; it is a weighted average of the observations in thiet-sgled neighborhood
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[,z + hy,]. Similarly, the second kernel estimator in (3) is left-gid# is a weighted
average of the observations in the left-sided neighbortiood h,,, z). Intuitively,
M, (x) would be large ifz is a jump point, and small otherwise. So, if we know that
there is only one jump point (i.ep, = 1) in the design interval0, 1], then the jump
points; can be estimated by the maximizeré1,,(x)| overx € [h,, 1 — h,], denoted
assp, andd; can be estimated by/,,(51). In cases whep > 1 andp is known, the
jump positions{s;,j = 1,2,...,p} and the jump magnitudegl;,j = 1,2,...,p}
can be estimated in a similar way. L€tbe the maximizer ofM,,(z)| over the range

J—1
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forj =1,2,...,p. The order statistics ofs},j = 1,2,..., p} are denoted by(,, <
s@) <...< S?p)' Then we defing; = sz‘j) andd; = M, (S?j))’ forj=1,2,...,p.

When the number of jumpsis unknown, people often use a threshold vakjeand
flag all design points ifz; : |M,(z;)| > w,} as candidate jumps. Then, certain
deceptive candidate jumps need to be deleted using a maidifigeocedure (cf., [1],
Section 3.3.3). An alternative approach is to perform aeseof hypothesis tests for
Hy :p=jversusH; : p > j,forj = 0,2,..., until the first “fail to rejectH,” (cf.,
[1], Section 3.3.2).

The jump detection criteriod/,,(z) in (3) can be regarded as an estimator of the
first-order derivativef’(xz) of f. It is based on local constant kernel estimation of
the one-sided limitg_ (x) and f (x). Alternative jump detection criteria, based on
other estimators of’(z) or based on estimators of both the first-order and the second-
order derivatives off, also exist. See [2] for a recent discussion on this topicand
estimation of the continuity pagtafter jump points being detected.

2-D Jump Regression Analysis In two-dimensional (2-D) cases, the regression
model becomes
Zi:f(xiayi)+5iv1:172a"'an7 (4)

wheren is the sample siz€(z;,v;),7 = 1,2,...,n} are the design points in the de-
sign spacey is the 2-D regression functiodZ;,: = 1,2,...,n} aren observations
of the response variablg, and{¢;,7 = 1,2,...,n} are random errors. For simplic-
ity, we assume that the design space is the unit sq0até x [0,1]. In such cases,
jump positions off are curves in the design space, which are calleguimg location
curves (JLCs). Because jumps are an important structurg ,a2-D JRA is mainly for
estimating JLCs and for estimatirfgwith the jumps at the JLCs preserved, which are
referred to agump detection andjump-preserving surface estimation, respectively, in
the literature (cf., [1], Chapters 4 and 5).

Early 2-D jump detection methods assume that the number 68 J& known; they
are usually the generalized versions of their 1-D countésphased on estimation of
certain first-order directional derivatives ¢f In [3], Qiu and Yandell describe the
JLCs asa pointset in the design space, and suggest estimating the JLCs byeanoth
pointset in the same design space. Since points in a poitgséetnot form curves, the
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connection among the points of a pointset is much more flextdn the connection

among the points on curves, which makes detection of arpithiaCs possible. For

instance, Qiu and Yandell [3] suggest flagging a design f@sir@ candidate jump point
if the estimated gradient magnitude ffat this point is larger than a threshold. In
that paper, we also suggest two modification proceduresnove certain deceptive

jump candidates. Various other jump detection procedibig@&sed on estimation of the
first-order derivatives off, or the second-order derivatives ¢f or both, have been

proposed in the literature. See [4] for a recent discussiothis topic.

In the literature, there are two types of jump-preservingese estimation methods.
Methods of the first type usually estimate the surface afierps are detected [5].

Around the detected jumps, the surface estimator at a gioen i3 often defined by a

weighted average of the observations whose design pomtseated on the same side
of the estimated JLC as the given point in a neighborhoodeptint. Potential jumps

can thus be preserved in the estimated surface. The sequadftynethods estimates
the surface without detecting the jumps explicitly, usihg so-called adaptive local
smoothing. Adaptive local smoothing procedures obtaitagerevidence of jumps

from the observed data directly, and adapt to such evidemgegdy to preserve jumps

while removing noise [6].

2-D Jump Regression Analysis and Image Processing Model (4) can be used in
cases with arbitrary 2-D design points. In certain appilices (e.g., image processing),
design points are regularly spaced in the 2-D design spaceudh cases, a simpler
model would be

ZL_] :f(xL7yj)+€LJa 1=1,2,...,n; .7: 1,2,...,n2, (5)
where{Z;;, i = 1,2,...,n1; j = 1,2,..., ny} are observations of the response
variableZ observed at design poinf$x;, y;), i = 1,2,...,n1; j = 1,2,...,n2},
and{e;;, i=1,2,...,n1; j =1,2,...,n2} are random errors.

Model (5) is ideal for describing a monochrome digital imag@ the setup of a
monochrome digital image;; denotes theth row of pixels,y; denotes thgth column
of pixels, f is the image intensity functiory,(z;, y;) is the true image intensity level
at the(i, j)th pixel, ¢;; denotes the noise at tii¢ j)th pixel, andZ;; is the observed
image intensity level at théi, j)th pixel. The image intensity functiofi often has
jumps at the outlines of objects. Therefore, 2-D JRA can igea powerful statistical
tool for image processing. In the image processing liteegfpositions at whiclf has
jumps are calledtep edges, and positions at which the first-order derivativeg dfave
jumps are calledoof edges (cf., [1], Chapter 6). Edge detection and edge-preserving
image restoration are two major problems in image procgssihich are essentially
the same problems as jump detection and jump-preserviffigcguestimation in 2-D
JRA. See [7] for a recent discussion about the connecticthdifierences between the
two areas.
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