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Nonparametric regression analysis provides statistical tools for estimating regression
curves or surfaces from noisy data. Conventional nonparametric regression proce-
dures, however, are only appropriate for estimating continuous regression functions.
When the underlying regression function has jumps, functions estimated by the con-
ventional procedures are not statistically consistent at the jump positions. Recently,
regression analysis for estimating jump regression functions is under rapid develop-
ment [1], which is briefly introduced here.

1-D Jump Regression Analysis In one-dimensional (1-D) cases, thejump regression
analysis (JRA) model has the form

yi = f(xi) + εi, for i = 1, 2, . . . , n, (1)

where{yi, i = 1, 2, . . . , n} are observations of the response variabley at design points
{xi, i = 1, 2, . . . , n}, f is an unknown regression function, and{εi, i = 1, 2, . . . , n}
are random errors. For simplicity, we assume that the designinterval is[0, 1]. In (1),f
is assumed to have the expression

f(x) = g(x) +

p∑

j=1

djI(x > sj), for x ∈ [0, 1], (2)

whereg is a continuous function in the entire design interval,p is the number of jump
points,{sj, j = 1, 2, . . . , p} are the jump positions, and{dj , j = 1, 2, . . . , p} are the
corresponding jump magnitudes. Ifp = 0, thenf is continuous in the entire design
interval. In (2), the functiong is called thecontinuity part of f , and the summation∑p

j=1 djI(x > sj) is called thejump part of f . The major goal of JRA is to esti-
mateg, p, {sj, j = 1, 2, . . . , p} and{dj , j = 1, 2, . . . , p} from the observed data
{(xi, yi), i = 1, 2, . . . , n}.

A natural jump detection criterion is

Mn(x) =
1

nhn

n∑

i=1

YiK1

(
xi − x

hn

)
−

1

nhn

n∑

i=1

YiK2

(
xi − x

hn

)
, (3)

wherehn is a positive bandwidth parameter,K1 andK2 are two density kernel func-
tions with supports[0, 1] and[−1, 0), respectively. Obviously,Mn(x) is a difference
of two one-sided kernel estimators. The first kernel estimator in equation (3) is right-
sided; it is a weighted average of the observations in the right-sided neighborhood
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[x, x + hn]. Similarly, the second kernel estimator in (3) is left-sided; it is a weighted
average of the observations in the left-sided neighborhood[x − hn, x). Intuitively,
Mn(x) would be large ifx is a jump point, and small otherwise. So, if we know that
there is only one jump point (i.e.,p = 1) in the design interval[0, 1], then the jump
points1 can be estimated by the maximizer of|Mn(x)| overx ∈ [hn, 1−hn], denoted
asŝ1, andd1 can be estimated byMn(ŝ1). In cases whenp > 1 andp is known, the
jump positions{sj , j = 1, 2, . . . , p} and the jump magnitudes{dj , j = 1, 2, . . . , p}
can be estimated in a similar way. Lets∗j be the maximizer of|Mn(x)| over the range

x ∈ [hn, 1 − hn]

∖(
j−1⋃

ℓ=1

[s∗ℓ − hn, s∗ℓ + hn]

)

for j = 1, 2, . . . , p. The order statistics of{s∗j , j = 1, 2, . . . , p} are denoted bys∗(1) ≤

s∗(2) ≤ . . . ≤ s∗(p). Then we definêsj = s∗(j) andd̂j = Mn

(
s∗(j)

)
, for j = 1, 2, . . . , p.

When the number of jumpsp is unknown, people often use a threshold valueun and
flag all design points in{xi : |Mn(xi)| ≥ un} as candidate jumps. Then, certain
deceptive candidate jumps need to be deleted using a modification procedure (cf., [1],
Section 3.3.3). An alternative approach is to perform a series of hypothesis tests for
H0 : p = j versusH1 : p > j, for j = 0, 2, . . ., until the first “fail to rejectH0” (cf.,
[1], Section 3.3.2).

The jump detection criterionMn(x) in (3) can be regarded as an estimator of the
first-order derivativef ′(x) of f . It is based on local constant kernel estimation of
the one-sided limitsf−(x) andf+(x). Alternative jump detection criteria, based on
other estimators off ′(x) or based on estimators of both the first-order and the second-
order derivatives off , also exist. See [2] for a recent discussion on this topic andon
estimation of the continuity partg after jump points being detected.

2-D Jump Regression Analysis In two-dimensional (2-D) cases, the regression
model becomes

Zi = f(xi, yi) + εi, i = 1, 2, . . . , n, (4)

wheren is the sample size,{(xi, yi), i = 1, 2, . . . , n} are the design points in the de-
sign space,f is the 2-D regression function,{Zi, i = 1, 2, . . . , n} aren observations
of the response variableZ, and{εi, i = 1, 2, . . . , n} are random errors. For simplic-
ity, we assume that the design space is the unit square[0, 1] × [0, 1]. In such cases,
jump positions off are curves in the design space, which are called thejump location
curves (JLCs). Because jumps are an important structure off , 2-D JRA is mainly for
estimating JLCs and for estimatingf with the jumps at the JLCs preserved, which are
referred to asjump detection andjump-preserving surface estimation, respectively, in
the literature (cf., [1], Chapters 4 and 5).

Early 2-D jump detection methods assume that the number of JLCs is known; they
are usually the generalized versions of their 1-D counterparts, based on estimation of
certain first-order directional derivatives off . In [3], Qiu and Yandell describe the
JLCs asa pointset in the design space, and suggest estimating the JLCs by another
pointset in the same design space. Since points in a pointsetneed not form curves, the
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connection among the points of a pointset is much more flexible than the connection
among the points on curves, which makes detection of arbitrary JLCs possible. For
instance, Qiu and Yandell [3] suggest flagging a design pointas a candidate jump point
if the estimated gradient magnitude off at this point is larger than a threshold. In
that paper, we also suggest two modification procedures to remove certain deceptive
jump candidates. Various other jump detection procedures,based on estimation of the
first-order derivatives off , or the second-order derivatives off , or both, have been
proposed in the literature. See [4] for a recent discussion on this topic.

In the literature, there are two types of jump-preserving surface estimation methods.
Methods of the first type usually estimate the surface after jumps are detected [5].
Around the detected jumps, the surface estimator at a given point is often defined by a
weighted average of the observations whose design points are located on the same side
of the estimated JLC as the given point in a neighborhood of the point. Potential jumps
can thus be preserved in the estimated surface. The second type of methods estimates
the surface without detecting the jumps explicitly, using the so-called adaptive local
smoothing. Adaptive local smoothing procedures obtain certain evidence of jumps
from the observed data directly, and adapt to such evidence properly to preserve jumps
while removing noise [6].

2-D Jump Regression Analysis and Image Processing Model (4) can be used in
cases with arbitrary 2-D design points. In certain applications (e.g., image processing),
design points are regularly spaced in the 2-D design space. In such cases, a simpler
model would be

Zij = f(xi, yj) + εij , i = 1, 2, . . . , n1; j = 1, 2, . . . , n2, (5)

where{Zij , i = 1, 2, . . . , n1; j = 1, 2, . . . , n2} are observations of the response
variableZ observed at design points{(xi, yj), i = 1, 2, . . . , n1; j = 1, 2, . . . , n2},
and{εij , i = 1, 2, . . . , n1; j = 1, 2, . . . , n2} are random errors.

Model (5) is ideal for describing a monochrome digital image. In the setup of a
monochrome digital image,xi denotes theith row of pixels,yj denotes thejth column
of pixels,f is the image intensity function,f(xi, yj) is the true image intensity level
at the(i, j)th pixel,εij denotes the noise at the(i, j)th pixel, andZij is the observed
image intensity level at the(i, j)th pixel. The image intensity functionf often has
jumps at the outlines of objects. Therefore, 2-D JRA can provide a powerful statistical
tool for image processing. In the image processing literature, positions at whichf has
jumps are calledstep edges, and positions at which the first-order derivatives off have
jumps are calledroof edges (cf., [1], Chapter 6). Edge detection and edge-preserving
image restoration are two major problems in image processing, which are essentially
the same problems as jump detection and jump-preserving surface estimation in 2-D
JRA. See [7] for a recent discussion about the connections and differences between the
two areas.

References

[1] Qiu, P. (2005), Image Processing and Jump Regression Analysis, New York: John
Wiley & Sons.

3



[2] Joo, J., and Qiu, P. (2009), “Jump detection in a regression curve and its deriva-
tive,” Technometrics, 51, 289-305.

[3] Qiu, P., and Yandell, B. (1997), “Jump detection in regression surfaces,” Journal
of Computational and Graphical Statistics, 6, 332–354.

[4] Sun, J., and Qiu, P. (2007), “Jump detection in regression surfaces using both
first-order and second-order derivatives,” Journal of Computational and Graphical
Statistics, 16, 289–311.

[5] Qiu, P. (1998), “Discontinuous regression surfaces fitting,” The Annals of Statis-
tics, 26, 2218–2245.

[6] Gijbels, I., Lambert, A., and Qiu, P. (2006), “Edge-preserving image denoising
and estimation of discontinuous surfaces,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28, 1075–1087.

[7] Qiu, P. (2007), “Jump surface estimation, edge detection, and image restora-
tion,” Journal of the American Statistical Association, 102, 745–756.

4


