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Abstract

This paper considers statistical process control (SPC) when the process measurement is

multivariate. In the literature, most existing multivariate SPC procedures assume that the

in-control distribution of the multivariate process measurement is known and it is a Gaussian

distribution. In applications, however, the measurement distribution is usually unknown and it

needs to be estimated from data. Furthermore, multivariate measurements often do not follow

a Gaussian distribution (e.g., cases when some measurement components are discrete). We

demonstrate that results from conventional multivariate SPC procedures are usually unreliable

when the data are non-Gaussian. Existing statistical tools for describing multivariate non-

Gaussian data, or, transforming the multivariate non-Gaussian data to multivariate Gaussian

data are limited, making appropriate multivariate SPC difficult in such cases. In this paper,

we suggest a methodology for estimating the in-control multivariate measurement distribution

when a set of in-control data is available, which is based on log-linear modeling and which takes

into account the association structure among the measurement components. Based on this

estimated in-control distribution, a multivariate CUSUM procedure for detecting shifts in the

location parameter vector of the measurement distribution is also suggested for Phase II SPC.

This procedure does not depend on the Gaussian distribution assumption; thus, it is appropriate

to use for most multivariate SPC problems.

Key Words: Discrete measurements; Log-linear modeling; Multivariate distribution; Non-

Gaussian data; Nonparametric procedures; Statistical process control.

1 Introduction

This paper discusses statistical process control (SPC) when the process measurement is multivari-

ate. In the literature, SPC is often divided into two phases. In Phase I, a set of process data is

gathered and analyzed. Any unusual “patterns” in the data lead to adjustments and fine tuning
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of the process. Once all such assignable causes are accounted for, we are left with a clean set of

data, gathered under stable operating conditions and illustrative of the actual process performance.

This set is then used for estimating the in-control distribution of the measurement. In Phase II,

the estimated in-control measurement distribution from a Phase I data is used, and the major goal

of this phase is to detect changes in the measurement distribution after an unknown time point.

Performance of a Phase II SPC procedure is often measured by the average run length (ARL),

which is the average number of observations needed for the procedure to signal a change in the

measurement distribution. The in-control ARL value of the procedure is often controled at some

specific level. Then, the procedure performs better if its out-of-control ARL is shorter, when de-

tecting a given change. See, e.g., Chen et al. (2005), Chen and Zhang (2004), Mason et al. (1997),

Woodall (2000), Yeh et al. (2003), Yeh et al. (2004), and Yeh et al. (2006) for detailed discussion.

In the literature, most multivariate SPC procedures (e.g., Healy 1987; Crosier 1988; Hawkins

1991; Yeh and Lin 2002, Yeh et al. 2006) discuss Phase II SPC for Gaussian data only. That

is, they assume that the in-control measurement distribution is known, and this distribution is

multivariate Gaussian. In applications, however, the multivariate measurement distribution should

be estimated from data, and it is sometimes non-Gaussian, even when the process is in-control.

In such cases, existing statistical tools for describing multivariate non-Gaussian distributions, or

transforming a non-Gaussian data to a Gaussian data, are limited (cf., e.g., Fang et al. 1990). It

is therefore challenging to estimate the in-control multivariate measurement distribution from a

Phase I in-control data, for Phase II SPC, because we even do not know how to describe it when

it is multivariate non-Gaussian.

Most existing Phase II SPC procedures may not be appropriate to use when the data are non-

Gaussian, because in such cases their actual false alarm rate is often different from the assumed

false alarm rate, and this difference is large in some cases. Stoumbos and Sullivan (2002) performed

an excellent study to investigate the robustness of multivariate EWMA procedures to the Gaussian

distribution assumption, and found that such procedures were quite robust when the distribution is

continuous but non-Gaussian and when the procedure parameter r is chosen small. However, how

small r should be depends on the skewness of the actual measurement distribution, which is difficult

to measure in applications when the measurement distribution is multivariate non-Gaussian. Also,

when r is chosen small, the corresponding EWMA procedure would not be sensitive enough to

relatively large shifts. These issues will be further discussed in Section 4 with numerical examples.
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To overcome the difficulty caused by the Gaussian distribution assumption, Qiu and Hawkins

(2001) suggest a nonparametric multivariate CUSUM procedure, based on the antiranks of the

measurement components. This procedure can only detect shifts in a location parameter of the

measurement distribution, which are not on or close to one specific direction in which the compo-

nents of the shift are all the same. This limitation is later lifted by Qiu and Hawkins (2003). But

both papers only discuss the case when the in-control measurement distribution is assumed known;

they have not discussed how to estimate the in-control distribution from an in-control dataset.

Nonparametric control charts for univariate SPC have been discussed by several authors, in-

cluding Albers and Kallenberg (2004), Bakir (2004, 2005, 2006), Chakraborti et al. (2004), and

some others. See Chakraborti et al. (2001) for a review on this topic.

This paper tries to make two contributions to the SPC literature. One is that a method is

suggested for estimating the in-control, p-variate, non-Gaussian measurement distribution from an

in-control dataset, where p > 1 is an integer. By this method, each measurement component is first

transformed to a binary variable, which is an indicator function of the event that the measurement

component is larger than its in-control median. Then, a log-linear model is used for describing

possible associations among the p binary variables, providing a log-linear estimator of the in-

control joint distribution of the p binary variables. This idea can be generalized, without much

theoretical difficulty, in the way that each measurement component is transformed to a categorical

variable with q ≥ 2 categories, and the log-linear modeling procedure is applied to the p categorical

variables. The other contribution is that a multivariate CUSUM procedure is suggested for Phase

II SPC, for detecting shifts in a location parameter of the measurement distribution, based on the

estimated in-control measurement distribution by the suggested log-linear modeling approach. This

procedure is distribution-free in the sense that all its properties depend on the distribution of the

p binary variables only; thus, it is appropriate to use for most multivariate SPC problems.

The rest of the article is organized as follows. In next section, the log-linear modeling procedure

for estimating the in-control measurement distribution is introduced in details. In Section 3, the

Phase II multivariate CUSUM procedure is discussed. Then, some numerical examples are presented

in Section 4, for evaluating the performance of these procedures. A real-data application is also

discussed there. Finally, several remarks conclude the article in Section 5.
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2 Estimation of the In-Control Distribution

At the end of Phase I SPC, suppose that all bugs are fixed and we are left with a clean data set

{X(i) = (X1(i), X2(i), . . . , Xp(i))
′, i = 1, 2, . . . , n1}, where n1 is a fixed sample size. This sequence

of observations are assumed to be i.i.d. with a common cumulative distribution function F (x),

which is also the in-control distribution of the process measurements. In the statistical literature,

there are very limited tools for describing F (x) when it is non-Gaussian, or, for transforming X(i)

such that the transformed measurement follows a Gaussian distribution. A major difficulty lies

behind proper description of the association structure among the components of X(i). When the

components of X(i) are all categorical, however, there are a number of methods for describing the

distribution of X(i). The most popular one is the log-linear modeling approach (see e.g., Agresti

2002, Chapter 8). In this section, we describe how to use this approach for estimating the in-control

distribution of X(i).

Assume that the in-control median of Xj(i) is mj, for j = 1, 2, . . . , p, which can be estimated

well from the in-control data {X(i), i = 1, 2, . . . , n1}. We then define

Yj(i) = I(Xj(i) > mj), for j = 1, 2, . . . , p, (1)

and Y(i) = (Y1(i), Y2(i), . . . , Yp(i))
′, where I(a) is an indicator function which equals 1 if a is “true”

and 0 otherwise. So, equation (1) transforms the p original measurement components to p binary

variables. Note that, in equation (1), the in-control median mj can be replaced by the more general

in-control r-th quantile of Xj(i), with r being any real number in (0, 1). We consider using the

median, which is the 0.5-th quantile, because the resulting joint distribution of Y(i) could be more

efficiently estimated by the log-linear modeling approach discussed in this section, due to the fact

that relatively less cell probabilities of the contingency table formed by the components of Y(i)

would be small in such a case. See Chapter 8 of Agresti (2002) for related discussion.

Of course, we lose information by transforming X(i) to Y(i). But, it is not difficult to check

that the distribution of Y(i) would be changed by any shift in the median vector (m1,m2, . . . , mp)
′

of the process, as long as the in-control measurement distribution F (x) has a positive probability

to take values in any neighborhood of its in-control median vector. Therefore, if we are interested

in detecting shifts in a location parameter vector (e.g., the median vector (m1,m2, . . . ,mp)
′), then

Y(i) is appropriate to use. If we are also interested in detecting other changes in F (x) (e.g.,
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changes in the covariance matrix of F (x)), then Y(i) needs to be modified. In the latter case, one

possible approach is to transform each component of X(i) to a categorical variable with more than

two categories. This issue will not be discussed in details in this article to keep the paper within

reasonable length, and it is left for our future research.

Next, we discuss the log-linear modeling in the case of p = 3, for simplicity of presentation.

For cases of p > 3, the model can be discussed similarly, although the notation would be more

complicated. Let Oj1j2j3 be the observed cell count of the (j1, j2, j3)-th cell of the 3-way contingency

table of the in-control data, with the three binary variables Y1, Y2 and Y3 defined in equation (1)

as classifiers, for j1, j2, j3 = 0, 1. Then, a saturated log-linear model is defined by

log(Oj1j2j3) = µ + λY1
j1

+ λY2
j2

+ λY3
j3

+ λY1Y2
j1j2

+ λY1Y3
j1j3

+ λY2Y3
j2j3

+ λY1Y2Y3
j1j2j3

, for j1, j2, j3 = 0, 1, (2)

where µ is a constant term, λY1
j1

, λY2
j2

and λY3
j3

are the main effects of Y1, Y2 and Y3, respectively,

λY1Y2
j1j2

, λY1Y3
j1j3

and λY2Y3
j2j3

are the 2-way interaction terms, and λY1Y2Y3
j1j2j3

is the 3-way interaction term.

To make all parameters estimable, they should satisfy some conditions. One set of such conditions

is as follows:

∑

j1
λY1

j1
=

∑

j2
λY2

j2
=

∑

j3
λY3

j3
= 0;

∑

j1
λY1Y2

j1j2
=

∑

j2
λY1Y2

j1j2
= 0;

∑

j1
λY1Y3

j1j3
=

∑

j3
λY1Y3

j1j3
= 0;

∑

j2
λY2Y3

j2j3
=

∑

j3
λY2Y3

j2j3
= 0;

∑

j1
λY1Y2Y3

j1j2j3
=

∑

j2
λY1Y2Y3

j1j2j3
=

∑

j3
λY1Y2Y3

j1j2j3
= 0.

The main effects λY1
j1

, λY2
j2

and λY3
j3

are related to the marginal distributions of Y1, Y2 and Y3.

Because medians are used in equation (1) for defining Y s, λY1
j1

, λY2
j2

and λY3
j3

should be all zero in (2).

However, in log-linear modeling, we should also follow the hierarchy principle that all lower-order

terms need to be included in the model if a higher-order interaction term is in the model. For this

reason, the main effects are still included in model (2).

Remark 2.1 Besides the reason given at the end of the paragraph containing equation (1), another

main reason to use medians in equation (1) for defining Y s is for the property that: the main effects

of model (2) are all zero. Otherwise, means or other location parameters of the measurement

components can also be used for defining Y s. So, in model (2), there are actually 2 ∗ 2 ∗ 2 − 3 = 5

non-redundant parameters. For a more general log-linear model, see Sections 8.1 and 8.2 of Agresti

(2002) for related discussion about the number of non-redundant model parameters.
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Model (2) can be denoted by (Y1Y2Y3), which lists the highest-order terms in the model for each

variable. If the 3-way interaction term is not in the model, then the conditional association between

any pair of Y1, Y2 and Y3 is the same at the two levels of the remaining variable. In other words,

the partial association between any pair of the variables is homogeneous across the different levels

of the third variable. This model is denoted by (Y1Y2, Y1Y3, Y2Y3). Similarly, we use (Y1Y2, Y1Y3)

to denote the model with the two 2-way interaction terms λY1Y2
j1j2

and λY1Y3
j1j3

included, and with the

other 2-way interaction term λY2Y3
j2j3

along with the 3-way interaction term λY1Y2Y3
j1j2j3

excluded. That

model implies that Y2 and Y3 are independent conditional on Y1, the partial association between

Y1 and Y2 is homogeneous across the different levels of Y3, and the partial association between Y1

and Y3 is also homogeneous across the different levels of Y2. So, model (2) and its variants can

describe all kinds of possible association among Y1, Y2 and Y3, by including appropriate 2-way and

3-way interaction terms.

There are some standard procedures for testing the goodness-of-fit of a log-linear model. These

procedures include the Pearson’s χ2 test and the likelihood ratio G2 test (cf., Agresti 2002, Section

8.3, for introduction). When the sample size is reasonably large in the sense that most cell counts

in the related contingency table are larger than or equal to 5, these two tests usually give same

conclusions.

Model selection based on the likelihood ratio test and the hierarchy principle is standard in the

literature. In all numerical examples of this paper, we use the backward elimination procedure and

the conventional rule that only one term is considered to be deleted at each step. For example, to

test whether or not the 3-way interaction term should be deleted from model (2), we can use the

following likelihood ratio test statistic:

G2(M0|M1) = −2 log

(

`M0

`M1

)

,

where `M0 and `M1 denote the likelihood functions of the submodel (Y1Y2, Y1Y3, Y2Y3) (denoted as

M0) and the full model (Y1Y2Y3) (denoted as M1), respectively. Then the observed value of the

test statistic can be compared to the χ2(1) critical value for making decisions. Note that this test

is based on the asymptotic distribution of G2(M0|M1). So, we should use it with caution when the

sample size is small, although it has been shown in the literature that it is still quite reliable with

fairly sparse tables (cf., Haberman 1977). For specific expressions of the likelihood functions used

in the above equation, see expressions (9.3) and (9.4) in Agresti (2002, Section 9.2).
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After the final model is determined, the expected cell count Ej1j2j3 of the (j1, j2, j3)-th cell can

be computed, for j1, j2, j3 = 0, 1, and the joint distribution of Y1, Y2 and Y3 can be estimated by

{Ej1j2j3/n1, j1, j2, j3 = 0, 1}.

It should be noticed that if the final model is the saturated model (2), then Ej1j2j3 = Oj1j2j3 for

all j1, j2 and j3. In such a case, Ej1j2j3/n1 is the ordinary relative frequency of the (j1, j2, j3)-th cell.

When the components of Y have some association structure, the selected log-linear model (e.g., the

model (Y1Y2, Y1Y3, Y2Y3)) would be simpler than the saturated model to reflect this structure. In

such cases, the variability of Ej1j2j3/n1 computed from the selected log-linear model is smaller than

the variability of the corresponding relative frequency Oj1j2j3/n1, because the selected log-linear

model has less parameters than the saturated model. In other words, Ej1j2j3/n1 is “smoother”

than Oj1j2j3/n1. In that sense, the log-linear modeling is a smoothing process, and the degree of

smoothing depends on the association structure of the components of Y. Since both the log-linear

estimator Ej1j2j3/n1 and the relative frequency estimator Oj1j2j3/n1 are unbiased in cases when the

selected model holds, the log-linear estimator {Ej1j2j3/n1, j1, j2, j3 = 0, 1} would provide a better

estimator for the joint distribution of Y in such cases.

The log-linear modeling approach described above is easy to use, since almost all existing

statistical software packages have functions to do this analysis. For instance, the function glm() in

S-Plus or R can be used for this purpose.

3 A Distribution-Free Multivariate CUSUM for Phase II SPC

In this section, we propose a phase II, distribution-free, multivariate CUSUM for detecting location

shifts in the original measurement distribution F (x). Note that F (x) has a shift in a location

parameter vector (e.g., the mean vector) if and only if it has the same shift in another location

parameter vector (e.g., the median vector). For this reason and for reasons given in Section 2 (cf,

Remark 2.1), we can focus on detecting shifts in the median vector (m1,m2, . . . ,mp)
′ of F (x). To

this end, it has been explained in Section 2 that Y(i) = (Y1(i), Y2(i), . . . , Yp(i))
′ is appropriate to

use, because any shift in (m1,m2, . . . ,mp)
′ would alter the in-control distribution of Y(i). Thus,

such a shift can be detected by a procedure designed for detecting shifts in the joint distribution

of Y(i).
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Assume that the in-control joint distribution of Y(i) is {f
(0)
j1,...,jp

, j1, . . . , jp = 0, 1}, which can

be estimated by the log-linear modeling procedure discussed in Section 2. For instance, when

p = 3, f
(0)
j1,j2,j3

is estimated by Ej1j2j3/n1, where Ej1j2j3/n1 is obtained from the selected log-linear

model. In the statistical literature, the Pearson’s χ2 test is well-known for testing whether or not

the distribution of a random vector equals a given distribution. Let

gj1,...,jp
(i) = I(Y1(i) = j1, . . . , Yp(i) = jp),

where j1, . . . , jp = 0 or 1. Then
∑n

i=1 gj1,...,jp
(i) is the observed count of the (j1, . . . , jp)-th cell as

of time point n, and nf
(0)
j1,...,jp

is the corresponding expected cell count. The conventional Pearson’s

χ2 statistic is defined by

∑

j1,...,jp=0,1

(

∑n
i=1 gj1,...,jp

(i) − nf
(0)
j1,...,jp

)2

nf
(0)
j1,...,jp

,

which measures the discrepancy between the observed and expected cell counts.

Then, a natural idea to detect shifts in a location parameter vector of the measurement dis-

tribution of a process is to compare the observed value of the above Pearson’s χ2 statistic with

a threshold value. If the former is larger, then a shift is signaled. In most existing CUSUM pro-

cedures, however, an “allowance” constant k is often used for repeatedly restarting the CUSUM

procedures when there is no evidence of shifts, so that the CUSUMs can react to an incoming shift

promptly. The size of k often depends on the magnitude of a target shift. If the target shift is small,

then k should be chosen small as well, and vice versa. It has been well demonstrated in the litera-

ture (e.g., Hawkins and Olwell 1998) that inclusion of this constant would improve the performance

of the CUSUM procedures, especially when the target shift is small. By combining the Pearson’s

χ2 test and the idea of using the “allowance” constant k, the following CUSUM procedure, which

has a similar form to that of the procedure by Crosier (1988), is suggested for detecting possible

shifts in a location parameter vector of the measurement distribution of a process:

• When Cn ≤ k, let










Sobs
n = 0

S
exp
n = 0,

(3)

• When Cn > k, let










Sobs
n = (Sobs

n−1 + g(n))(Cn − k)/Cn

S
exp
n = (S

exp
n−1 + f (0))(Cn − k)/Cn,

(4)
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where

Cn = [(Sobs
n−1 − S

exp
n−1) + (g(n) − f (0))]′[diag(S

exp
n−1 + f (0))]−1

[(Sobs
n−1 − S

exp
n−1) + (g(n) − f (0))],

Sobs
0 = S

exp
0 = 0, g(n) is a vector of all gj1,...,jp

(n) values, for j1, . . . , jp = 0, 1; f (0) is a vector of all

f
(0)
j1,...,jp

values, for j1, . . . , jp = 0, 1; k ≥ 0 is the “allowance” constant; diag(a) denotes a diagonal

matrix with its diagonal elements equal to the corresponding components of the vector a; and the

superscripts “obs” and “exp” denote observed and expected counts, respectively. Define

un = (Sobs
n − Sexp

n )′[diag(Sexp
n )]−1(Sobs

n − Sexp
n ). (5)

Then

un > h (6)

signals a shift, where h > 0 is a control limit.

It can be checked that un equals the conventional Pearson’s χ2 statistic when k = 0, and

un = max(0, Cn − k) when k 6= 0. The latter conclusion can be verified by some similar arguments

to those in Appendix C of Qiu and Hawkins (2001). Therefore, the constant k is indeed used for

repeatedly restarting the CUSUM when there is no evidence of shifts, such that the CUSUM can

react to a real shift promptly.

The cusum procedure (3)-(6), together with the log-linear modeling procedure discussed in

Section 2, can detect any shift in a location parameter vector of the multivariate measurement

distribution, without assuming the in-control measurement distribution to be known and Gaussian.

Its two parameters h and k can be easily determined by the following two algorithms.

For a given in-control ARL value ARL0 and a given k, the value of h in procedure (3)-(6) can

be searched in a range [0, Uh] by the following algorithm, where Uh is an upper bound satisfying

the condition that the in-control ARL of the procedure is larger than ARL0 when h = Uh.

Algorithm I (searching for h when k is given)

1. In the i-th iteration, h is searched in the range [L
(i)
h , U

(i)
h ]. When i = 1, L

(1)
h = 0 and

U
(1)
h = Uh.
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2. A series of random vectors from the multinomial distribution with probability parameters

{f
(0)
j1,...,jp

, j1, . . . , jp = 0, 1} are generated by a random number generator.

3. This series of random vectors are used in the place of g(n) in (4) and the run length distribu-

tion is obtained by running the procedure (3)-(6) with h = h(i) := (L
(i)
h + U

(i)
h )/2 a number

of times (10,000 times in all numerical examples in Section 4). The in-control ARL value

ARL
(i)
0 is then computed by averaging all the run lengths obtained.

4. If |ARL
(i)
0 − ARL0| < ε1, where ε1 > 0 is a pre-specified threshold value, then the algorithm

stops, and the searched value of h is h(i). Otherwise, define

L
(i+1)
h = h(i) and U

(i+1)
h = U

(i)
h , if ARL

(i)
0 < ARL0;

L
(i+1)
h = L

(i)
h and U

(i+1)
h = h(i), if ARL

(i)
0 > ARL0;

and h(i+1) := (L
(i+1)
h + U

(i+1)
h )/2.

5. If |h(i+1)−h(i)| < ε2, where ε2 > 0 is another pre-specified threshold value, then the algorithm

stops, and the searched value of h is h(i). In such a case, a message should be printed, to

remind the user of the actual in-control ARL value. If |h(i+1) −h(i)| ≥ ε2, then the algorithm

executes the next iteration.

Based on our experience, the above algorithm usually stops at the fourth step. But occasionally

it can happen that it stops at the fifth step, especially when ε1 is chosen relatively small and ε2

is chosen relatively large. In such cases, users are reminded by the algorithm that the assumed

in-control ARL value is not reached within a specified range by procedure (3)-(6) using the searched

value of h; its actual in-control ARL value is also printed.

If we have a target shift in the location parameter vector of the measurement distribution, then

for a given in-control ARL value ARL0, the optimal value of k of procedure (3)-(6) can be searched

in a range [0, Uk] by the following algorithm.

Algorithm II (searching for the optimal value of k for a target shift)

1. In the i-th iteration, k is searched in the range [L
(i)
k , U

(i)
k ]. When i = 1, L

(1)
k = 0 and

U
(1)
k = Uk. Divide [L

(i)
k , U

(i)
k ] into m equally spaced subintervals, where m is pre-specified (e.g.,
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m = 10). Then k is searched among all the end points {k
(i)
j = L

(i)
k + (U

(i)
k − L

(i)
k ) ∗ j/m, j =

0, 1, . . . ,m} of these subintervals.

2. When k = k
(i)
j , for any j = 0, 1, . . . ,m, search for the corresponding h value by the Algorithm

I, such that the in-control ARL equals ARL0.

3. For the target shift, compute the out-of-control distribution of Y(i), denoted by {f
(1)
j1,...,jp

, j1, . . . , jp

= 0, 1}, by the log-linear modeling procedure discussed in Section 2.

4. Generate a series of random vectors from the multinomial distribution with probability pa-

rameters {f
(1)
j1,...,jp

, j1, . . . , jp = 0, 1}, and this series of random vectors are used in the place

of g(n) in (4).

5. For each j, compute the out-of-control ARL, denoted as ARL
(i)
1,j, by running the procedure (3)-

(6) with k = k
(i)
j a number of times. Suppose that the minimizer of {ARL

(i)
1,j , j = 0, 1, . . . ,m}

is J (i).

6. If (U
(i)
k − L

(i)
k )/m < ε3, where ε3 > 0 is a pre-specified threshold value, then the algorithm

stops, and the searched value of k is k
(i)

J(i) . Otherwise, let L
(i+1)
k = max(0, k

(i)

J(i)
−1

) and

U
(i+1)
k = min(k

(i)

J(i)+1
, Uk); the algorithm executes the next iteration.

Remark 3.1 The “allowance” constant k should be chosen from the interval [0,maxj1,...,jp=0,1(1−

f
(0)
j1,...,jp

)/f
(0)
j1,...,jp

]. Otherwise, the CUSUM procedure (3)-(6) will restart at each time point when the

process is in-control, and consequently the specified in-control ARL property can not be achieved.

Based on Remark 3.1, the upper bound Uk can be chosen to be maxj1,...,jp=0,1(1−f
(0)
j1,...,jp

)/f
(0)
j1,...,jp

.

Selection of Uh should not be difficult. For a given in-control ARL value ARL0 and a given k, we

could try a large number (e.g., 50 or 100) for Uh, and then run procedure (3)-(6) to make sure

that its in-control ARL is larger than ARL0. Since both Algorithms I and II converge reasonably

fast, accurate selection of Uk and Uh is not essential to their convergence speed, which makes the

selection of Uk and Uh much easier. That is, the two upper bounds can be chosen relatively large,

without sacrificing much convergence speed of the two algorithms.

The values of ε1, ε2 and ε3 are related to the accuracy requirements for the solutions. For

example, if we require that the actual in-control ARL value equals with high probability the assumed
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in-control ARL value up to the third digit after the decimal point, then we can choose ε1 =

0.5 × 10−3.

4 Numerical Examples

In this section, we present some numerical examples regarding the numerical performance of the

procedures introduced in the previous two sections. The examples are organized in three parts.

Those related to the log-linear modeling procedure for estimating the in-control measurement dis-

tribution are discussed in Section 4.1. The performance of the CUSUM procedure (3)-(6) for Phase

II SPC is studied in Section 4.2. In Section 4.3, we apply our method to a real dataset.

4.1 Performance of the Log-Linear Modeling Procedure

Before we can apply the Phase II procedure (3)-(6) to a specific problem, the in-control joint

distribution {f
(0)
j1,...,jp

, j1, . . . , jp = 0, 1} of Y(i) needs to be estimated from an in-control dataset.

To this end, a traditional method is to use relative frequencies (RF) computed from the in-control

dataset for estimating f (0), which is equivalent to estimating the joint distribution of Y(i) based

on the saturated model (2). As discussed in Section 2, the variability of the RF estimators is

relatively large, mainly due to the fact that the RF method ignores the association structure of the

measurement components completely, which is demonstrated by the following example.

Suppose that p = 3, and the measurement vector X(i) = (X1(i), X2(i), X3(i))
′ has one of the

following two in-control distributions.

Case I Case II

X1 ∼ χ2(1) X1 ∼ N(0, 1)

X2 ∼ χ2(1) X2 ∼ χ2(3)

X3 ∼ χ2(1) X3 = X1 + ξ, ξ ∼ N(0, 1)

X1, X2 and X3 are independent X1, X2 and ξ are independent

It can be seen that the three measurement components are independent of each other in Case I;

X1 and X2 are independent, X2 and X3 are independent, and X1 and X3 are associated in Case II.

12



Using the notation of the log-linear (LL) modeling introduced in Section 2, Case I can be described

by the model (Y1, Y2, Y3), and Case II can be described by the model (Y2, Y1Y3).

Three sample sizes n1 = 100, 1000 and 10000 are considered. By the RF method, the averaged

estimate of the in-control distribution of Y(i) and its standard error based on 1000 replications are

presented in Table 1. As a comparison, the corresponding results by the LL procedure are presented

in the same table. In the LL modeling process, some rules outlined in Section 2 are followed, and

the significance level is chosen to be 0.05.

From Table 1, it can be seen that estimators by the LL procedure are much more accurate

than estimators by the RF method, in terms of the point estimators and the confidence intervals

as well. Comparing Case I with Case II, the association among Y1, Y2 and Y3 is stronger in Case

II than in Case I (the measurement components are actually independent of each other in Case

I). From Table 1, the benefit to use the LL procedure is a little bit smaller in Case II in terms

of the standard errors, which is reasonable because relatively less association structure among the

components of Y is ignored by the RF method in Case II than in Case I. Comparing the cases

with different sample sizes, it can be seen that: (1) both methods provide more accurate estimators

when n1 is larger, (2) the LL procedure gives quite accurate estimators even when n1 is relatively

small, (3) the estimators by the RF method have relatively large variabilities when n1 is small,

and (4) consequently the improvement by using the LL procedure is more significant when n1 is

smaller.

4.2 Performance of the Distribution-Free Procedure

In this part, we first demonstrate with numerical examples that the conventional multivariate SPC

procedures based on normal distribution assumption may not be appropriate to use in cases when

the normal distribution assumption is violated. Two such existing procedures are considered here.

One is the multivariate CUSUM procedure suggested by Crosier (1988) (cf. equations (4) and (5) in

Crosier (1988)), and the other one is the multivariate EMWA control chart discussed by Stoumbos

and Sullivan (2002) (cf., equations (2)–(4) in Stoumbos and Sullivan (2002)).

Suppose that the process measurement is three-dimensional and its assumed in-control distri-

bution is N(0, I3). In Crosier’s procedure, the control limit h and the constant k are chosen to be

13



Table 1: This table presents the true cell probabilities, their averaged estimates, and the corre-
sponding standard errors (in parentheses), based on 1000 replications, by the relative frequency
(RF) method and the log-linear (LL) modeling method, respectively.

Y3 = 0
Y2 = 0 Y2 = 1

Y1 = 0 Y1 = 1 Y1 = 0 Y1 = 1

True .1250 .1250 .1250 .1250
n1=100 .1240 (.0008) .1257 (.0008) .1247 (.0008) .1256 (.0008)

Case I RF n1=1000 .1253 (.0003) .1249 (.0003) .1250 (.0002) .1248 (.0002)
n1=10000 .1250 (.0001) .1250 (.0001) .1249 (.0001) .1250 (.0001)
n1=100 .1250 (.0000) .1250 (.0000) .1250 (.0000) .1250 (.0000)

LL n1=1000 .1250 (.0000) .1250 (.0000) .1250 (.0000) .1250 (.0000)
n1=10000 .1250 (.0000) .1250 (.0000) .1250 (.0001) .1250 (.0000)

True .1875 .0625 .1875 .0625
n1=100 .1864 (.0008) .0632 (.0006) .1883 (.0008) .0622 (.0006)

Case II RF n1=1000 .1871 (.0003) .0623 (.0002) .1878 (.0003) .0628 (.0002)
n1=10000 .1874 (.0001) .0625 (.0001) .1876 (.0001) .0625 (.0001)
n1=100 .1873 (.0003) .0627 (.0003) .1873 (.0003) .0627 (.0003)

LL n1=1000 .1875 (.0001) .0625 (.0001) .1875 (.0001) .0625 (.0001)
n1=10000 .1875 (.0000) .0625 (.0000) .1875 (.0000) .0625 (.0000)

Y3 = 1
Y2 = 0 Y2 = 1

Y1 = 0 Y1 = 1 Y1 = 0 Y1 = 1

True .1250 .1250 .1250 .1250
n1=100 .1255 (.0008) .1249 (.0008) .1259 (.0008) .1238 (.0008)

Case I RF n1=1000 .1251 (.0003) .1246 (.0002) .1246 (.0003) .1256 (.0003)
n1=10000 .1250 (.0001) .1250 (.0001) .1251 (.0001) .1250 (.0001)
n1=100 .1250 (.0000) .1250 (.0000) .1250 (.0000) .1250 (.0000)

LL n1=1000 .1250 (.0000) .1250 (.0000) .1250 (.0000) .1250 (.0000)
n1=10000 .1250 (.0000) .1250 (.0000) .1250 (.0000) .1250 (.0000)

True .0625 .1875 .0625 .1875
n1=100 .0629 (.0006) .1875 (.0008) .0625 (.0006) .1871 (.0008)

Case II RF n1=1000 .0624 (.0002) .1881 (.0003) .0626 (.0002) .1868 (.0003)
n1=10000 .0625 (.0001) .1875 (.0001) .0624 (.0001) .1875 (.0001)
n1=100 .0627 (.0003) .1873 (.0003) .0627 (.0003) .1873 (.0003)

LL n1=1000 .0625 (.0001) .1875 (.0001) .0625 (.0001) .1875 (.0001)
n1=10000 .0625 (.0000) .1875 (.0000) .0625 (.0000) .1875 (.0000)

14



3.786 and 1.0, respectively, so that its in-control ARL equals 200 when the in-control measurement

distribution is assumed to be N(0, I3). In the multivariate EMWA procedure, we consider two

values for the parameter r: r = 0.05 and r = 0.2. The first r value is in the recommended range by

Stoumbos and Sullivan (2002), so that the EMWA procedure would be robust to the normal dis-

tribution assumption. The control limits for these two r values are chosen to be 9.603 and 11.956,

respectively, so that the in-control ARL of the procedure equals 200 in both cases. In computing the

in-control and out-of-control ARL values in this section, we assume that potential shifts would not

start until the 100th phase II observation, for reasons explained in the second paragraph to follow.

Now, suppose that the three measurement components are actually independent of each other, and

the distribution of each component is a standardized version of the central χ2 distribution with

degrees of freedom m (i.e., each component is standardized to have mean 0 and standard deviation

1), then the true in-control ARL values of the related procedures are presented in Figure 1, when

m = 1, 5, 10, 20 and 50. The long-dashed line in the top of this plot denotes the assumed in-control

ARL value 200. It can be seen from the plot that: (i) when m is small, the true in-control ARL val-

ues of all three procedures are quite different from the assumed in-control ARL value, (ii) when m

increases, their true in-control ARL values are closer to the assumed in-control ARL value because

the true measurement distribution is closer to a normal distribution in such cases, and (iii) when r

is smaller, the multivariate EMWA is more robust to the normal distribution assumption. Later,

we will demonstrate in Figure 2 that, when r is chosen smaller in the conventional multivariate

EMWA, its ability to detect large shifts is also weaker.

Next, we investigate the numerical performance of the CUSUM procedure (3)-(6) for detecting

shifts in Phase II SPC. By using this procedure, the in-control distribution of Y is not assumed

known, and it needs to be estimated from an in-control dataset. When p = 3 and the in-control

distribution of X is the normalized version of the one specified in Case I above (i.e., each measure-

ment component is normalized to have mean 0 and standard deviation 1), we randomly generate

100 such in-control datasets, each of which has sample size 100. Then, from each in-control dataset,

the estimated in-control distribution of Y is computed, using both the LL and RF methods. Based

on each estimated in-control distribution of Y, the control limit value h in the procedure (3)-(6) is

searched by the Algorithm I discussed in Section 3, when k = 1.0 and the in-control ARL is fixed

at 200. In Algorithm I, the parameters are chosen to be Uh = 30, ε1 = .01, and ε2 = 10−5; the

search is based on 10000 replications. Then, for each of the LL and RF methods, the in-control
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Figure 1: The solid, dotted, and short-dashed lines denote the true in-control ARL values of
the Crosier’s procedure, the multivariate EMWA procedure when r = 0.05, and the multivariate
EMWA procedure when r = 0.1, respectively. In this example, the process measurement is three-
dimensional, the measurement components are independent of each other and each component has
an actual normalized χ2 distribution with degrees of freedom m. The long-dashed line at the top
denotes the assumed in-control ARL value 200.

dataset and the corresponding control limit value giving the median actual in-control ARL value

is chosen for that method and used in all phase II examples described below.

Suppose that there is a shift of size (a, 0, 0) in the median vector of the process measurements,

the shift starts at the 100th phase II time point, and a changes its value between 0 and 0.4 with step

0.04. The specific starting time of the shift (i.e., the 100th time point) is used as an approximation

to the “steady-state start”, after which the distribution of the CUSUM statistic un approaches

some “steady-state distribution” that does not depend on n (cf. e.g., Hawkins and Olwell 1998,

Chapter 3). By the way, we also tried cases when the starting time equals 0; the results are similar

and thus they are omitted here. Then, the out-of-control ARL of procedure (3)-(6) based on the

LL estimate of the in-control distribution of Y, which is refered to as the LL procedure below, is

presented in Figure 2(a) by the solid curve. The corresponding results of procedure (3)-(6) based

on the RF estimate of the in-control distribution of Y, which is refered to as the RF procedure

below, is presented in the same plot by the dotted curve.

In Section 1 and in the example of Figure 1 above, we already pointed out that the conventional

CUSUM procedures based on the Gaussian distribution assumption, such as the one suggested by

Crosier (1988), and the conventional EWMA procedures might not be appropriate to use in cases
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when the normal distribution assumption is violated. To further demonstrate this, the CUSUM

procedure suggested by Crosier is applied to Case I in the following two ways. First, the procedure

is used in a conventional manner that the in-control distribution of X is assumed to be N(0, I3), as

in Figure 1. Second, the procedure is used based on the assumption that the in-control distribution

of X is N(µ, I3), but µ should be estimated from an in-control data of size 100. The second way is

the so-called “self-starting” version of the Crosier’s procedure, in which the in-control parameters

of the measurement distribution are estimated from an in-control data. For simplicity, we only

estimate the in-control mean of the measurement distribution here, with the in-control covariance

matrix assumed known. The two versions of the Crosier’s procedure are denoted as CR and CRSS

below, where CR denotes the conventional Crosier’s procedure and CRSS denotes its self-starting

version. ARL results of these two versions of the Crosier’s procedure are presented in Figure 2(a)

by the dashed and dot-dashed curves, respectively.

From Figure 2(a), it can be seen that among the four procedures LL, RF, CR, and CRSS, only

the procedure LL has its actual in-control ARL equal to the assumed in-control ARL. The actual

in-control ARL values of the remaining three procedures are far away from the assumed in-control

ARL, which is 200. Therefore, they may not be appropriate to use in this case. For the procedure

RF, this happens because the RF estimate of the in-control distribution of Y has much larger

variability than the log-linear estimator, as explained at the end of Section 2 and demonstrated

in Table 1. Consequently, the RF estimator is in general quite different from the true in-control

distribution of Y. Therefore, the RF procedure often detects a shift, even when the process is

actually in-control. For the procedure CR, deviation of the actual measurement distribution from

the assumed Gaussian distribution is a major cause of its small in-control ARL, because it treats the

distributional deviation as a shift in the in-control measurement distribution. For the self-starting

version of the CR procedure, its small in-control ARL can be explained by both reasons mentioned

above.

Next, we would like to explain why the largest value of a is chosen to be 0.4 in this example.

The normalized version of the χ2(1) distribution, which is the distribution of the first measurement

component, has a median of -0.3855, and its support has a lower bound of -0.7071. So, an upward

shift of size 0.4 would make the first measurement component consistently larger than its in-control

median. Consequently, the value of Y1 is actually a constant 1, after the shift. Larger upward

shifts in the first measurement component will not alter the distribution of Y, and therefore will

17



not change the out-of-control ARL of the procedure (3)-(6).

Figure 2(a) also shows that the out-of-control ARL of procedure LL is small, compared to

procedures CR and CRSS, when the shift is reasonably large. Considering the fact that the in-

control ARL of procedure LL is much larger than the in-control ARLs of procedures CR and

CRSS, this is an endorsement of the former procedure. To further investigate this issue, next, we

consider the larger shift (a, .4, .4), where a changes its value between 0 and .4 with step .04. The

corresponding out-of-control ARL values of the four procedures are presented in Figure 2(b). It

can be seen that procedure LL is consistently better than procedures CR and CRSS.

The corresponding results of the EWMA procedures considered in Figure 1 are presented in

Figure 2(c)–(d) by the dotted and dashed curves, respectively, for cases when r = .05 and r = .2.

For convenience of comparison, the out-of-control ARL values of procedure LL are presented in

this plot again by the solid curve. It can be seen that: (i) when r is chosen smaller (i.e., r = 0.05

in this example), the EWMA procedure is more robust to the normal distribution assumption, as

observed in Figure 1, because its actual in-control ARL value is closer to the nominal value 200, (ii)

in such cases, its ability to detect possible shifts is also weaker, compared to EWMA procedures

when r is chosen larger, and (iii) procedure LL performs better when the process is in-control and

when the process becomes out-of-control with a quite large shift (e.g., shifts (a, 0, 0) when a > 0.34

in plot (c) and shifts (a, .4, .4) for all a values in plot (d)).

Next, we compare procedure LL with the antirank-based CUSUM procedure suggested by Qiu

and Hawkins (QH, 2000), which does not depend on the Gaussian distribution assumption. We

still consider the shift (a, 0, 0), with a changing its value between 0 and 0.4 with step 0.04. Since

this shift is upward, the CUSUM procedure based on the third antirank is prefered here, among all

CUSUM procedures based on a single antirank. To use this procedure, the in-control distribution

of the third antirank should be specified. Qiu and Hawkins (2000) assume that this in-control

distribution is known. In applications, it needs to be estimated from an in-control dataset. When

the true in-control distribution of the third antirank is assumed known, the control limit value of the

procedure is searched to be 4.300 such that its in-control ARL equals 200 when k = 1. Results under

this condition are labelled by QHTR, where TR denotes “true” (i.e., the true in-control distribution

is assumed known). If the in-control distribution is estimated by the relative frequencies computed

from the same in-control dataset used above in estimating the in-control distribution of Y, then
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Figure 2: (a) This plot presents ARL values of procedures LL (solid curve), RF (dotted curve), CR
(dashed curve), and CRSS (dot-dashed curve). The shift is assumed to be (a, 0, 0) in the median
vector of the process measurements starting at the 100th time point. (b) Corresponding results of
plot (a) when the shift is (a, .4, .4). (c) ARL values of procedures LL (solid curve), EWMA with
r = .05 (dotted curve), and EWMA with r = .2 (dashed curve), when there is a shift (a, 0, 0) in the
median vector of the process measurements starting at the 100th time point. (d) Corresponding
results of plot (c) when the shift is (a, .4, .4). (e) ARL values of procedures LL (solid curve), QHTR
(dotted curve), and QHRF (dashed curve), when there is a shift (a, 0, 0) in the median vector of
the process measurements starting at the 100th time point. (f) Corresponding results of plot (e)
when the shift is (a, .4, .4).
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the control limit value of the QH procedure is searched to be 4.430, to reach the in-control ARL

value 200 when k = 1. Results in this case are labelled by QHRF, where RF denotes “relative

frequencies”. In these two cases, the ARL values of the QH procedure are presented in Figure 2(e)

by the dotted and dashed curves, respectively. For convenience in comparison, the ARL values

of procedure LL are also presented in this plot by the solid curve. It can be seen that, for the

self-starting version of the QH procedure (i.e., the procedure QHRF), its actual in-control ARL

is also different from the assumed in-control ARL. But the difference is not so large, compared

to procedures RF, EWMA when r = 0.2, CR, and CRSS discussed above. Procedure QHTR is

indeed appropriate to use, since its actual in-control ARL is about the same as the assumed in-

control ARL. But, in most cases, the current procedure LL outperforms procedure QHTR, and the

difference is quite large when the shift gets large.

The corresponding results of Figure 2(e) when the shift is (a, .4, .4) are shown in Figure 2(f),

where a changes its value between 0 and .4 with step .04, as before. This shift is closer to the

“equal-shift” direction, in which all components of the shift are the same, when a is closer to

.4. It is expected that performance of the QH procedure would get worse when a is closer to .4,

because the out-of-control distribution of the third antirank is closer to its in-control distribution

in such cases, which is demonstrated in Figure 2(f). From the plot, it can be seen that the current

procedure LL performs much better than both versions of the QH procedure in this case.

The optimal values of the two parameters h and k of the procedure (3)-(6) can be searched

easily by the algorithms described in Section 3. Next, we consider the following shifts in the median

vector of X(i) occurred at the time point “start”: (-1,0,0), (-2,0,0), (-2,-1,0), (-2,-2,0), (-2,-2,-1) and

(-2,-2,-2). These shifts are ordered from the smallest to largest in magnitudes. The corresponding

out-of-control joint distributions of Y(i), denoted as {f
(1)
j1j2j3

, j1, j2, j3 = 0, 1}, are displayed in Table

2. The Euclidean distance between the out-of-control and the in-control (the latter can be found

from Table 1) distributions of Y(i) is shown in the last column labeled by Q.

From the construction of procedure (3)-(6), the optimal values of h and k depend on the

in-control ARL, and the in-control and out-of-control distributions of Y(i) only. In that sense,

procedure (3)-(6) is distribution-free. For each shift, the optimal values of h and k are searched

by Algorithms I and II discussed in Section 3 with the related parameters chosen to be: Uh = 30,

Uk = maxj1,...,jp=0,1(1 − f
(0)
j1,...,jp

)/f
(0)
j1,...,jp

= 7, ε1 = .01, ε2 = 10−5 and ε3 = .001. The searched
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Table 2: The shifts in the median vector of X(i) and the corresponding out-of-control joint distribu-

tion of Y(i) are presented in this table. Q =
√

∑

j1j2j3=0,1(f
(1)
j1j2j3

− f
(0)
j1j2j3

)2 denotes the Euclidean

distance between f (1) and f (0).

shifts in median f
(1)
000 f

(1)
100 f

(1)
010 f

(1)
110 f

(1)
001 f

(1)
101 f

(1)
011 f

(1)
111 Q

(-1,0,0) .2072 .0429 .2070 .0429 .2071 .0428 .2072 .0429 .2323
(-2,0,0) .2325 .0175 .2325 .0175 .2325 .0174 .2326 .0175 .3041
(-2,-1,0) .3852 .0290 .0797 .0060 .3854 .0289 .0797 .0060 .4317
(-2,-2,0) .4325 .0326 .0325 .0025 .4325 .0325 .0325 .0024 .5033
(-2,-2,-1) .7167 .0539 .0540 .0041 .1483 .0111 .0111 .0008 .6456
(-2,-2,-2) .8045 .0605 .0605 .0046 .0605 .0045 .0045 .0003 .7303

Table 3: The optimal values of h and k, the corresponding out-of-control ARLs, and their standard
errors (in parentheses) for various shifts occured at two different starting times.

start=0 start=100
shifts in mean h k arl (se) h k arl (se)

(-1,0,0) 9.1268 .004 6.6309 (.0597) 9.6364 .121 24.9056 (.2619)
(-2,0,0) 9.1268 .004 4.7357 (.0310) 11.2941 .351 16.8808 (.1160)
(-2,-1,0) 9.1268 .004 3.6631 (.0205) 11.7540 .546 10.4746 (.0674)
(-2,-2,0) 9.1268 .004 3.1380 (.0145) 11.9642 .867 8.4220 (.0512)
(-2,-2,-1) 9.1878 .003 2.7704 (.0117) 11.9577 .967 6.2420 (.0376)
(-2,-2,-2) 9.1878 .003 2.5063 (.0091) 11.5997 1.458 5.2300 (.0319)

results for two different starting times are displayed in Table 3. One starting time is start=0 and

the other one is start=100. As demonstrated by several authors (e.g., Qiu and Hawkins 2001),

h and k values should be chosen differently for shifts occured at the initial time point (start=0)

and shifts occured at the “steady-state start”. We also performed simulations in the case when

start=200 and found that results in that case are similar to results when start=100. Therefore, the

case when start=100 might be a good approximation to the “steady-state start” already, and the

results when start=200 are omitted here. By checking the results in Table 3, it can be seen that

the value of k should be chosen small for shifts occured at the initial time point. Its value and

the corresponding value of h do not depend on the magnitude of the shift much in such cases. For

shifts occured at the “steady-state start”, k should be chosen larger for larger shifts, which is true

for most CUSUM procedures. Although the mathematical relationship between Q and the optimal

value of k is still unknown, the computer algorithms in Section 3 can search for the optimal value

of k easily for any target shift.
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4.3 Application to the Aluminum Smelter Data

In this part we illustrate the method discussed in the previous sections with a dataset from an

aluminum smelter. The measurement vector includes three components which denote the content

of SiO2,MgO and Al2O3 (labeled as x1, x2 and x3 below) in the charge. All these measurements

are relevant to the operation of the smelter. Stability of the alumina level is desirable. The silica

and magnesium oxide levels are affected by the raw materials and are potential covariates to be

taken into account in a fully fledged multivariate scheme. There are 189 vectors in the dataset. Like

many other phase II SPC procedures, our procedure assumes that observations at different time

points are independent of each other. However, for this dataset, we found that the observations at

different time points are actually correlated. In statistics, there is a specific research area, i.e., the

time series analysis, for modeling this type of correlation over time, i.e., the autocorrelation (cf.,

e.g., Brockwell and Davis 2002). To properly apply the proposed procedure to this dataset, we first

remove the autocorrelation by the following estimated autoregression models:























x1(i) − 0.63 = 0.07(x1(i − 1) − 0.63) + 0.12(x1(i − 2) − 0.63) + 0.28(x1(i − 3) − 0.63) + ε1(i)

x2(i) − 12.97 = 0.55(x2(i − 1) − 12.97) + ε2(i)

x3(i) − 57.86 = 0.32(x3(i − 1) − 57.86) + ε3(i),

(7)

where ε1(i), ε2(i), and ε3(i), for 3 ≤ i ≤ 189, are residuals that are independent of each other at

different time points. After the autocorrelation is removed, the data (i.e., ε1(i), ε2(i), and ε3(i), for

3 ≤ i ≤ 189) are shown in Figure 3(a)-(c). The corresponding density curves are shown in Figure

3(d)-(f). It can be checked that the median vector of the original data (x1(i), x2(i), x3(i)) has a

shift if and only if the median vector of the residuals (ε1(i), ε2(i), ε3(i)) has a shift. See Lu and

Reynolds (1999) for more discussions about the relationship between the original measurements

and their residuals.

As an illustration of the log-linear modeling approach, the first 95 vectors of the residuals

are used as an in-control dataset. Both the χ2 and the Kolmogorov-Smirnov goodness-of-fit tests

conclude that ε1 and ε3 in this dataset are not Normally distributed (χ2 test: χ2 = 141.3263 and

p-value=0 for ε1, χ2 = 65.2421 and p-value=0 for ε3; Kolmogorov-Smirnov test: p-value=0 for ε1,

p-value=0.022 for ε3). So the joint distribution of X(i) = (ε1(i), ε2(i), ε3(i)) can not be Normal

because a joint Normal distribution implies that all marginal distributions are Normal. From
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Figure 3: (a)-(c) The data after autocorrelation is removed from each measurement component
(cf., equation (7)). (d)-(f) The corresponding density curves.

Figures 3(a) and 3(d), we can see that there are a number of large observations in ε1 which make

its density curve skewed to right. Similarly, the density curve of ε3 seems skewed to the left. We

tried log, square-root, and several other commonly used transformations for each of ε1 and ε3, and

neither of these transformations can make the transformed variables nearly Normally distributed.

A possible explanation of this phenomenon is that, excluding some relatively large observations

of ε1, distribution of its remaining observations is quite symmetric. The log, square-root, and

similar transformations can pull down those relatively large observations; but they will make the

distribution of the remaining observations less symmetric as well. A similar explanation can be

made for ε3. By the way, elementary statistical theory tells us that, even in cases when we can

transform the individual variables to be nearly Normally distributed, it is not guaranteed that the

joint distribution of the transformed individual variables would be nearly Normal. So, it may be

difficult to transform this data to a multivariate Gaussian data.

From the in-control dataset, the selected log-linear model is (Y1, Y2Y3), the estimated in-

control distribution {f
(0)
j1,j2,j3

, j1, j2, j3 = 0, 1} of Y(i) by this selected model is calculated to be

(0.1053,0.1474,0.1158,0.1368,0.1895, 0.0632,0.0947,0.1474). By the Algorithm I presented in Sec-
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tion 3, the control limit value is searched to be 10.793, for k = 0.1 and the in-control ARL=200.

Then procedure (3)-(6) is used for detecting shifts in the remaining part of the data. The values

of the CUSUM criterion un are presented in Figure 4. The control limit value is indicated in the

same plot by the dotted line. It can be seen that there is a convincing evidence for a shift occured

right at the begining of the second half of the data based on procedure (3)-(6).
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Figure 4: The cusum criterion un of procedure (3)-(6). The dotted line indicates the control limit
value of the procedure such that its in-control ARL equals 200.

5 Some Concluding Remarks

We have presented a procedure to describe associations among measurement components of a pro-

cess when the measurement distribution is non-Gaussian. This procedure is based on log-linear

modeling. It is shown that the log-linear estimator of the in-control distribution of Y is often

better than the estimator by the conventional relative frequency method. A CUSUM procedure for

detecting shifts in a location parameter vector of the measurement distribution is also suggested

for Phase II SPC. This procedure is distribution-free in the sense that all its properties depend

on the distribution of Y only. It does not require the Gaussian distribution assumption on the

measurement distribution as most existing procedures did. It is shown that the performance of this

distribution-free procedure is improved by using the log-linear estimator of the in-control distribu-

tion of Y, compared to its performance based on the conventional relative frequency estimator.

In applications, when the observed multivariate data are non-Gaussian, the first approach that
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we can think of is to transform the multivariate non-Gaussian data to a multivariate Gaussian

data. However, this task itself is notoriously difficult for statisticians, because a p-dimensional

Gaussian distribution implies that all its lower-dimensional marginal distributions should be Gaus-

sian, and it is usually not good enough to just transform individual variables to be nearly Normally

distributed (cf., e.g., Eaton 1983). So far, in the literature, statistical tools to transform multi-

variate non-Gaussian data to multivariate Gaussian data are very limited. When the Gaussian

distribution assumption is violated, it has been demonstrated in the paper that conventional mul-

tivariate CUSUM procedures may not be reliable (cf., Figure 1). The proposed procedure provides

a reasonable tool for SPC in such cases.

When the observed multivariate data are non-Gaussian and when a set of in-control data is

available, another possible approach for phase II SPC is to adjust the control limit of a conventional

multivariate CUSUM (e.g., the one by Crosier (1988)) using a numerical algorithm, such that the

nominal ARL0 value is achieved in certain accuracy. However, when the amount of in-control

observations is limited, which is always the case in applications, it is still an open problem how to

design such a numerical algorithm for adjusting the control limit. A major challenge lies behind the

fact that such numerical algorithms (e.g., the ones described in Section 2) usually require a great

amount of in-control observations in order to obtain a reasonably large amount of estimates of the

in-control run length. To this end, we may consider using the bootstrap resampling technique. But,

as pointed out by Hall et al. (1989), the bootstrap estimate of a tail probability of a distribution is

often unreliable if we resample directly from the observed data. Note that the control limit in the

current problem is related to a right-tail probability of the in-control distribution of the CUSUM

statistic. Therefore, it may require much future research to accomplish this idea.

Regarding our proposed method, there are still many issues that need to be addressed properly

in our future research. For instance, theoretically speaking, the proposed log-linear modeling proce-

dure can handle cases with any number of measurement components. However, when this number

is large, log-linear modeling would become challenging because the corresponding contingency table

would become sparse in the sense that it will have many empty cells. There are some discussions

in the literature about analysis of sparse contingency tables (cf., e.g., Agresti 2002, Section 9.8).

It is still unknown to us how the proposed log-linear modeling procedure would perform in such

cases for describing the in-control multivariate measurement distribution. At this moment, besides

shifts in a location parameter vector, there is not a robust companion procedure for detecting shifts
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in dispersion or other aspects of the multivariate measurement distribution for phase II SPC. No

robust companion procedures exist for detecting shifts, outliers, or other problems, for phase I SPC

either.
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