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Abstract

Gene microarray data are used in a large variety of applications, including pharmaceutical

and clinical research. By comparing gene expression in normal and abnormal cells, microarrays

can be used for identifying genes involved in particular diseases, and then these genes can be

targeted by therapeutic drugs. Most gene expression data are produced from spotted microar-

ray images. A spotted microarray image consists of thousands of spots, with individual DNA

sequences first printed at each spot and then equal amounts of probes (e.g., cDNA samples)

from treatment and control cells mixed and hybridized with the printed DNA sequences. To

obtain gene expression data, the image needs to be segmented first to separate foregrounds from

backgrounds for individual spots, and then averages of foreground pixels are used for computing

the gene expression data. So image segmentation of microarray images is related directly to the

reliability of gene expression data. Several image segmentation procedures have been suggested

in the literature, and included in software packages handling gene microarray data. In this pa-

per, a new image segmentation methodology is proposed based on local smoothing. Theoretical

arguments and numerical studies show that it has good statistical properties and would perform

well in applications.

Key Words: Background; Boundary curves; Consistency; Edge detection; Foreground; Image

processing; Image segmentation; Jump location curves; Gene expression data; Gray levels; Local

polynomial kernel smoothing; Nonparametric regression; Spots.

1 Introduction

This paper discusses image segmentation for analyzing gene microarray images. Each human cell

can be viewed as a functional unit containing 20,000-50,000 genes, whose expression levels determine
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the transcriptional state of the cell. By studying the gene expression levels of different individuals

in a population, we can have a better understanding of the biological differences among them.

Microarrays are part of a new class of biotechnologies which allow the monitoring of expression

levels for thousands of genes simultaneously (Lashkari et al. 1997, Chu et al. 1998, Ferea et al.

1999).

In a typical microarray experiment, thousands of individual DNA sequences are first printed

in a high density array on a glass microscope slide using a robotic arrayer. Then equal amounts of

probes (e.g., cDNA samples) from treatment and control cells are labeled with different colors (e.g.,

the red-fluorescent dye Cy5 and the green-fluorescent dye Cy3), and mixed with the arrayed DNA

sequences. In each spot, the probes matching the gene of the printed DNA sequences will attach

to the printed DNA sequences. After this competitive hybridization, the slides are imaged by an

imaging device which makes fluorescence measurements for each dye. Then a pair of fluorescence

images are obtained, one for each dye. The average fluorescence intensity of each spot can therefore

measure the expression level of one specific gene in either the treatment or control cells. See Yang

et al. (2002) for a more detailed introduction.

A regular fluorescence image includes thousands of spots arranged in rows and columns. During

the image addressing stage, the entire image is divided into many grid cells, also in rows and

columns, each grid cell includes one spot in the middle, and then coordinates are assigned to the

borders and/or centers of the grid cells. Image segmentation is a process to classify pixels in each

grid cell as either foreground or background pixels. All foreground pixels correspond to the spot of

interest in that grid cell. Usually the pair of fluorescence images, made for the two different dyes,

are combined in some specific way pixel by pixel and then image segmentation is performed on

the combined image. After image segmentation, the average fluorescence intensity, or other more

robust measures, for all foreground pixels of a given spot can be calculated, which is denoted as R

and G, respectively, for the images with red-fluorescent dye and green-fluorescent dye. The gene

expression data are then generated from them. From this brief introduction, we can see that image

segmentation of gene microarray images is crucial to the reliability of gene expression data and all

subsequent statistical analysis.

There are several image segmentation procedures in the literature for analyzing gene microarray

images. Eisen (1999) provided a fixed circle segmentation procedure in the software ScanAlyze,

which fits circles with a constant diameter to all spots in an image, and user-intervention to adjust
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manually the height and width of a single spot is also allowed. The software GenePix (1999)

provided an adaptive circle segmentation procedure, which fitted a circle to a spot with its diameter

estimated separately for each spot. The seeded region growing (SRG) procedure suggested by

Adams and Bischof (1994) works more flexibly as follows. For each grid cell of a microarray

image, we first choose a set of seeds as foreground pixels and another set as background pixels,

which is convenient to do because the center and border of the grid cell are specified in the image

addressing stage. Then, at each step, those pixels whose statuses are undecided but at least one

of their neighboring pixels has been allocated are considered for allocation. One such pixel whose

intensity level is closest to the average intensity level of one of its neighboring regions (either

foreground or background region) is allocated to that region. This process continues until all

pixels are allocated. Another commonly used segmentation procedure was suggested by Chen et

al. (1997), which segments the foreground from the background of a grid cell by thresholding the

histogram of all intensities whose pixel locations are within a target mask. The threshold parameter

was selected based on the Mann-Whitney statistic, and a pixel whose intensity was larger than the

threshold was classified as a foreground pixel, and as a background pixel otherwise. More recent

image segmentation procedures include clustering algorithms (e.g., Bozinov and Rahnenführer 2002,

Glasbey and Ghazal 2003), segmentation based on Gaussian density estimation (Steinfath et al.

2001), segmentation using mathematical morphology (Angulo and Serra 2003), and so forth.

Limitation of the circle segmentation procedures with fixed or adaptive diameters is obvious:

the actual sizes and shapes of different spots might be quite different, but these methods do not

have the flexibility to accommodate such differences. The SRG procedure is more flexible and it

can adapt to different shapes and sizes of the spots. But it is quite sensitive to noise because

little smoothing is involved, and results are not invariant under selection of seeds. To overcome

this limitation, in applications, people often pre-smooth spotted images before applying segmen-

tation procedures, and a popular pre-smoothing operator is based on the 2-D Gaussian density

function. While noise is removed by such a pre-smoother to a certain degree, some small jumps

in the underlying image intensity function are also blurred, which would worsen the segmentation

results of the SRG and some other existing procedures (cf., related discussion in Section 6.7 of Qiu

(2005)). The segmentation procedure by thresholding the intensity histogram is easy to implement

after the threshold parameter is determined, but this procedure is a global method in the sense

that the threshold parameter is selected globally by all pixels in the selected target mask of the
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grid cell considered, and thus it cannot easily accommodate local features of the boundary curve.

Furthermore, it is sensitive to noise because little smoothing is involved. The clustering algorithm

by Bozinov and Rahnenführer (2002) is based on both K-means clustering and partitioning around

medoids. It takes into account some local features of the image intensities, but its segmented

foregrounds and backgrounds often do not form connected regions when the true ones are actually

connected regions. It is also quite sensitive to noise. The procedure by Glasbey and Ghazal (2003)

thresholds the intensity histogram for image segmentation, as did by Chen et al. (1997); but its

threshold value is chosen based on the assumption that both the foreground and background in-

tensities have Gaussian distributions. Its results should be more efficient than the ones of Chen et

al.’s procedure when the Gaussian distribution assumption is valid; but such an assumption may

not hold in some applications. Steinfath et al.’s (2001) procedure is based on the assumption that

the image intensity function has the parametric form of a circular 2-D Gaussian density, which

might be restrictive. The superimum/infimum operators involved in the morphological procedures

are sensitive to individual image intensity values. Therefore, they can provide reliable results only

when the noise level is low and the observed data have no outliers.

In this paper, we suggest a new image segmentation procedure for analyzing spotted microarray

images. In our procedure, each grid cell of a microarray image is regarded as a surface of the image

intensity function, and the boundary curve separating the foreground region from the background

region in the grid cell is estimated based on local polynomial kernel smoothing. This procedure

overcomes most limitations of the existing procedures mentioned above. First, it is a local smoothing

procedure. So, it should remove noise and accommodate local features of the image well. Second,

it is a nonparametric procedure. We do not impose any parametric form on the true boundary

curves, on the error distributions, and on the true image intensity function. Therefore, it should

have the flexibility to accommodate different shapes and sizes of the true boundary curves, different

error distributions, and different patterns of the true image intensity function.

Jump detection in regression surfaces is related to the image segmentation problem discussed

in this paper. But the two problems are different in the sense that boundary curves in the latter

problem are simple, closed, continuous curves (cf., Section 2.1 for a detailed description), and

good image segmentation procedures for handling spotted microarray images should make use of

these special features. For discussions about jump detection in regression surfaces, please read

Hall and Rau (2000, 2002), Hall et al. (2001), Qiu (1997, 2002), Qiu and Bhandarkar(1996), Qiu
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and Yandell (1997), and the references cited there. The image segmentation problem discussed

here is also related to edge detection in image processing (cf., Qiu 2005, Chapter 6). However,

the detected edges by most existing edge detectors are point sets which are scattered in the whole

design space. These edge detectors can not be used directly for segmentation of spotted microarray

images, because the foreground pixels and background pixels are not well defined even after the

edges are detected by them.

The remaining part of the article is organized as follows. The proposed image segmentation

procedure is introduced in detail in Section 2. Some of its statistical properties are discussed

in Section 3. Simulation results are presented in Section 4, which show that the new procedure

outperforms its peers in various cases. Then, the current procedure and several existing ones are

applied to a real microarray image in Section 5. Some remarks conclude the article in Section 6.

Some technical details are given in appendices.

2 Image Segmentation By Local Smoothing

This section is organized in five parts. In Section 2.1, we give a mathematical formulation of the

image segmentation problem for analyzing spotted microarray images. Then our image segmenta-

tion procedure is introduced in Section 2.2. A simplified version of this procedure is discussed in

Section 2.3. Selection of the bandwidth used in the proposed procedure is discussed in Section 2.4.

Finally, a pseudo-code of the proposed procedure is provided in Section 2.5.

2.1 Formulation of the image segmentation problem

For a spotted microarray image, borders of its grid cells, each of which contains a spot in the

middle, can be roughly specified by the arrayer in the image addressing stage. See Bergemann et

al. (2004) for such an image addressing method, which is also used in the numerical example in

Section 5. Therefore, image segmentation can be performed separately for individual grid cells,

which has been a common practice in analyzing microarray images. For this reason, our discussion

below is for handling a single grid cell only.

For a given grid cell, suppose that the origin of the coordinate system is at its center, pixel

locations are {(xi, yj), i = 1, 2, . . . , nx, j = 1, 2, . . . , ny}, and observed image intensities are {Zij ,
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i = 1, 2, . . . , nx,j = 1, 2, . . . , ny}, where nx and ny denote the numbers of columns and rows,

respectively, of the pixels. Without loss of generality, we assume that nx = ny = n in this paper.

In most cases, the boundary curve Γ separating the foreground from the background in the grid

cell can be reasonably assumed to be a continuous closed curve. Then, Γ can be expressed by




x(θ) = r(θ) cos(θ)

y(θ) = r(θ) sin(θ),
(1)

where r(θ) > 0 denotes the Euclidean distance from the point (x(θ), y(θ)) on Γ to the origin, and

θ ∈ [0, 2π) is the angle formed by the line segment from the origin to the point (x(θ), y(θ)) and

the positive direction of the x-axis. For convenience of presentation, we use N = n2, N1, and N2

to denote the total number of pixels in the grid cell, the number of pixels in foreground, and the

number of pixels in background, respectively.

Because the boundary curve Γ is assumed to be continuous and closed, x(θ) and y(θ) are both

assumed to be continuous functions of θ on [0, 2π), and (x(0), y(0)) = limθ→2π−0(x(θ), y(θ)). In

the framework of (1), estimation of the boundary curve Γ is equivalent to estimating r(θ) for each

θ ∈ [0, 2π).

In equation (1), we do not put any restriction on the shape of the boundary curve Γ, besides

it is required to be a continuous closed curve. However, this formulation does not cover the quite

common phenomenon of “donut” spots, each of which has a hole around its center, and the region

inside the hole is a separate part of background, besides the part of background outside the spot.

To describe a “donut” spot properly, we assume that the foreground has two boundary curves Γ1

and Γ2, both of which are continuous closed curves that can be expressed by equation (1), with

radius functions r1(θ) and r2(θ), respectively, satisfying r1(θ) < r2(θ), for all θ ∈ [0, 2π).

2.2 Image segmentation by searching for gradient directions

We first discuss the simpler case that the foreground has a single boundary curve Γ. To estimate

Γ, let us consider a half-line starting from the origin and forming an angle θ with the positive

x-axis. Any point (x, y) on this half line and within the grid cell considered has the expression

(x, y) = (r cos(θ), r sin(θ)), where 0 ≤ r ≤ Rθ and Rθ denotes the Euclidean length of the half-

line segment within the grid cell, as demonstrated by Figure 1(a). For the point (x, y), let us

consider its circular neighborhood ON (x, y) = {(u, v) :
√

(u− x)2 + (v − y)2 ≤ hN}, where hN > 0
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is a bandwidth parameter. This neighborhood is then divided into two halves O
(1)
N (x, y, θ̃) and

O
(2)
N (x, y, θ̃), by a line passing through (x, y) and forming an angle θ̃ with the positive x-axis, where

θ̃ ∈ [0, π). See Figure 1(b) for a demonstration. Then, in O
(1)
N (x, y, θ̃) and O

(2)
N (x, y, θ̃), we fit two

one-sided local constant plans by the following local constant kernel smoothing procedure:

min
a(ℓ)∈R

∑

(xi,yj)∈O
(ℓ)
N (x,y,θ̃)

(
Zij − a(ℓ)

)2
K

(
xi − x

hN
,
yj − y

hN

)
, for ℓ = 1, 2, (2)

where K is a radially symmetric, bivariate density kernel function with support {(x, y) : x2 + y2 ≤
1}. The solutions to a(ℓ) of (2) are denoted by â(ℓ)(x, y, θ̃), for ℓ = 1 and 2, which are the one-sided

local constant kernel estimators, also known as the one-sided Nadaraya-Watson kernel estimators, of

the image intensity function f at (x, y). Therefore â(ℓ)(x, y, θ̃), for ℓ = 1 and 2, are weighted averages

of the observations in O
(1)
N (x, y, θ̃) and O

(2)
N (x, y, θ̃), respectively, with the weights determined by

the kernel function K.

(x,y)

θ

r

Rθ

(a)

(x,y)

(b)

ON
(1)(x, y, θ~)

ON
(2)(x, y, θ~)

θ~

Figure 1: (a) For a given grid cell, we consider a half-line starting from the origin and forming
an angle θ with the positive x-axis. Any point (x, y) on this half-line has the expression (x, y) =
(r cos(θ), r sin(θ)), where 0 ≤ r ≤ Rθ. (b) The circular neighborhood ON (x, y) is divided into two

parts O
(1)
N (x, y, θ̃) and O

(2)
N (x, y, θ̃) by a line passing through (x, y) and forming an angle θ̃ with the

positive x-axis.

Then, for any (x, y) = (r cos(θ), r sin(θ)) in the grid cell, we define

MN (r, θ) = max
θ̃∈[0,π)

∣∣∣â(1)(x, y, θ̃) − â(2)(x, y, θ̃)
∣∣∣ . (3)
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Intuitively, if (x, y) is on the true boundary curve Γ and Γ has a unique tangent line at (x, y),

then the maximizer of (3) should be a good estimator of the tangent direction of Γ at (x, y), and

consequently MN (r, θ) should be relatively large. On the other hand, if (x, y) is a certain distance

away from Γ, then MN (r, θ) is usually small because the two one-sided estimators are close to each

other in such cases. Our estimator of Γ is then defined by

Γ̂ = {(r̂(θ) cos(θ), r̂(θ) sin(θ)) , for θ ∈ [0, 2π)} , (4)

where r̂(θ) is the maximizer of maxr∈[0,Rθ]MN (r, θ). Namely,

r̂(θ) = arg max
r∈[0,Rθ]

MN (r, θ). (5)

In (5), we assume that the maximizer r̂(θ) is unique for each θ ∈ [0, 2π). In the case of multiple

maximizers for a given θ, which is an event with zero probability under some regularity conditions,

r̂(θ) is defined by their simple average.

It should be pointed out that the notorious “boundary problem” of the local smoothing proce-

dures, i.e., the bias of a local curve or surface estimator in boundary regions is usually larger than

that in interior regions, is not a big issue for image segmentation of spotted microarray images,

because the foreground region in each grid cell can be reasonably assumed to be in the middle

(cf., Figure 4 in Section 5 for a real-life example). Thus, it is reasonable to search only a subset

[tRθ, (1 − t)Rθ] of [0, Rθ] for r̂(θ) in (5), where 0 < t < 0.5 is a small number. We also want to

mention that, when constructing the criterion MN (r, θ), it is possible to divide the circular neigh-

borhood ON (x, y) into two parts by a quadratic curve instead of a straight line (cf., Figure 1(b)), to

reflect the fact that true boundary curves are usually closed curves and they can be approximated

better by quadratic curves. However, variability of the approximated quadratic curves is usually

large, especially when the sample size is small, which is often the case in the current problem. A

careful investigation of this possible improvement is left to our future research.

In the estimation procedure (3)-(5), local constant kernel smoothing has been used for obtaining

the two one-sided kernel estimators â(1)(x, y, θ̃) and â(2)(x, y, θ̃) (cf., equations (2) and (3)). A

natural “improvement” is to use the following local linear kernel smoothing procedure:

min
a(ℓ),b(ℓ),c(ℓ)∈R

∑

(xi,yj)∈O
(ℓ)
N (x,y,θ̃)

{
Zij −

[
a(ℓ) + b(ℓ)(xi − x) + c(ℓ)(yj − y)

]}2
K

(
xi − x

hN
,
yj − y

hN

)
, (6)

for ℓ = 1, 2. In the literature, it has been demonstrated that conventional local linear kernel

estimators have less bias in the boundary regions of the design space, compared to conventional
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local constant kernel estimators (e.g., Hastie and Loader 1993; Fan and Gijbels 1996). In the

boundary regions, the bias of the latter estimators is mainly caused by the slope of the true

regression function in such regions. Since one-sided surface estimators are used in our boundary

curve detection criterionMN (r, θ), the boundary curve Γ in the current image segmentation problem

is similar in nature to the border of design space in the conventional 2-dimensional nonparametric

regression problem, because the related estimators in both cases are constructed from observations

located on a single side of a given point. So we can expect that the local linear kernel smoothing

procedure (6) would perform better than the local constant kernel smoothing procedure (2), in

excluding the impact of surface slope on boundary curve estimation. Similar statements have been

made by Gijbels et al. (1999) in 1-D cases. However, if MN (r, θ) is constructed from the two one-

sided local linear kernel estimators obtained from (6), it would suffer the following two limitations:

(i) it is relatively noisy compared to the one defined at (3) based on the one-sided local constant

kernel estimators, which is especially true in the current problem due to its relatively small sample

size, and (ii) for a given θ ∈ [0, 2π), it usually has three local maxima around Γ, one is close to

Γ and the other two are on either side of Γ (cf., e.g., Qiu 2005, Figure 3.2(b)), and consequently

the local maximum close to Γ is often difficult to select for estimating Γ, due to the relatively

large variability of the one-sided local linear kernel estimators, as mentioned above. Based on our

numerical experience, the benefit of using local linear kernel smoothing is not enough to offset its

disadvantages mentioned above for most microarray images; see Section 4 for a numerical example.

For that reason, the local constant kernel smoothing procedure (2) is used in this paper in defining

the boundary detection criterion MN (r, θ).

Now, let us discuss estimation of the boundary curves Γ1 and Γ2 of a “donut” spot. Let

r̃1(θ) = arg max
r∈[0,Rθ]

MN (r, θ), r̃2(θ) = arg max
r∈[0,Rθ]\(r̃1(θ)−hN ,r̃1(θ)+hN )

MN (r, θ). (7)

Then, we define

r̂1(θ) = r̃(1)(θ), r̂2(θ) = r̃(2)(θ), (8)

where r̃(1)(θ) ≤ r̃(2)(θ) are the two order statistics of r̃1(θ) and r̃2(θ). After r̂1(θ) and r̂2(θ) are

defined, estimators of the two boundary curves Γ1 and Γ2 can be defined similarly to Γ̂ in equation

(4).

In applications, if it is clear based on our visual impression whether there are “donut” spots

in a microarray image, then we can simply choose between the two procedures (4)–(5) and (7)–
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(8). If, however, it is difficult to make such a judgment based on our visual impression alone, we

suggest using the following data-driven decision rules. For a given grid cell, we compute two sets

of boundary curve(s) using the procedures (4)–(5) and (7)–(8), respectively, and let (If , Ib) and

(I∗f , I
∗
b ) be pairs of averaged foreground image intensity and averaged background image intensity

in the two setups. Then, we conclude that the grid cell does not contain a “donut” spot if

If − Ib > I∗f − I∗b , (9)

and the opposite decision is made otherwise. It should be pointed out that more robust summary

statistics, such as the trimmed means and medians, can be used in (9) in places of If , Ib, I
∗
f and I∗b .

Also, this judgment step does not add much extra computation, because the estimator Γ̂ is readily

available after the estimators Γ̂1 and Γ̂2 are computed.

2.3 Image segmentation by gradient estimation

In (3), MN (r, θ) is obtained by searching all possible directions θ̃ in [0, π), at any given point

(x, y) = (r cos(θ), r sin(θ)) in the grid cell considered. In applications, (3) needs to be replaced by

its discrete version

MN (r, θ) = max
1≤j≤m̃

∣∣∣â(1)(x, y, θ̃j) − â(2)(x, y, θ̃j)
∣∣∣ ,

where {θ̃j, j = 1, 2, . . . , m̃} is a sequence of equally spaced directions in [0, π). From our experience,

the above searching algorithm is applicable in most cases, because the size of each grid cell of a

typical microarray image is around 50× 50, and the sequence {θ̃j , j = 1, 2, . . . , m̃} should be dense

enough to cover all interesting directions in [0, π) if we choose, say, m̃ = 40. That is, the results

would hardly change if m̃ is chosen larger. However, sometimes we still prefer a faster boundary

detection procedure, because a microarray image usually contains thousands of grid cells. This can

be accomplished by replacing the searching algorithm (3) with the gradient estimation procedure

introduced below.

In the neighborhood ON (x, y) of a given point (x, y) in the grid cell, let us fit a local plane by

the following conventional local linear kernel smoothing procedure:

min
a,b,c∈R

∑

(xi,yj)∈ON (x,y)

{Zij − [a+ b(xi − x) + c(yj − y)]}2K

(
xi − x

hN
,
yj − y

hN

)
. (10)

The gradient direction of the fitted plane is denoted by G(x, y) = (̂b(x, y), ĉ(x, y)), where b̂(x, y)

and ĉ(x, y) are solutions to b and c, respectively, of (10). Then the image intensity function f
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increases fastest around this direction at (x, y). If the point (x, y) is on a boundary curve, then

G(x, y) should also indicate the orientation of the boundary curve at (x, y) well (cf., Figures 2(b),

2(f), and 2(j) in Section 4). More specifically, let θ̂T (x, y) ∈ [0, π) be orthogonal to G(x, y). Then

θ̂T (x, y) should be a good estimator of the tangent direction of the boundary curve at (x, y) in such

a case. So the boundary detection criterion can be defined by

M∗
N (r, θ) =

∣∣∣â(1)(x, y, θ̂T (x, y)) − â(2)(x, y, θ̂T (x, y))
∣∣∣ , (11)

where â(1) and â(2) are solutions of (2). In the case that the grid cell has a spot with a single

boundary curve Γ, the estimator of Γ can be defined by

Γ̂∗ = {(r̂∗(θ) cos(θ), r̂∗(θ) sin(θ)), for θ ∈ [0, 2π)} , (12)

where r̂∗(θ) is the maximizer of maxr∈[0,Rθ]M
∗
N (r, θ). In the case that the grid cell has a “donut”

spot, then estimators of the two boundary curves Γ1 and Γ2 can be defined similarly to those in

equations (7) and (8), which are denoted as Γ̂∗
1 and Γ̂∗

2 below. By using criterion (11), no direction

search is involved, and therefore estimators Γ̂∗, Γ̂∗
1, and Γ̂∗

2 are much easier to compute compared to

estimators Γ̂, Γ̂1, and Γ̂2 defined by criterion (3). On the other hand, estimators based on criterion

(11) may lose some efficiency, mainly due to the randomness of the estimated image gradient,

although the loss is small based on our numerical studies (cf., Figure 2 and Tables 1 and 3 in

Section 4).

2.4 Bandwidth selection

To compute Γ̂, Γ̂∗, or estimators of the two boundary curves of a “donut” spot, the bandwidth pa-

rameter hN should be selected properly. Toward this end, we suggest the following cross-validation

procedure. For simplicity, our discussion is for computing Γ̂ only. Bandwidth selection for comput-

ing other boundary curve estimators can be discussed similarly.

Suppose that Γ̂ divides the grid cell in question, denoted as Ω, into two parts Ω̂(1) and Ω̂(2),

which are good estimators of the foreground region Ω(1) and the background region Ω(2) of the

grid cell, respectively. After Γ is estimated by Γ̂, the image intensity function f can be estimated

separately in the two regions Ω̂(1) and Ω̂(2) by the conventional local linear kernel smoothing

procedure (i.e., the procedure (10) after ON (x, y) is replaced by either Ω̂(1) or Ω̂(2) depending on

which region the point (x, y) is in). The resulting estimator of f is called the jump-preserving
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estimator of f in this paper. If Γ̂ estimates Γ well, then the jump-preserving estimator of f should

also estimate f well, and vice versa. Therefore, hN can be chosen such that the corresponding

jump-preserving estimator estimates f well. However, the jump-preserving estimator also needs a

bandwidth, which could be different from the bandwidth hN used in boundary curve estimation.

That bandwidth is denoted by h̃N .

Let f̂−i,−j be the jump-preserving estimator of f without using the (i, j)-th observation. The

cross-validation (CV) score is then defined by

CV(hN , h̃N ) =

1
bN1−1

∑
(xi,yj)∈bΩ(1)

(
Zij − f̂−i,−j(xi, yj)

)2

σ̂2
1

+

1
bN2−1

∑
(xi,yj)∈bΩ(2)

(
Zij − f̂−i,−j(xi, yj)

)2

σ̂2
2

,

(13)

where N̂1 and N̂2 denote the numbers of pixels in Ω̂(1) and Ω̂(2), respectively, and σ̂2
1 and σ̂2

2 are some

consistent estimators of the noise variances in the two regions. Let CV(hN ) = minh̃N
CV(hN , h̃N ).

Then, the optimal bandwidth for boundary estimation can be estimated by the minimizer of

CV(hN ).

The CV score in (13) is a sum of two terms, corresponding to two regions separated by the

estimated boundary curve Γ̂, and each term is a ratio of the regional CV score to an estimated

regional noise variance. A major consideration in defining such a CV score is that noise variances in

foreground and background regions of a typical grid cell of a microarray image are quite different,

and the two regional ratios in (13) are for accommodating such a difference. Because the center

and border of each grid cell in a microarray image are determined in the image addressing stage, it

is not difficult to obtain two useful estimators σ̂2
1 and σ̂2

2 . One example to define such estimators

is given in Section 5 when we analyze a microarray image. Theoretically, it has been proved that

the selected bandwidth by (13) is asymptotically equivalent to the optimal bandwidth defined as

the minimizer of the distance measure dΩ(1),bΩ(1)(hN ) defined in Section 5. To save some space,

this result is omitted here, and is included in Appendix C of Qiu and Sun (2006). We also want

to mention that bootstrap-type bandwidth selection has been considered in 1-D cases recently by

Gijbels and Goderniaux (2004). We did not consider such methods here because computation

involved would be expensive in 2-D cases.
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2.5 A pseudo-code

We provide a pseudo-code of the proposed segmentation procedure based on gradient estimation,

as follows.

1. At pixel (x, y) of a given grid cell, compute the estimated gradient G(x, y) using the local

linear kernel smoothing procedure (10) with bandwidth hN .

2. Construct the criterion M∗
N (r, θ) using formula (11), where the two one-sided estimators â(1)

and â(2) are computed using the local constant kernel smoothing procedure (2).

3. Compute two maxima r̃1(θ) and r̃2(θ) ofM∗
N (r, θ), as in formula (7). Then, define r̂(θ) = r̃1(θ)

when the spot is assumed to have a single boundary curve; define r̂1(θ) and r̂2(θ) from r̃1(θ)

and r̃2(θ) using formula (8) when the spot is assumed to have two boundary curves.

4. Decide whether the spot has two boundary curves using criterion (9).

5. Determine bandwidth hN using the CV procedure (13), and obtain estimator(s) of the bound-

ary curve(s) using the CV bandwidth.

The proposed procedures can be easily computed because of the “parallel” structure of the

segmentation problem discussed here and of the local smoothing nature of the procedures. To

handle one typical grid cell requires about 15 seconds CPU time on our 1.2GHz Pentium III PC

running a Linux operating system.

3 Some Statistical Properties

In this section, we give some statistical properties of the estimated boundary curve by the image

segmentation procedure (11)–(12), which is based on gradient estimation. By similar arguments, it

can be shown that, under some regularity conditions, other boundary curve estimators (e.g., the ones

defined by equations (4)–(5) and equations (7)–(8)) share the same properties given in this section.

First, we have the following result about the estimated gradient direction G(x, y) = (̂b(x, y), ĉ(x, y))

obtained in procedure (10).

Theorem 3.1 Assume that the image intensity function f has continuous second-order derivatives
in the foreground and background of the grid cell Ω considered, and it has one-sided directional
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second-order derivatives at each point of the boundary curve Γ in the normal direction of Γ. It
is further assumed that Γ is a closed curve and its radius function r(θ) (cf. expression (1)) has
continuous second-order derivatives on [0, 2π), the absolute jump magnitudes of f along Γ have a
positive lower bound, the kernel function K is a radially symmetric, Lipschitz continuous density

function on its support, the bandwidth hN satisfies the conditions that hN = o(1) and

√
log(n)

nh2
N

= o(1),

where N = n2, and the random errors involved in observed image intensities are i.i.d. with mean
zero and finite variances σ2

1 and σ2
2, respectively, in the foreground and background regions. Then

(i)

‖b̂− f ′x‖ΩhN
= o(hN ) +O

(√
log(n)

nh2
N

)
, almost surely (a.s.), (14)

‖ĉ− f ′y‖ΩhN
= o(hN ) +O

(√
log(n)

nh2
N

)
, a.s., (15)

where ΩhN
= {(x, y) : (x, y) ∈ Ω,

√
(x− x′)2 + (y − y′)2 ≥ hN , and (x′, y′) is any point on Γ

or the border of Ω}, and ‖f‖ΩhN
= max(x,y)∈ΩhN

|f(x, y)|;

(ii) for a point (x, y) ∈ Ω, if (xτ , yτ ) is the closest point on Γ to (x, y) and their Euclidean distance
is τhN where 0 ≤ τ < 1 is a constant, then

b̂(x, y) =
Cτ

K02hN

∫ ∫

Q(2)

uK(u, v) dudv + o(1/hN ), a.s., (16)

ĉ(x, y) =
Cτ

K20hN

∫ ∫

Q(2)

vK(u, v) dudv + o(1/hN ), a.s., (17)

where Cτ > 0 is the jump size of f at (xτ , yτ ), Q
(1)
N (x, y) and Q

(2)
N (x, y) are two different parts

of ON (x, y) separated by Γ with a positive jump at (xτ , yτ ) from Q
(1)
N (x, y) to Q

(2)
N (x, y), Q(1)

and Q(2) are the two corresponding parts of the support of K, K02 =
∫∞
−∞

∫∞
−∞ v2K(u, v)dudv

and K20 =
∫∞
−∞

∫∞
−∞ u2K(u, v)dudv.

For people who are not familiar with the terminology of almost sure convergence, the statement

that a sequence of random variables Xn converges to a random variable X almost surely implies

that the event that Xn does not converge to X has zero probability. By Theorem 3.1, it can be

concluded that when a point (x, y) is Euclidean distance at least hN away from the boundary

curve Γ or the border of the grid cell Ω, then the estimated gradient direction (̂b(x, y), ĉ(x, y))

converges to the true gradient direction of f at (x, y) almost surely and uniformly with respect to

(x, y). If the point (x, y) is on the boundary curve Γ and the tangent direction of Γ at (x, y) is

(cos(θT (x, y)), sin(θT (x, y))) with θT (x, y) ∈ [0, π), then the estimated gradient direction has the

property that

b̂(x, y) = − CτC
∗

K02hN
sin(θT (x, y)) + o(1/hN ), a.s.,

ĉ(x, y) =
CτC

∗

K20hN
cos(θT (x, y)) + o(1/hN ), a.s.,
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where C∗ is a constant. Therefore (̂b(x, y), ĉ(x, y)) is approximately perpendicular to the tangent

direction of Γ at (x, y) in such a case. Based on these properties, we have the following result about

the detected boundary curve Γ̂∗.

Theorem 3.2 Under the conditions stated in Theorem 3.1, we have

‖r̂∗ − r‖[0,2π) = O(hN ), (18)

where r(θ) and r̂∗(θ) for θ ∈ [0, 2π) are the radius functions of Γ and Γ̂∗, respectively.

Theorem 3.2 says that Γ̂∗ converges to Γ almost surely and uniformly with respect to θ ∈ [0, 2π).

From (14)–(18), when hN ∼ n−1/3
√

log(n), this convergence can reach the rate ofO
(
n−1/3

√
log(n)

)
.

Remember that the sample size in the grid cell Ω is N = n2. So the rate is O
(
N−1/6

√
log(N)

)
.

4 A Simulation Study

In this section, we present some simulation results regarding the numerical performance of the pro-

posed boundary curve estimators, discussed in the previous sections. For simplicity, our simulation

is for detecting the boundary curve(s) of a single grid cell of a spotted microarray image, which is

appropriate for reasons explained in Section 2.1.

Let us assume that the design space of the grid cell is [−1/2, 1/2]×[−1/2, 1/2], i.e., the origin of

the coordinate system is at the center of the grid cell. We first discuss the case that the foreground

has a single boundary curve Γ. In such a case, we assume that the underlying true image intensity

function is f(x, y) = 4[1 − .5(x2 + y2)/R2] if x2

a2 + y2

b2
≤ 1; and f(x, y) = 1 − .5x2 − .5y2 otherwise,

where R = max(a, b), and a and b are two positive parameters. So, f has an elliptical boundary

curve Γ centered at the origin (0, 0). When a = b = .12, for instance, Γ is a circle with radius .12,

and the jump magnitude at Γ is a constant 1.0072. Note that the performance of the proposed

procedure would not change much if the form of f changes in its continuity regions, mainly due

to the fact that the proposed procedure is based on nonparametric local smoothing. The above

quadratic function is chosen because it can well approximate true image intensity functions of some

real microarray images, including the ones used in Section 5, based on our preliminary study. It is

further assumed that random errors involved in observed image intensities are i.i.d. and normally

distributed with mean zero, variances σ2
1 in the foreground and σ2

2 in the background. When

a = b = .12, n = 50, σ1 = 1, and σ2 = .5, one realization of the observed image intensities is

presented in Figure 2(a) with whiter pixels denoting larger intensity levels.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2: (a) An observed grid cell with a single boundary curve. (b) Estimated image gradient
G(x, y) from the data in plot (a). (c) Estimated boundary curve (white pixels) using criterion
MN (r, θ) from the data in plot (a). (d) Estimated boundary curve using criterion M∗

N (r, θ) from
the data in plot (a). (e)–(h) Corresponding results with a larger boundary curve. (i) An observed
“donut”-shaped spot. (j) Estimated image gradient G(x, y) from the data in plot (i). (k) Estimated
boundary curves using MN (r, θ) from the data in plot (i). (l) Estimated boundary curves using
M∗

N (r, θ) from the data in plot (i).

16



The boundary detection procedure (3)–(5) and its simplified version (11)–(12) are then applied

to the data shown in Figure 2(a). In both procedures, the kernel function is chosen to be the

modified, bivariate, Gaussian density function:

K(x, y) =





1
2π−3πe−.5

[
exp

(
−x2+y2

2

)
− e−.5

]
, when x2 + y2 ≤ 1

0, otherwise,

which has support {(x, y) : x2 + y2 ≤ 1} and is a continuous function in R2. The bandwidths

of the two procedures are both chosen to be hN = .07, by the cross-validation procedure (13).

For procedure (11)–(12), which is based on gradient estimation, the estimated image gradients are

shown in Figure 2(b). It can be seen that (i) in continuity regions of the image intensity function,

magnitudes of the estimated image gradients are small, (ii) they are relatively large around the

true boundary curve Γ, and (iii) they indicate the orientation of Γ well. For both procedures,

the boundary curve is detected at 40 equally spaced θ values in [0, 2π). The detected boundary

curve by procedure (3)–(5) is presented in Figure 2(c) by white pixels. The corresponding results

of procedure (11)-(12) are shown in Figure 2(d). By comparing the results of the two procedures,

it can be seen that the two sets of results are comparable, and the results of procedure (11)–(12)

are slightly worse at several θ values. This example shows that the simplified procedure (11)–

(12) does not lose much efficiency for boundary curve estimation, compared to procedure (3)–(5).

Corresponding results in the case with a larger boundary curve specified by a = b = .3 are shown

in plots (e)–(h).

Now, we discuss the case that the foreground of a grid cell has two boundary curves, or, the

grid cell includes a “donut” spot. The underlying true image intensity function is assumed to be

f(x, y) = 4[1 − .5(x2 + y2)/R2] if x2

a2
1

+ y2

b21
> 1 and x2

a2
2

+ y2

b22
≤ 1; and f(x, y) = 1 − .5x2 − .5y2

otherwise, where R = max(a2, b2), a1, b1, a2 and b2 are positive parameters, a1 < a2, and b1 < b2.

When a1 = b1 = .12, a2 = b2 = .3, n = 50, σ1 = 1, and σ2 = .5, one realization of the observed

image intensities is presented in Figure 2(i). We then use the criteria MN (r, θ) and its simplified

version M∗
N (r, θ) defined at (3) and (11), respectively, for estimating the two boundary curves, in

the way as described by formulas (7) and (8). The bandwidth hN is chosen to be .11 in both cases,

by CV. The estimated image gradients and the estimated boundary curves are presented in Figures

2(j)–(l). It can be seen that the “donut” spot is segmented reasonably well.

In Section 2, we have explained in words why local constant kernel smoothing, instead of local

linear kernel smoothing, is used in constructing our boundary detection criterion MN (r, θ) (cf.,
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equation (3)). Next, let us use the following numerical example to further demonstrate the benefits

of using local constant kernel smoothing. Suppose that the foreground has one boundary curve as

in Figure 2(a), a = b = .12, σ1 = 1, σ2 = .5, and 100 replicated simulations are performed. The

boundary detection criterion MN (r, θ) is constructed based on either local linear or local constant

kernel smoothing. When θ = 0, the 100 values of MN (r, 0) from the 100 replications are presented

in Figure 3(a) for the local linear kernel smoothing case, and in Figure 3(b) for the local constant

kernel smoothing case. In each plot, the upper, central and lower curves denote the 95th percentile,

the average and the 5th percentile of the 100 replicated values of MN (r, 0), as functions of r. It can

be seen that the criterion MN (r, θ) based on local linear kernel smoothing is indeed not as sensitive

to the boundary curve as the one based on local constant kernel smoothing in such a case.

0.
0

1.
0

2.
0

3.
0

r

M
n(r

, 0
)

0 .04 .08 0.12 .16 .20

(a)

0.
0

1.
0

2.
0

3.
0

r

M
n(r

, 0
)

(b)

0 .04 .08 0.12 .16 .20

Figure 3: (a) Upper, central and lower curves denote the 95th percentile, the average and the 5th

percentile of 100 replicated values of MN (r, 0), when it is constructed using the local linear kernel
smoothing. (b) Corresponding results when MN (r, 0) is constructed using the local constant kernel
smoothing.

Next, we consider the following seven cases, in each of which the true image intensity function

is defined as in Figure 2. In the first four cases, the foreground is assumed to have a single boundary

curve Γ as in Figure 2(a), and the parameters of Γ are (i) a = b = .12, (ii) a = b = .3, (iii) a = .12

and b = .08, and (iv) a = .3 and b = .2, respectively. The boundary curve is a circle in each of

the first two cases, and the one in case (ii) is larger than the one in case (i), which is designed

for investigating possible effects of the background size on numerical performance of the proposed

procedures. Similarly, Γ is an ellipse in cases (iii) and (iv), and the one in case (iv) is larger than
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the one in case (iii). In cases (v) and (vi), the grid cell is assumed to have a “donut” spot, as in

Figure 2(i), and the “donut” is circular with parameters (a1 = b1 = .12, a2 = b2 = .3) in case (v),

and elliptical with parameters (a1 = .12, b1 = .08, a2 = .3, b2 = .2) in case (vi). In all six cases

described above, random errors are assumed to be Normally distributed with σ1 = 1 and σ2 = 0.5.

To investigate possible effects of the random error distribution on performance of the proposed

procedure, in case (vii), we assume that the true image intensity function is exactly the same as

that in case (i), but the random errors are generated from the χ2(2) distribution first, which is

skewed to right, and then they are normalized to have mean 0 and variances 1 in the foreground

and .5 in the background.

We apply procedure (3)–(5) and its simplified version (11)–(12) to cases (i)–(iv) and (vii), in

which the spot has a single boundary curve, and procedure (7)–(8) and its simplified version to

cases (v) and (vi), in which the grid cell includes a “donut” spot. In each of the seven cases, 100

replicated simulations are performed. In each simulation, the approximated bandwidths ĥN and

ĥ∗N based on criteria MN (r, θ) and M∗
N (r, θ), respectively, are obtained by the CV procedure (13).

To evaluate the performance of the CV bandwidths, we also compute the bandwidth minimizing

dΩ(1),bΩ(1)(hN ) =

∣∣∣
(
Ω(1)\Ω̂(1)

)⋃(
Ω̂(1) \Ω(1)

)∣∣∣
∣∣Ω(1)

∣∣ ,

where |A| denotes the number of pixels in pointset A, Ω(1) is the true foreground, and Ω̂(1) is

its estimator. This bandwidth is regarded as the true optimal bandwidth for boundary curve

estimation, and is denoted by hN,opt. The simulation results are summarized in Table 1. From

the table, we can see that: (1) both ĥN and ĥ∗N are close to the optimal bandwidth hN,opt, (2)

dΩ(1),bΩ(1)(ĥN ) and dΩ(1),bΩ(1)(ĥ
∗
N ) are close to each other, and (3) they are both decent, compared to

d
Ω(1),bΩ(1)(hN,opt).

Next, we compare the proposed image segmentation procedure based on M∗
N (denoted as

“Kernel”) with the following three existing image segmentation procedures (cf., Section 1 for a

brief introduction about them): (i) SRG, (ii) image segmentation by thresholding the histogram

of image intensities (denoted as “Hist”), and (iii) adaptive circle image segmentation (denoted as

“Circle”). The seven cases are considered here, as in Table 1, and the true values of the averaged

foreground image intensity (AFII) are 2.79, 2.94, 3.04, 3.21, 2.75, 3.05, and 2.79, respectively. In the

proposed procedure, the modified bivariate Gaussian density function is used as the kernel function

as before, the decision rule (9) is used for determining whether the grid cell has a “donut” spot,
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Table 1: In each entry, the first line presents the averaged value of hN,opt, ĥN , or ĥ∗N , and its standard
error (in parenthesis), obtained from 100 replications. The second line presents the averaged value
of dΩ(1),bΩ(1)(hN,opt), dΩ(1),bΩ(1)(ĥN ), or dΩ(1),bΩ(1)(ĥ

∗
N ), and its standard error (in parenthesis).

Case MN with hN,opt MN with ĥN M∗
N with ĥ∗N

(i) .0756 (.0015) .0734 (.0016) .0722 (.0015)
.214 (.006) .222 (.007) .222 (.007)

(ii) 0.1142 (.0013) .1052 (.0014) .1092 (.0013)
.073 (.003) .073 (.003) .073 (.003)

(iii) .0762 (.0014) .0820 (.0020) .0800 (.0020)
.153 (.005) .173 (.006) .175 (.006)

(iv) .1108 (.0015) .0986 (.0015) .0990 (.0017)
.060 (.002) .066 (.002) .067 (.002)

(v) .1070 (.0015) .1102 (.0019) .1090 (.0018)
.142 (.003) .145 (.003) .146 (.003)

(vi) .0954 (.0015) .0946 (.0017) .0908 (.0019)
.152 (.002) .157 (.002) .159 (.002)

(vii) .0760 (.0014) .0730 (.0016) .0724 (.0015)
.214 (.007) .218 (.007) .218 (.006)

and the bandwidth is selected by the CV procedure (13). The noise variance σ2
1 is estimated in the

region within a circle of radius .08 centered at the origin, and the noise variance σ2
2 is estimated

in the region outside a circle of radius .35 centered at the origin. Both variance estimators are

defined by the residual mean squares of the local linear kernel estimators of the image intensity

surface in the two regions. In the SRG procedure, pixels located at the border of the grid cell are

used as background seeds and pixels in a square of size .1 × .1 centered at the origin are used as

foreground seeds. In the Hist procedure, its circular mask is centered at the origin with radius .2 in

cases (i), (iii), and (vii) when the grid cell has a single boundary curve and the foreground region

is relatively small, and radius .4 in all the remaining cases, and its threshold value is determined

by the Mann-Whitney statistic with significance level .05%, as used by Chen et al. (1997). In the

adaptive circle image segmentation, the radius of the circle is searched by the approach used in the

software package Dapple (2000), which generates a Laplacian image first from the original image,

using a standard four-neighbor Laplacian mask (cf., Qiu 2005, Section 6.2), and then chooses the

radius as the maximizer of function ψ(r), defined as the average of all pixels in the Laplacian image

whose Euclidean distances from the center are r. For each procedure, besides d
Ω(1),bΩ(1) , we also

compute

d
(+)

Ω(1),bΩ(1)
=

|Ω̂(1)\Ω(1)|
Ω(1)

, and d
(−)

Ω(1),bΩ(1)
=

|Ω(1)\Ω̂(1)|
Ω(1)
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Table 2: This table presents the averaged values of dΩ(1),bΩ(1) , d
(+)

Ω(1),bΩ(1)
, d

(−)

Ω(1),bΩ(1)
, and ÂFII from

100 replications. The numbers in parentheses are their standard errors.

Case Method dΩ(1),bΩ(1) d
(+)

Ω(1),bΩ(1)
d
(−)

Ω(1),bΩ(1)
ÂFII

Kernel .222 (.006) .015 (.002) .207 (.007) 3.01 (.01)
SRG .292 (.004) .010 (.001) .282 (.004) 3.21 (.01)

(i) Hist .492 (.011) .214 (.016) .278 (.006) 2.90 (.03)
Circle .044 (.015) 0 (0) .044 (.015) 2.85 (.02)

Kernel .073 (.003) .010 (.001) .063 (.003) 2.99 (.01)
SRG .226 (.002) .005 (.001) .221 (.002) 3.15 (.01)

(ii) Hist .251 (.005) .111 (.008) .140 (.006) 3.04 (.02)
Circle .004 (.004) 0 (0) .004 (.004) 2.95 (.01)

Kernel .175 (.006) .030 (.002) .145 (.007) 3.16 (.01)
SRG .234 (.005) .011 (.001) .223 (.005) 3.35 (.02)

(iii) Hist .620 (.023) .356 (.027) .264 (.006) 2.91 (.04)
Circle .446 (.065) .309 (.069) .137 (.015) 2.88 (.05)

Kernel .067 (.002) .032 (.001) .035 (.002) 3.18 (.01)
SRG .169 (.002) .007 (.001) .162 (.002) 3.34 (.01)

(iv) Hist .343 (.014) .239 (.018) .104 (.005) 3.06 (.03)
Circle .310 (.010) .155 (.017) .155 (.011) 3.08 (.03)

Kernel .146 (.003) .078 (.001) .069 (.003) 2.68 (.01)
SRG .699 (.008) .224 (.001) .475 (.008) 2.57 (.01)

(v) Hist .347 (.008) .180 (.013) .167 (.007) 2.82 (.03)
Circle 1.158 (.001) .158 (.001) 1 (0) 1.00 (.01)

Kernel .159 (.002) .120 (.001) .039 (.002) 2.87 (.01)
SRG .576 (.006) .242 (.001) .334 (.006) 2.72 (.01)

(vi) Hist .469 (.021) .344 (.025) .125 (.005) 2.86 (.03)
Circle 1.002 (.024) .227 (.010) .775 (.032) 1.65 (.07)

Kernel .218 (.006) .018 (.002) .200 (.007) 3.00 (.01)
SRG .284 (.004) .022 (.002) .262 (.004) 3.08 (.01)

(vii) Hist .484 (.012) .146 (.015) .338 (.017) 3.07 (.04)
Circle .081 (.021) 0 (0) .081 (.021) 2.89 (.03)

to measure the amounts of false foreground pixels and false background pixels, respectively. With

the estimated foreground, the estimated AFII, denoted as ÂFII, is also computed. The averaged

values of dΩ(1),bΩ(1) , d
(+)

Ω(1),bΩ(1)
, d

(−)

Ω(1),bΩ(1)
, and ÂFII from 100 replications are presented in Table 2,

along with their standard errors; the decision rule (9) used by the proposed procedure makes 100%

correct decisions in all cases.

From Table 2, it seems that the adaptive circle procedure performs the best among the four

procedures in cases (i), (ii), and (vii), which is not a surprise because the grid cell has a single

boundary curve and the true boundary curve is a circle in all these cases. In cases (iii)–(vi)
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Table 3: In each entry, the first line presents the selected bandwidth and its standard error (in paren-
thesis) based on 100 replications, and the second line presents the averaged value of d

Ω(1),bΩ(1)(ĥN )

or dΩ(1),bΩ(1)(ĥ
∗
N ) and its standard error (in parenthesis).

CV Score MN with ĥN M∗
N with ĥ∗N

with variance .0734 (.0016) .0722 (.0015)
standardization .222 (.007) .222 (.007)

without variance .0790 (.0020) .0790 (.0020)
standardization .237 (.007) .234 (.007)

when the foreground has a single elliptical boundary curve, or, when the spot is “donut” shaped, it

performs poorly because a single circle can not match the true boundary curve(s) well in such cases.

Please note that, in case (v) when the spot is circularly “donut”-shaped, the estimated boundary

curve by the adaptive circle procedure is completely inside the “hole” of the “donut”, making its

d
(−)

Ω(1),bΩ(1)
value to be 1 and its dΩ(1),bΩ(1) value larger than 1. Similar phenomenon can be seen in case

(vi) when the spot is elliptically “donut”-shaped, although the estimated boundary curve is only

partially inside the “hole” of the “donut” this time. Comparing the proposed procedure with the

SRG procedure, the former outperforms the latter in all cases, with regard to d
Ω(1),bΩ(1) , d

(−)

Ω(1),bΩ(1)
,

and ÂFII. The former performs better than the latter with regard to d
(+)

Ω(1),bΩ(1)
in cases (v)–(vii),

when the spot is “donut”-shaped or when the noise distribution is skewed; in other cases, the

former performs a little worse in terms of d
(+)

Ω(1),bΩ(1)
. Compared to the Hist procedure, the proposed

procedure outperforms in all cases in terms of dΩ(1),bΩ(1) , d
(+)

Ω(1),bΩ(1)
, and d

(−)

Ω(1),bΩ(1)
.

The CV score defined in equation (13) equals the sum of two regional CV scores standardized

by σ̂2
1 and σ̂2

2. Since noise variances in foreground and background could be very different in a

microarray image, standardizations by σ̂2
1 and σ̂2

2 are important, which is demonstrated by the next

example. Assume that the foreground has a single boundary curve with parameters a = b = .12,

σ1 = 1 and σ2 = .5, as in Figure 2(a). Selected bandwidths by the CV procedure (13) with

and without variance standardizations are presented in Table 3, along with the corresponding

dΩ(1),bΩ(1)(ĥN ) and dΩ(1),bΩ(1)(ĥ
∗
N ) values. It can be seen that the detected boundary curves Γ̂ and

Γ̂∗ are closer to the true boundary curve Γ if the CV score with variance standardizations is used.

Performance of the related image segmentation procedures discussed above may depend on

correct specification of the center and border of a given grid cell. To investigate this issue, we

consider the following example, in which the spot has a single circular boundary curve, as in Figure
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2(a), with a = b = .12, σ1 = 1, and σ2 = .5. We then let the center of the grid cell move to

positions (0, .02), (0, .04), and (.04, .04), respectively. In each case, the related image segmentation

procedures are applied, as in Table 2. Table 4 presents their averaged values of d
Ω(1),bΩ(1) in the

three cases, based on 100 replications. For convenience of comparison, their averaged values of

dΩ(1),bΩ(1) when the center does not move are also reported in the table. From the table, it can be

seen that, besides the adaptive circle procedure, the remaining three procedures are quite robust

to correct specification of the grid cell center. Since the robustness to correct specification of the

grid cell border has a similar nature, it will not be discussed separately.

Table 4: Averaged values of dΩ(1),bΩ(1) and their standard errors (in parentheses) when the grid cell
center moves to various positions.

Center Position Kernel SRG Hist Circle

(0,0) .222 (.007) .292 (.004) .492 (.011) .044 (.015)

(0,.02) .216 (.007) .291 (.004) .490 (.011) .418 (.024)

(0,.04) .221 (.007) .287 (.004) .489 (.011) .512 (.021)

(.04,.04) .229 (.007) .280 (.004) .490 (.012) .659 (.020)

5 An Application

In this section, we apply the proposed procedure based on criterion M∗
N (r, θ) and the three ex-

isting procedures discussed in Section 4 to a real microarray image, which is from a study by

van’t Wout et al (2003) about the biochemical changes that occur during HIV-1 infection. In the

study, expression levels of 4,608 cellular RNA transcripts were assessed in CD4+-T-Cell lines,

at different times after infection with HIV virus type 1 strain BRU (HIV-1BRU ), using DNA

microarrays. For each of the infection conditions considered, duplicate slides were hybridized

with probes generated from the same RNAs, and another duplicate slides were hybridized with

probes in the same way except that fluorescent labels were reversed to control for dye-specific ef-

fects. Therefore, we have four replicated images which shared the same DNA samples. For ease

of presentation, here we only consider 4 replicated subarrays, each consisting of 32 × 12 = 384

genes, corresponding to the first block of each image. The whole images can be downloaded from

http://expression.microslu.washington.edu/expression/vantwoutjvi2002.html.

Before image segmentation, the automatic image addressing procedure described in Bergemann

et al. (2004) is used for specifying the centers and borders of grid cells of each replicated image. By
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this approach, peak positions of column/row totals of image intensities are used for specifying the

grid cell centers, after the column/row totals are pre-smoothed by a smoothing operator. Similarly,

the borders of grid cells are estimated by the valley positions of the smoothed column/row totals.

The size of a typical grid cell of these images is about 30× 30 pixels. Then, the four segmentation

procedures are applied to each grid cell. In the proposed procedure, the foreground noise variance is

estimated in the region within a circle of radius 4 pixels centered at the origin, and the background

noise variance is estimated in the region outside a circle of radius 12 pixels centered at the origin.

In the SRG procedure, pixels located at the border of the grid cell are used as background seeds

and pixels in a square of size 5×5 pixels centered at the origin are used as foreground seeds. In the

Hist procedure, the circular mask is centered at the origin and has radius of 12 pixels; its threshold

is chosen in the same way as we did in Table 2. In the adaptive circle procedure, the circle radius

is chosen by the approach used in the package Dapple (2000), described in Section 4.

Segmentation results of the four procedures for the first replicated image are shown in the four

plots of Figure 4, respectively. Results for the other three replicated images are similar. In the

plots, white pixels denote detected foreground pixels for the Hist procedure; they denote detected

boundary curves for the other three procedures. It can be seen that the proposed procedure detects

most boundary curves, including the ones of some “donut” spots (cf., e.g., the (24,11)-th spot),

reasonably well. The SRG procedure can not handle “donut” spots well, and its detected boundary

curves are quite noisy in some grid cells (cf., e.g., the (1,11)-th spot). The Hist procedure can

handle some “donut” spots well, but its detected foreground pixels indeed do not form connected

regions in some cases (cf., e.g., the (5,10)-th spot), due to the fact that it does not make use of

any spatial information of the image. The adaptive circle procedure can not handle “donut” spots

at all (cf., e.g., the (24,11)-th spot), and its results are affected much if the grid cell center is not

specified well (cf., e.g., the (8,1)-th spot).

To further compare the four segmentation procedures in this example, we compute the averaged

foreground (fg) intensity and background (bg) intensity for each spot, based on the segmentation

results of each procedure. These averaged intensities are further averaged over four replications.

Then, the ratios of averaged foreground intensities based on the proposed procedure to averaged

foreground intensities based on the SRG procedure are plotted with corresponding ratios of averaged

background intensities in Figure 5(a) by a scatter plot. Figures 5(b) and 5(c) present similar results

for the pair of (proposed procedure, Hist procedure) and the pair of (proposed procedure, adaptive
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(a) (b)

(c) (d)

Figure 4: (a) Detected boundary curves by the proposed procedure. (b) Detected boundary curves
by the SRG procedure. (c) Detected foreground pixels by the histogram thresholding procedure.
(d) Detected boundary curves by the adaptive circle procedure.
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circle procedure), respectively. It can be seen from the plots that the SRG procedure tends to

give larger averaged background intensities, compared to the proposed procedure, due to the fact

that it often misses some foreground pixels, especially when a given spot is “donut”-shaped (cf.,

e.g., the (8,2)-th spot in Figure 4(b)). Compared to the proposed procedure, the Hist procedure

tends to provide larger foreground and larger background intensities, partly because it misses many

foreground pixels when the corresponding image intensities are low (cf., e.g., the (1,5)-th spot in

Figure 4(c)); finally, the adaptive circle procedure tends to provide smaller foreground intensities

and larger background intensities, because it misses foreground pixels when a given spot is “donut”-

shaped, and misclassifies many background pixels as foreground pixels when the grid cell center is

not specified properly (cf., e.g., the (8,2)-th spot in Figure 4(d)).

Then, for each replicated image, we compute the gene expression level, defined by the log2

ratio of the averaged foreground intensity of the Cy5 image to the averaged foreground intensity

of the Cy3 image, for each spot, based on segmentation results of each of the four procedures.

For each segmentation procedure, the standard deviation (SD) and mean of the four computed

gene expression levels, corresponding to four replicates, are computed, for each spot. According

to Bergemann et al. (2004), a good segmentation procedure is expected to produce reliable gene

expression data, and thus, the SDs of the gene expression levels computed from replicated images

based on its segmentation should be small, without reducing the corresponding means. In Figures

5(d)–(f), we present the SDs of the gene expression levels in three scatter plots, corresponding

to three pairs of segmentation procedures considered above. It can be seen from the plots that

the proposed procedure seems to have smaller SDs, compared to the SRG and adaptive circle

procedures; it has smaller SDs compared to the Hist procedure as well if several points in the

upper-right part of Figure 5(e), which correspond to some spots with weak signals, can be down

weighted. As a reference, the mean results are presented in Figures 5(g)–(i), from which it can be

seen that the mean gene expression data based on the proposed procedure are comparable to those

based on the other three procedures. By the way, the three spots shown in the lower-left parts

of Figures 5(g)–(i) are the ones included intentionally by the researchers for varification purposes.

They correspond to three highly expressed genes; thus, they are far away from the other spots in the

plots. By one referee’s suggestion, for each segmentation procedure, the within-spot SD computed

from four replicates of each spot is then divided by the between-spot SD, defined as the SD of

the mean gene expression levels (each mean is computed from four replicates of each spot) of all
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Figure 5: (a)–(c): Scatter plots of ratios of averaged foreground intensities based on the proposed
procedure to averaged foreground intensities based on one of the three existing procedures versus
corresponding ratios of averaged background intensities. (d)–(f): Within-spot SDs of the gene
expression levels computed from four replicates based on the proposed procedure versus corre-
sponding results based on one of the three existing procedures. (g)-(i): Corresponding spotwise
means. (j)–(l): Ratios (within-spot SD)/(between-spot SD) based on the proposed procedure versus
corresponding ratios based on one of the three existing procedures.
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the spots. In Figures 5(j)–(l), we present the ratios (within-spot SD)/(between-spot SD) in three

scatter plots, corresponding to three pairs of segmentation procedures, as in Figures 5(d)–(f). It can

be seen that these plots have similar patterns to those in Figures 5(d)–(f). It should be noticed that

both within-spot SDs and ratios of (within-spot SD)/(between-spot SD) are mainly for measuring

replicability of a segmentation method. They are not good for measuring performance of image

segmentation. For instance, let us consider some obviously bad segmentations based on the fixed

circle segmentation procedure (cf., Section 1 for introduction), with radius of circles chosen to be

a too small number (e.g., 2-pixels), or, a too large number (e.g., 14-pixels). It is easy to check that

such segmentations would have much better replicability than the segmentation methods commonly

used in practice (e.g., methods “srg”, “hist”, and “circle”).

6 Concluding Remarks

We have presented an image segmentation procedure for analyzing microarray images. This pro-

cedure is based on local polynomial kernel smoothing. For a given squared unit of a microarray

image, its center and border are determined in the image addressing stage. In the case the fore-

ground has a single boundary curve Γ, which is a continuous closed curve, it can be expressed by

(1) in polar coordinate system. Estimation of Γ is equivalent to estimation of its radius function

r(θ) for any θ ∈ [0, 2π). To estimate r(θ) at a given θ ∈ [0, 2π), we consider a half-line starting

from the center of the squared unit and forming an angle θ with the positive x-axis. At each point

(r cos(θ), r sin(θ)) on this half-line, we search for a direction along which the absolute difference be-

tween two one-sided local constant kernel estimators reaches the maximum. This maximal absolute

difference MN (r, θ) is then used as a criterion for boundary curve estimation, and the maximizer of

MN (r, θ) with respect to r is used as an estimator of r(θ). A corresponding procedure is suggested

for handling “donut” spots. To simplify computation, a modified version is suggested, in which

the “direction search” step mentioned above is replaced by gradient estimation. We also propose

a cross-validation procedure for choosing bandwidths used in our image segmentation procedures.

Both theoretical arguments and numerical examples show that the proposed image segmentation

procedures work well in applications. It should be pointed out that the proposed procedures still

have much room for improvement. For instance, one referee mentioned that the procedures might

be improved by searching for r̂(θ) in equation (5) at several different θ values simultaneously.
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Appendix

A Proof Of Theorem 3.1

For any point (x, y) ∈ ΩhN
, it can be checked that

E(̂b(x, y)) = f ′x(x, y) +
1

∆

n∑

i=1

n∑

j=1

{γ2 + γ4(xi − x) + γ5(yj − y)}{1

2
[f ′′x (x, y)(xi − x)2 +

2f ′′xy(x, y)(xi − x)(yj − y) + f ′′y (x, y)(yj − y)2]}K
(
xi − x

hN
,
yj − y

hN

)

+o(h2
N ), (19)

where N = n2, and

∆ =

∣∣∣∣∣∣∣∣∣

K̃00 K̃10 K̃01

K̃10 K̃20 K̃11

K̃01 K̃11 K̃02

∣∣∣∣∣∣∣∣∣
,

γ2 = K̃01K̃11 − K̃10K̃02, γ4 = K̃00K̃02 − K̃01K̃01, γ5 = K̃01K̃10 − K̃00K̃11,

K̃s1s2 =

n∑

i=1

n∑

j=1

(xi − x)s1(yj − y)s2K

(
xi − x

hN
,
yj − y

hN

)
, for s1, s2 = 0, 1, 2.

Since K is radially symmetric, we have K̃s1s2/(Nh
s1+s2+2
N ) = Ks1s2 + o(1) for s1, s2 = 0, 1, 2,

K00 = 1,K01 = K10 = K11 = 0, and K02 = K20 =
∫∞
−∞

∫∞
−∞ u2K(u, v) dudv. Therefore,

γ2

N2h7
N

= o(1);
γ4

N2h6
N

= K02 + o(1);
γ5

N2h6
N

= o(1);
∆

N3h10
N

= (K02)
2 + o(1). (20)
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After combining (19) and (20), we have

E(̂b(x, y)) = f ′x(x, y) +
hN

K20

1

Nh5
N

n∑

i=1

n∑

j=1

{1

2
[f ′′x (x, y)(xi − x)3 + 2f ′′xy(x, y)(xi − x)2(yj − y) +

f ′′y (x, y)(xi − x)(yj − y)2]}K
(
xi − x

hN
,
yj − y

hN

)
+ o(hN )

= f ′x(x, y) + o(hN ).

It can be checked that this expression is uniformly true for (x, y) ∈ ΩhN
. So,

‖E(̂b) − f ′x‖ΩhN
= o(hN ). (21)

On the other hand, for any (x, y) ∈ ΩhN
,

b̂(x, y) − E(̂b(x, y)) =
1

∆

n∑

i=1

n∑

j=1

{γ2 + γ4(xi − x) + γ5(yj − y)}ǫijK
(
xi − x

hN
,
yj − y

hN

)

=
1

Nh3
NK20

n∑

i=1

n∑

j=1

(
xi − x

hN
+ o(1)

)
ǫijK

(
xi − x

hN
,
yj − y

hN

)
, (22)

where ǫij is the random error involved in Zij with mean 0 and variance σ2, for i, j = 1, 2, . . . , n.

Let

ǫ̃ij = ǫijI(|ǫij | ≤ t(i−1)n+j),

where tm =
√
m log(m)(log log(m))(1+δ), for m ≥ 3, t1 = t2 = t3, and δ ∈ (0, 1) is any constant.

Then we define

gN (x, y) =
1

Nh2
N

n∑

i=1

n∑

j=1

(
xi − x

hN

)
ǫijK

(
xi − x

hN
,
yj − y

hN

)

g̃N (x, y) =
1

Nh2
N

n∑

i=1

n∑

j=1

(
xi − x

hN

)
ǫ̃ijK

(
xi − x

hN
,
yj − y

hN

)
.

It’s obvious that

‖gN‖ΩhN
≤ ‖gN − g̃N‖ΩhN

+ ‖g̃N − E(g̃N )‖ΩhN
+ ‖E(g̃N )‖ΩhN

. (23)

By some similar arguments to those in the proof of Theorem 3.1 of Qiu (2002), we have

‖gN − g̃N‖ΩhN
= o

(√
log(N)

N1/2hN

)
, a.s. (24)

‖g̃N − E(g̃N )‖ΩhN
= O

(√
log(N)

N1/2hN

)
, a.s. (25)

‖E(g̃N )‖ΩhN
= o

(√
log(N)

N1/2hN

)
. (26)
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By (22)-(26), we have

‖b̂− E(̂b)‖ΩhN
= O

(√
log(N)

N1/2h2
N

)
, a.s. (27)

Then, by equations (21) and (27), we have equation (14) in the theorem. Equation (15) can be

proved similarly.

For a point (x, y) ∈ Ω, if (xτ , yτ ) is the closest point in Γ from (x, y), and their Euclidean

distance is τhN where 0 ≤ τ < 1 a constant, then by equations (19) and (20), we have

E(̂b(x, y)) =
1

Nh4
NK02




∑

(xi,yj)∈Q
(1)
N (x,y)

+
∑

(xi,yj)∈Q
(2)
N (x,y)


 (xi − x)f(xi, yj)K

(
xi − x

hN
,
yj − y

hN

)

+o(
1

hN
)

=
1

K02hN
f−(xτ , yτ )

∫ ∫

Q(1)

uK(u, v) dudv

+
1

K02hN
f+(xτ , yτ )

∫ ∫

Q(2)

uK(u, v) dudv + o(
1

hN
)

=
Cτ

K02hN

∫ ∫

Q(2)
uK(u, v) dudv + o(

1

hN
). (28)

Similar to equation (27), it can be shown that b̂(x, y) − E(̂b(x, y)) = O

(√
log(N)

N1/2h2
N

)
, a.s. Equation

(16) can be obtained by combining this result with equation (28). Equation (17) can be proved

similarly.

B Proof Of Theorem 3.2

For a point (x, y) ∈ ΩhN
and for any θ̃ ∈ [0, π), we have

â(ℓ)(x, y, θ̃) =

∑
(xi,yj)∈O

(ℓ)
N (x,y,θ̃)

ZijK
(

xi−x
hN

,
yj−y
hN

)

∑
(xi,yj)∈O

(ℓ)
N (x,y,θ̃)

K
(

xi−x
hN

,
yj−y
hN

) ,

â(ℓ)(x, y, θ̃) − f(x, y) =

∑
(xi,yj)∈O

(ℓ)
N (x,y,θ̃)

(Zij − f(x, y))K
(

xi−x
hN

,
yj−y
hN

)

∑
(xi,yj)∈O

(ℓ)
N (x,y,θ̃)

K
(

xi−x
hN

,
yj−y
hN

) , for ℓ = 1, 2.

By similar arguments to those in the proof of Theorem 3.1, we have

1

Nh2
N

∑

(xi,yj)∈O
(ℓ)
N (x,y,θ̃)

(Zij − f(x, y))K

(
xi − x

hN
,
yj − y

hN

)
= o(hN ) +O

(√
log(N)

N1/2hN

)
, a.s.

1

Nh2
N

∑

(xi,yj)∈O
(ℓ)
N (x,y,θ̃)

K

(
xi − x

hN
,
yj − y

hN

)
=

1

2
+ o(1),
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Figure 6: Dashed circle denotes the circular neighborhood ON (x0, y0, arctan(φ′(x0))).

and these results are uniformly true for (x, y) ∈ ΩhN
and θ̃ ∈ [0, π). So,

‖â(ℓ) − f‖ΩhN
×[0,π) = o(hN ) +O

(√
log(N)

N1/2hN

)
, a.s., for ℓ = 1, 2,

and

‖â(1) − â(2)‖ΩhN
×[0,π) = o(hN ) +O

(√
log(N)

N1/2hN

)
, a.s.

Hence, for any θ0 ∈ [0, 2π), we have

lim
N→∞

max
r′∈[r(θ0)+hN ,Rθ0

−hN ]
M⋆

N (r′, θ0) = 0 (29)

lim
N→∞

max
r′∈[0,r(θ0)−hN )

M⋆
N (r′, θ0) = 0. (30)

Without loss of generality, let us assume that Γ has the expression y = φ(x) around the point

(x0, y0) = (r(θ0) cos(θ0), r(θ0) sin(θ0)). The circular neighborhood ON (x0, y0, arctan(φ′(x0))) of

the point (x0, y0) is displayed in Figure 6, which consists of two parts separated by the tangent

line of Γ at (x0, y0). One part is outside Γ, and the other one is divided by Γ into two subparts,

denoted by I and II in the plot, with subpart I outside Γ and subpart II inside Γ. Suppose that

â(1) (x0, y0, arctan(φ′(x0))) is the one-sided local constant kernel estimator constructed from the

part of ON (x0, y0, arctan(φ′(x0))) with two subparts I and II. Then

â(1)
(
x0, y0, arctan(φ′(x0))

)
=

2

Nh2
N

∑
′ZijK

(
xi − x0

hN
,
yj − y0

hN

)

+
2

Nh2
N

∑
′′(Zij − Cij)K

(
xi − x0

hN
,
yj − y0

hN

)

+
2

Nh2
N

∑
′′CijK

(
xi − x0

hN
,
yj − y0

hN

)
+ o(1), (31)
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where Cij = f(xi, yj) − f+(x0, y0), f+(x0, y0) denotes the limit of f at (x0, y0) from I,
∑

′ denotes

summation of the terms with design points inside I, and
∑

′′ denotes summation of the terms with

design points inside II.

Since the radius function r(θ) is assumed to have continuous second-order derivatives on [0, 2π),

φ(x) also has second-order derivatives around x0. So,

φ(x) = φ(x0) + φ′(x0)(x− x0) +
φ′′(x0)

2!
(x− x0)

2 + o((x− x0)
2)

from which we can see that the area of part I equals
∫ hN/2
−hN /2

(
φ′′(x0)

2! (x− x0)
2 + o((x− x0)

2)
)
dx =

O(h3
N ). So, the third term of (31) converges to f−(x0, y0)− f+(x0, y0), where f−(x0, y0) is the limit

of f at (x0, y0) from II.

From Theorem 3.1, the estimated tangent direction θ̂T (x0, y0) = (̂b(x0, y0), ĉ(x0, y0)) converges

to arctan (φ′(x0)) almost surely. So,

lim
N→∞

â(1)(x0, y0, θ̂T (x0, y0)) = f−(x0, y0), a.s.

Similarly,

lim
N→∞

â(2)(x0, y0, θ̂T (x0, y0)) = f+(x0, y0), a.s.

So,

lim
N→∞

M⋆
N (r(θ0), θ0) = f−(x0, y0) − f+(x0, y0) > 0. (32)

By (29), (30), and (32), we have

r(θ0) − hN ≤ r̂⋆(θ0) ≤ r(θ0) + hN ,

and this conclusion is uniformly true for θ0 ∈ [0, 2π). So equation (18) is proved.
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