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Abstract

Segmentation of spotted microarray images is important in generating gene expression data.

It aims to distinguish foreground pixels from background pixels for a given spot of a microarray

image. Edge detection in the image processing literature is a closely related research area,

because spot boundary curves separating foregrounds from backgrounds in a microarray image

can be treated as edges. However, for generating gene expression data, segmentation methods

for handling spotted microarray images are required to classify each pixel as either a foreground

or a background pixel; most conventional edge detectors in the image processing literature do

not have this classification property, because their detected edge pixels are often scattered in the

whole design space and consequently the foreground or background pixels are not defined. In

this paper, we propose a general post-smoothing procedure for estimating spot boundary curves

from the detected edge pixels of conventional edge detectors, such that these conventional edge

detectors together with the proposed post-smoothing procedure can be used for segmentation of

spotted microarray images. Numerical studies show that this proposal works well in applications.

Key Words: Background; Boundary curves; Derivatives; Edge detection; Foreground; Gene

expression data; Image segmentation; Jump location curves; Jump regression analysis; Local poly-

nomial kernel smoothing; Nonparametric regression.

1 Introduction

When generating gene expression data from spotted microarray images, the foreground of a given

spot should be segmented from the background using an image segmentation procedure. Then,

averaged image intensities (or, some more robust measures) of foreground pixels, computed from

a pair of fluorescence images (e.g., the red-fluorescent Cy5 and green-fluorescent Cy3 images), are

used for computing gene expression data, after appropriate background corrections and normal-
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izations (cf., e.g., Lashkari et al. 1997, Chu et al. 1998, Ferea et al. 1999, Yang et al. 2002).

Therefore, appropriate segmentation of spotted microarray images is important to the reliability of

gene expression data and all subsequent statistical analysis.

Edge detection methods in the image processing literature should be helpful for segmentation

of spotted microarray images because their major purpose is to detect outlines of objects in a given

image, including spot boundaries of a spotted microarray image. Most conventional edge detectors

are based on estimation of the first-order derivatives (c.f., e.g., Canny 1986, Gijbels et al. 2006,

Gonzalez and Woods 2002, Hall et al. 2001, Hall, Qiu and Rau 2008, Hall and Rau 2000, 2002,

Pratt 1991, Qiu 1997, 2002, Qiu and Bhandarkar 1996, Qiu and Yandell 1997, Rosenfeld and Kak

1982, Sun and Qiu 2007), or the second-order derivatives (c.f., e.g., Haralick 1984, Huertas and

Medioni 1986, Marr and Hildreth 1980, Nalwa and Binford 1986, Torre and Poggio 1986) of the

underlying image intensity function, since these derivatives carry useful information about edge

locations. For a systematic discussion about this topic, read Chapter 6 of Qiu (2005).

However, detected edge pixels by most existing edge detectors in the image processing literature

are scattered in the entire design space and they may not form closed curves. Consequently, it is still

unknown whether a given pixel is a foreground pixel of a spot even after edge pixels are detected by

them. Therefore, edge detectors are helpful for segmentation of a spotted microarray image; but the

latter problem can not be solved using such edge detectors alone. In the bioinformatics literature,

the segmentation problem of spotted microarray images has received much attention recently, and

several segmentation procedures have been proposed specifically for solving this problem. For

instance, Eisen (1999) provided a fixed circle segmentation procedure in the software ScanAlyze,

which fits circles with a constant diameter to all spots in an image. The software GenePix (1999)

provided an adaptive circle segmentation procedure, which fitted a circle to a spot with its diameter

estimated separately for each spot. The seeded region growing (SRG) procedure suggested by

Adams and Bischof (1994) works more flexibly, by sequentially classifying each pixel to either

the foreground or the background region. Another commonly used segmentation procedure was

suggested by Chen et al. (1997), which segments the foreground from the background of a spot by

thresholding the histogram of all intensities whose pixel locations are within a target mask. More

recent segmentation procedures include clustering algorithms (e.g., Bozinov and Rahnenführer 2002,

Glasbey and Ghazal 2003), segmentation based on Gaussian density estimation (Steinfath et al.

2001), segmentation using mathematical morphology (Angulo and Serra 2003), segmentation by
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local smoothing change-point estimation (Qiu and Sun 2007), and so forth.

As noted above, a major reason why most edge detectors in the image processing literature

can not completely solve the segmentation problem of spotted microarray images is that they do

not have the property of classifying a given pixel as either a foreground or a background pixel.

This limitation, however, can be lifted by the post-smoothing procedure proposed in this paper.

More specifically, in the case when a given spot has a single boundary curve, we suggest fitting a

closed curve through the detected edge pixels of a typical edge detector, using local linear kernel

smoothing; the fitted curve would be a good estimator of the spot boundary curve. Thus, foreground

and background pixels are well defined after applying this post-smoothing procedure. The case

when the given spot has two boundary curves (i.e., the case of “donut” spots) can also be handled,

although an appropriate modification is needed. We will show that, besides “donut” spots, the

proposed method is flexible enough to handle rotated elliptical spots, D-shaped spots, spots with

scratches, spots with bright speckles, and so forth. Its segmentation results are compatible with

those obtained by some commonly used segmentation procedures, and in some cases the former

performs much better. Therefore, by the proposed post-smoothing procedure, it becomes possible

to make use of the vast literature on edge detection, for handling the segmentation problem of

spotted microarray images.

The rest part of the article is organized as follows. In Section 2, a general version of edge

detectors based on the first-order derivatives of the image intensity function is described, based on

which the proposed post-smoothing procedure is introduced. Section 3 presents numerical studies

for evaluating the numerical performance of the proposed procedure. Some concluding remarks are

given in Section 4.

2 Proposed Method

The proposed method is described in three parts. In Subsection 2.1, a general edge detector based

on the first-order derivatives of the image intensity function is introduced. Then, a post-smoothing

procedure is proposed in Subsection 2.2, for estimating spot boundary curves. Finally, a data-driven

parameter selection procedure is discussed in Subsection 2.3.
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2.1 A general edge detector

Before segmentation of a spotted microarray image, borders and centers of its grid cells, each of

which contains a spot in the middle, can be roughly specified by the arrayer in the image addressing

stage. See Bergemann et al. (2004) for such an image addressing method, which is also used in the

numerical examples in Section 3. Therefore, image segmentation can be performed separately for

individual grid cells, which has become a common practice in analyzing microarray images. For

this reason, our discussion below is for handling a single grid cell only.

For a given grid cell, let f be the image intensity function, fx and fy be its two partial derivatives

in the x- and y-axis directions, respectively, {(xi, yj), i, j = 1, 2, . . . , n} be N = n2 equally spaced

pixels in the design space [−1/2, 1/2]×[−1/2, 1/2], and {Zij , i, j = 1, 2, . . . , n} be the corresponding

observed image intensities. It should be pointed out that the assumption that the local grid cell

is a square with the same number of rows and columns is just for simplicity of presentation. Our

proposed method should also work well for rectangular grid cells.

As in most image processing references, we assume that observed image intensities follow the

following model:

Zij = f(xi, yj) + εij , for i, j = 1, 2, . . . , n, (1)

where {εij , i, j = 1, 2, . . . , n} are independent and identically distributed (i.i.d.) random errors

with mean 0 and unknown variance σ2. Then, most existing edge detectors based on the first-order

derivatives would label the pixel (x, y) as an edge pixel if

Mf (x, y) =

√
f̂x

2
(x, y) + f̂y

2
(x, y) ≥ uN , (2)

and as a non-edge pixel otherwise, where f̂x and f̂y are some estimators of fx and fy, and uN is

a threshold parameter. In the image processing literature, several masks or operators have been

suggested for constructing estimators f̂x and f̂y, which include the 2 × 2 Roberts operators, 3 × 3

Prewitt, Sobel, or Frei-Chen masks, 7×7 truncated pyramid masks, derivatives of Gaussian (DoG)

operators, and so forth (cf., e.g., Qiu 2005, Section 6.2).

The masks or operators mentioned above were proposed by intuition. Most of them have fixed

small sizes and consequently their ability to remove noise is limited. To overcome these limitations,
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we suggest using the following local linear kernel smoothing procedure:

min
a,b,c∈R

∑

(xi,yj)∈ON (x,y)

{Zij − [a+ b(xi − x) + c(yj − y)]}2K

(
xi − x

hN

,
yj − y

hN

)
, (3)

where ON (x, y) = {(u, v) :
√

(u− x)2 + (v − y)2 ≤ hN} is a circular neighborhood of the point

(x, y) with bandwidth hN > 0, and K is a radially symmetric, bivariate density kernel function with

support {(x, y) : x2 + y2 ≤ 1}. Then, the solution to (b, c) of the minimization problem (3) can be

used as an estimator of the gradient vector G(x, y) = (fx(x, y), fy(x, y)). Namely, f̂x(x, y) = b̂(x, y)

and f̂y(x, y) = ĉ(x, y).

In procedure (3), a plane is fitted locally in the neighborhood ON (x, y) so that the weighted

residual sum of squares reaches the minimum, where the weights are controlled by the kernel

function K. In reality, K is often chosen to be a monotone decreasing function of the radius.

Thus, pixels closer to (x, y) would receive more weight. It can be easily checked that both b̂(x, y)

and ĉ(x, y) are weighted averages of the observed image intensities in ON (x, y). Thus, they can

be regarded as a general version of many existing edge detection masks, such as those mentioned

above. In the literature, it has been well shown that local linear kernel estimators have some

good statistical properties, including easy computation, automatic boundary correction, optimal

convergence rates, and so forth (cf., e.g., Fan and Gijbels 1996). Compared to most existing edge

detection masks, it has the flexibility in adjusting the bandwidth parameter hN in a data-driven

way (cf., discussion in Subsection 2.3), such that its bias and variance are well balanced. For these

reasons, this method is used in all numerical examples in this paper for edge detection.

2.2 Local linear kernel post-smoothing

Suppose that the detected edge pixels by the edge detector described in the previous subsection

are {(x∗ℓ , y
∗
ℓ ), ℓ = 1, 2, . . . ,m}, which is a subset of {(xi, yj), i, j = 1, 2, . . . , n}. Then, {(x∗ℓ , y

∗
ℓ ), ℓ =

1, 2, . . . ,m} can also be expressed in the polar coordinate system with respect to the center of the

grid, by {(rℓ, θℓ), ℓ = 1, 2, . . . ,m}. See Fig. 1 for an illustration.

Next, we discuss estimation of spot boundary curves from detected edge pixels, using local linear

kernel post-smoothing. We first discuss the case when the given grid cell has a single boundary

curve Γ which has the radius function r(θ) > 0, for θ ∈ [0, 2π]. Since the boundary curve Γ can be

reasonably assumed to be a closed curve, we assume that r(0) = r(2π); for convenience, we further
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Figure 1: (a) Detected edge pixels {(x∗ℓ , y
∗
ℓ ), ℓ = 1, 2, . . . ,m}. (b) Detected edge pixels in the polar

coordinate system.

assume that r(θ) is a periodic function on the number line R with period 2π. Estimation of r(θ),

for any θ ∈ [0, 2π], can be accomplished by the following local linear kernel smoothing procedure:

min
a,b∈R

∑

θℓ∈[θ−hθ,θ+hθ]

{rℓ − [a+ b(θℓ − θ)]}2Kθ

(
θℓ − θ

hθ

)
, (4)

where hθ > 0 is a bandwidth parameter, and Kθ is a 1-D density kernel function with support

[−1, 1]. Then, the solution to a of procedure (4) is the local linear kernel estimator of r(θ), denoted

as r̂(θ). Note that, in procedure (4), observations {(rℓ, θℓ), ℓ = 1, 2, . . . ,m} should be extended

periodically from θ ∈ [0, 2π] to θ ∈ [−hθ, 2π+hθ] beforehand, using the relationship r(θℓ±2π) = rℓ,

for ℓ = 1, 2, . . . ,m. Therefore, this procedure does not suffer the notorious “boundary problem” of

conventional local smoothing procedures in the current segmentation problem, because observations

in the entire neighborhood [θ−hθ, θ+hθ] are well defined when θ is in the boundary regions [0, hθ)

and (2π − hθ, 2π] of [0, 2π]. As a side note, in the literature, there is much discussion about

estimation of periodic curves. For instance, Thomas-Agnan (1990) suggested a nice regularization

method for this problem, based on smoothing spline estimation.

In the case when the given grid cell includes a “donut” spot, the spot has two boundary curves

Γ1 and Γ2 with radius functions r1(θ) and r2(θ), respectively, where r1(θ) < r2(θ), for all θ ∈ [0, 2π).

In such cases, we suggest estimating r1(θ) and r2(θ) by the following procedure, after observations
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{(rℓ, θℓ), ℓ = 1, 2, . . . ,m} are extended periodically beforehand, as in (4):

min
r∈[min rℓ,max rℓ]

min
a1,b1,a2,b2∈R





∑

θℓ∈[θ−hθ,θ+hθ];rℓ≤r

{rℓ − [a1 + b1(θℓ − θ)]}2Kθ

(
θℓ − θ

hθ

)
+

∑

θℓ∈[θ−hθ,θ+hθ];rℓ>r

{rℓ − [a2 + b2(θℓ − θ)]}2Kθ

(
θℓ − θ

hθ

)

 . (5)

The solutions to a1 and a2 of procedure (5) are then defined as estimators of r1(θ) and r2(θ),

respectively, denoted as r̂1(θ) and r̂2(θ). In (5), it is possible that the solution to r is not unique.

For instance, if the detected edge pixels in the neighborhood [θ − hθ, θ + hθ] have the property

that about half of their r values are below R1 and another half above R2, where R1 < R2 are two

positive constants, then all r values in [R1, R2] could be possible solutions to r. In such cases,

estimators r̂1(θ) and r̂2(θ) corresponding to any such r can be used.

In applications, if it is clear, based on our visual impression, whether there are “donut” spots

in a microarray image, then we can simply choose between procedures (4) and (5). If, however,

it is difficult to make such a judgment based on our visual impression alone, we suggest using

the following data-driven decision rules. For a given grid cell, we compute two sets of boundary

curve(s) using procedures (4) and (5), respectively, and let (If , Ib) and (I∗f , I
∗
b ) be pairs of averaged

foreground intensity and averaged background intensity in the two setups. Then, we conclude that

the grid cell does not contain a “donut” spot if

If − Ib > I∗f − I∗b , (6)

and the opposite decision is made otherwise. It should be pointed out that more robust summary

statistics, such as the trimmed means or medians, can be used in (6) in places of If , Ib, I
∗
f and

I∗b . Also, when using the proposed segmentation procedure, step (6) is actually accommodated in

the selection of procedure parameters introduced below. Therefore, it does not add much extra

complexity to the procedure.

2.3 Selection of procedure parameters

In the local linear kernel edge detector described in Subsection 2.1, there are two parameters hN and

uN . The post-smoothing procedure discussed in the previous subsection has another bandwidth

parameter hθ. These parameters should be chosen properly by a data-driven procedure because
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they affect the final segmentation results. To this end, we first suggest the following performance

measure of the segmentation results:

C(hN , uN , hθ) = max
{
If − Ib, I

∗
f − I∗b

}
, (7)

where If , Ib, I
∗
f and I∗b are defined in expression (6). Obviously, C(hN , uN , hθ) is defined as the

contrast between the estimated foreground and background. Intuitively, a good segmentation would

lead to a large value of such a contrast measure. Theoretically, it can be proved that this measure

reaches the maximum when the estimated foreground matches the true one, under some regularity

conditions. Then, hN , uN , and hθ can be chosen by

max
hN

{
max
uN

[
max

hθ

C(hN , uN , hθ)

]}
. (8)

For simplicity in notation, the chosen parameter values are still denoted by hN , uN , and hθ. In (8),

when hN is given, the edge detection criterion Mf (cf., expressions (2) and (3)) can be computed at

each pixel. Then, procedures maxuN
and maxhθ

are just two nested 1-D searches, in which values

of Mf only need to be computed once. Therefore, computation involved in (8) is actually quite

fast.

3 Numerical Studies

In this section, we first present some simulation results regarding the numerical performance of

the proposed segmentation method, and then demonstrate the method by applying it to some real

microarray images.

For simplicity, our simulation is for detecting boundary curve(s) of a single grid cell of a spotted

microarray image, which is appropriate for reasons explained in Subsection 2.1. The design space of

the grid cell is assumed to be [−1/2, 1/2]× [−1/2, 1/2] and the following seven cases are considered.

Case (i): The true image intensity function is f(x, y) = 1500[1 − .5(x2 + y2)/.32] if x2

.32 + y2

.32 ≤ 1;

and f(x, y) = 500[1 − .5x2 − .5y2] otherwise.

Case (ii): f(x, y) = 1500[1 − .5(x̃2 + ỹ2)/.32] if x̃2

.32 + ỹ2

.22 ≤ 1; and f(x, y) = 500[1 − .5x̃2 − .5ỹ2]

otherwise, where (x̃, ỹ) is obtained by rotating (x, y) 45-degree counterclockwise.

Case (iii): f(x, y) = 1500[1 − .5(x2 + y2)/.32] if x2

.122 + y2

.122 > 1 and x2

.32 + y2

.32 ≤ 1; and f(x, y) =

500[1 − .5x2 − .5y2] otherwise.
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Case (iv): f(x, y) = 1500[1 − .5(x2 + y2)/.32] if x2

.32 + y2

.32 ≤ 1 and x ≥ .36; and f(x, y) =

500[1 − .5x2 − .5y2] otherwise.

Case (v): f(x, y) is the same as the one in case (ii), except that f(x, y) = 1000 when −.04 ≤ y ≤

.04.

Case (vi): f(x, y) is the same as the one in case (ii), except that f(x, y) = 1500 when (x, y) ∈

[−0.3,−0.28] × [−0.3,−0.28] or (x, y) ∈ [0.28, 0.3] × [0.28, 0.3].

Case (vii): f(x, y) = 1500[1 − .5(x̃2 + ỹ2)/.32] if x̃2

.32 + ỹ2

.22 ≤ 1; and f(x, y) = 1000[1 − .5x̃2 − .5ỹ2]

otherwise, where (x̃, ỹ) is obtained by rotating (x, y) 45-degree counterclockwise.

It can be seen that, in case (i), the spot has a circular boundary curve with radius .3. Cases

(ii)–(vii) simulate scenarios when the given spot is rotated elliptical, “donut”-shaped, D-shaped,

rotated elliptical with a scratch, rotated elliptical with two bright speckles, and rotated elliptical

with a high background, respectively. The true values of averaged foreground image intensity

(AFII) in cases (i)–(vii) are respectively 1102, 1200, 1030, 1136, 1200, 1200, and 1200. In all

cases, observed image intensities are generated by model (1) with i.i.d. random errors from normal

distribution with mean 0. In cases (i)–(iv) and (vi)–(vii), noise variance is 5002 in the foreground,

and 2002 in the background. In case (v), noise variance is 1002 in the elliptical foreground and in

the scratch region, and 502 in the remaining background. Noise levels are intentionally lower in this

case, compared to the other cases, to make the scratch more visible. One realization of observed

image intensities in cases (i)–(vii) is presented by the seven plots in the first column of Fig. 2, with

whiter pixels denoting larger intensity levels.

The proposed segmentation procedure (2)–(8) is then applied to the simulated data in case

(i) which are shown in the (1,1)-th plot of Fig. 2. The kernel functions used in (3) and (4) are

chosen to be the truncated, bivariate and univariate, Gaussian density functions with supports

{(x, y) : x2 + y2 ≤ 1} and [−1, 1], respectively. By procedure (7)–(8), hN , uN , and hθ are chosen

to be 0.08, 142, and 0.50, respectively. The corresponding detected edge pixels are shown in the

(1,2)-th plot of Fig. 2 by the white pixels; they are shown in the (1,3)-th plot of Fig. 2 as a

scatterplot of {(rℓ, θℓ, ℓ = 1, 2, . . . ,m} in the polar coordinate system, together with the estimated

radius function r̂(θ). The estimated boundary curve is shown in the (1,4)-th plot of Fig. 2 by white

pixels. Corresponding segmentation results in the other six cases are shown in the remaining six

rows of Fig. 2. It can be seen that related spots are segmented reasonably well in all cases.

Next, we compare the proposed image segmentation procedure (denoted as “Post-Smoothing”)
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Figure 2: The four plots in the first row show, respectively, an observed grid cell with a circular spot,
detected edge pixels from the observed grid cell, detected edge pixels shown in the polar coordinate
system together with the estimated radius function, and the estimated boundary curve. Plots in
the remaining six rows show corresponding results when the spot is rotated elliptical, “donut”-
shaped, D-shaped, rotated elliptical with a scratch, rotated elliptical with two bright speckles,
rotated elliptical with a high background, respectively.
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with the following four existing image segmentation procedures: (i) SRG, (ii) segmentation by

thresholding the histogram of image intensities (denoted as “Histogram”), (iii) adaptive circle

procedure (denoted as “Adaptive-Circle”), and (iv) the recent segmentation procedure suggested

by Qiu and Sun (2007) based on change-point estimation (denoted as “Change-Point”). See Section

1 for a brief introduction about these procedures. In procedure Post-Smoothing, the kernel functions

and bandwidth parameters are chosen as before. In procedure SRG, pixels located at the border of

the grid cell are used as background seeds and pixels in a square of size .1× .1 centered at the origin

are used as foreground seeds. In procedure Histogram, its circular mask is centered at the origin

with radius .4 in all cases, and its threshold value is determined by the Mann-Whitney statistic

with significance level .05%, as used by Chen et al. (1997). In procedure Adaptive-Circle, the

radius of the circle is searched by the approach used in the software package Dapple (2000), which

first generates a Laplacian image from the original image, using a standard four-neighbor Laplacian

mask (cf., Qiu 2005, Section 6.2), and then chooses the radius as the maximizer of function ψ(r),

defined as the average of all pixels in the Laplacian image whose Euclidean distances from the

center are r. In procedure Change-Point, the version based on gradient estimation is used here and

its procedure parameters are all chosen by cross-validation.

For each method, its performance is evaluated by

d
Ω(1),bΩ(1) =

∣∣∣
(
Ω(1)\Ω̂(1)

)⋃ (
Ω̂(1) \Ω(1)

)∣∣∣
∣∣Ω(1)

∣∣ ,

where |A| denotes the number of pixels in pointset A, Ω(1) is the true foreground, and Ω̂(1) is its

estimator. Obviously, d
Ω(1),bΩ(1) is a ratio of the total number of false foreground pixels and false

background pixels to the number of true foreground pixels. Besides this measure, we also compute

d
(+)

Ω(1),bΩ(1)
=

|Ω̂(1)\Ω(1)|

Ω(1)
, and d

(−)

Ω(1),bΩ(1)
=

|Ω(1)\Ω̂(1)|

Ω(1)

to measure the amounts of false foreground pixels and false background pixels, respectively. With

the estimated foreground, the estimated AFII, denoted as ÂFII, is also computed. The averaged

values of dΩ(1),bΩ(1) , d
(+)

Ω(1),bΩ(1)
, d

(−)

Ω(1),bΩ(1)
, and ÂFII from 100 replications along with the true values

of AFII are presented in Table 1.

From Table 1, it can be seen that the proposed procedure Post-Smoothing performs the best

among all procedures in all cases with regard to dΩ(1),bΩ(1) . It is the best or close to the best in all

cases with regard to d
(+)

Ω(1),bΩ(1)
, d

(−)

Ω(1),bΩ(1)
and ÂFII. Please note that, in case (iii) when the spot
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Table 1: This table presents the averaged values of dΩ(1),bΩ(1) , d
(+)

Ω(1),bΩ(1)
, d

(−)

Ω(1),bΩ(1)
, and ÂFII from

100 replications, along with the true values of AFII.

Case Method dΩ(1),bΩ(1) d
(+)

Ω(1),bΩ(1)
d
(−)

Ω(1),bΩ(1)
ÂFII AFII

Post-Smoothing .143 .003 .140 1166 1102
SRG .331 .005 .326 1278

(i) Histogram .343 .065 .278 1317
Adaptive-Circle .548 0 .548 1332
Change-Point .183 .005 .178 1176

Post-Smoothing .120 .024 .096 1228 1200
SRG .278 .010 .268 1325

(ii) Histogram .360 .141 .219 1323
Adaptive-Circle .686 .010 .676 1416
Change-Point .124 .026 .098 1226

Post-Smoothing .141 .017 .124 1066 1030
SRG .756 .221 .535 996

(iii) Histogram .419 .103 .316 1251
Adaptive-Circle 1.158 .158 1.0 473
Change-Point .206 .080 .126 1033

Post-Smoothing .175 .025 .150 1185 1136
SRG .318 .007 .311 1300

(iv) Histogram .367 .108 .259 1314
Adaptive-Circle .718 .044 .674 1370
Change-Point .181 .012 .169 1203

Post-Smoothing .138 .053 .085 1128 1200
SRG .287 .230 .057 1096

(v) Histogram .435 .286 .149 1096
Adaptive-Circle .347 .002 .345 1198
Change-Point .206 .166 .040 1084

Post-Smoothing .120 .026 .094 1223 1200
SRG .266 .009 .257 1330

(vi) Histogram .353 .125 .228 1341
Adaptive-Circle .658 .019 .639 1395
Change-Point .134 .027 .107 1232

Post-Smoothing .223 .073 .150 1239 1200
SRG .519 .019 .500 1509

(vii) Histogram .689 .187 .502 1551
Adaptive-Circle .701 .011 .690 1424
Change-Point .424 .006 .418 1349

is “donut”-shaped, the estimated boundary curve by the adaptive circle procedure is completely

inside the “hole” of the “donut”, making its d
(−)

Ω(1),bΩ(1)
value to be 1 and its dΩ(1),bΩ(1) value larger

than 1.

12



Next, we apply the related procedures to some real microarray images, which are from a study

by van’t Wout et al. (2003) about the biochemical changes that occur during HIV-1 infection.

In the study, expression levels of 4,608 cellular RNA transcripts were assessed in CD4+-T-Cell

lines, after infection with HIV virus type 1 strain BRU (HIV-1BRU ), using DNA microarrays. Four

replications of the experiment were performed. For ease of presentation, here we only present

results from four replications of one subarray consisting of 32× 12 = 384 genes. Results from other

subarrays are similar.

For each replication of the experiment, a pair of red-fluorescent dye and green-fluorescent

dye images is obtained, and image segmentation is performed on the combined image. Before

segmentation, the automatic image addressing procedure described in Bergemann et al. (2004)

is used for specifying the centers and borders of grid cells of the image. By this approach, peak

positions of column/row totals of image intensities are used for specifying the grid cell centers,

after the column/row totals are pre-smoothed by a smoothing operator. Similarly, the borders of

grid cells are estimated by the valley positions of the smoothed column/row totals. The size of a

typical grid cell of the image is about 30 × 30 pixels. Then, the five segmentation procedures are

applied to each grid cell. In the proposed procedure, the kernel functions and three parameters are

chosen in the same way as in Table 1. In the SRG procedure, pixels located at the border of the

grid cell are used as background seeds and pixels in a square of size 5 × 5 pixels centered at the

origin are used as foreground seeds. In the Histogram procedure, the circular mask is centered at

the origin and has radius of 12 pixels; its threshold is chosen in the same way as we did in Table 1.

In the adaptive circle procedure, the circle radius is chosen in the same way as in Table 1. In the

Change-Point procedure, the foreground noise variance is estimated in the region within a circle of

radius 4 pixels centered at the origin, and the background noise variance is estimated in the region

outside a circle of radius 12 pixels centered at the origin.

Segmentation results of the five procedures for the first replicated pair of images are shown in

Fig. 3, along with the combined image. In plots (b)–(f), white pixels denote detected foreground

pixels for the Histogram procedure; they denote detected boundary curves for the other four pro-

cedures. It can be seen that the proposed procedure detects most boundary curves, including the

ones of some “donut” spots (cf., e.g., the (5,12)-th spot), reasonably well. The SRG procedure can

not handle “donut” spots well, and its detected boundary curves are quite noisy in some grid cells

(cf., e.g., the (1,11)-th spot). The Histogram procedure can handle some “donut” spots well, but

13



(a) (b) (c)

(d) (e) (f)

Figure 3: (a) Combined image of the first replicated pair of microarray images. (b) Detected bound-
ary curves by the proposed procedure. (c) Detected boundary curves by the SRG procedure. (d)
Detected foreground pixels by the histogram thresholding procedure. (e) Detected boundary curves
by the adaptive circle procedure. (f) Detected boundary curves by the change-point procedure.
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its detected foreground pixels do not form connected regions in some cases (cf., e.g., the (5,10)-th

spot), due to the fact that it does not make use of any spatial information of the image; it misses

many foreground pixels when the signal is weak (cf., e.g., the (3,5)-th spot). The adaptive circle

procedure can not handle “donut” spots at all (cf., e.g., the (24,11)-th spot), and its results are

affected much if the grid cell center is not specified well (cf., e.g., the (8,1)-th spot). The Change-

Point procedure can detect most boundary curves well, but some of its detect boundary curves are

quite noisy (cf., e.g., the (1,11)-th spot).

One may ask whether differences in image segmentation by these procedures would have an

impact on downstream analyses. Generally speaking, this question is difficult to answer because

substantial impact on one analysis may not imply similar impact on the other, and it is even

impossible to list related downstream analyses inclusively. With the real microarray images in

this example, next we demonstrate that image segmentation could have a real impact on certain

downstream analyses. To this end, based on the segmentation results of each procedure considered,

we compute the gene expression data for each replicated pair of the observed microarray images.

For a given spot, its gene expression level is computed by the formula

log2

(
Rf −Rb

Gf −Gb

)
,

where Rf and Rb denote the averaged image intensities of the foreground and background of that

spot in the red-fluorescent dye image, and Gf and Gb denote the averaged image intensities of

the foreground and background of the same spot in the green-fluorescent dye image. Then, for a

specific spot, the sample mean (denoted as x̄) and sample standard deviation (denoted as sx) of

the gene expression levels across four replications are computed. For simplicity, let us assume that

we are interested in testing whether the mean gene expression level of a given spot is significantly

different from zero, and that its observed gene expression level follows a Normal distribution. Then,

the spot is flagged to have a significantly non-zero mean gene expression level if

∣∣∣∣
x̄

sx/2

∣∣∣∣ > t0.975(3)

where t0.975(3) = 3.182 is the 0.975 quantile of the t distribution with 3 degrees of freedom. Testing

results based on the segmentation of the five procedures are summarized in Table 2, which is a

combination of four contingency tables. In the table, “1” denotes spots with significantly non-zero

mean gene expression levels and “0” denotes other spots. Table 2 shows that testing results

based on the segmentation of one procedure agree on most spots with testing results based on the
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Table 2: Contingency table summarizing the results of testing the null hypothesis that the mean
gene expression level of a spot is zero versus the alternative hypothesis that it is non-zero, based on
segmentation of the five segmentation procedures. In the table, “1” denotes spots with significantly
non-zero mean gene expression levels and “0” denotes other spots.

SRG Histogram Adaptive-Circle Change-Point
1 0 1 0 1 0 1 0

Post-Smoothing 1 115 32 113 34 122 25 123 24
0 37 200 39 198 49 188 49 188

segmentation of another procedure; but they also disagree on a substantial number of spots. For

instance, with procedures Post-Smoothing and Change-Point, their corresponding testing results

agree on 123 + 188 = 311 spots. But they also disagree on 49 + 24 = 73 spots, which is about 19%

of the total number of spots in this study. It should be pointed out that the normality assumption

used in the above t-test may not be valid in certain applications. In such cases, the permutation test

might be more reasonable to use, since it does not require any knowledge of the distribution of the

observed gene expression levels. See Huang et al. (2006) for a recent discussion on this topic. For

readers’ reference, the first row of Fig. 4 shows spotwise means of the gene expression levels based

on segmentation of the proposed procedure Post-Smoothing versus the spotwise means based on

segmentation of alternative procedures. From the plots, it seems that the range of spotwise means

based on Post-Smoothing is narrower than those based on alternative segmentation procedures.

The second and third rows of Fig. 4 present corresponding results regarding spotwise standard

deviations and spotwise mean-standard deviation ratios, respectively. We can see that different

segmentation procedures generate similar results for most spots, and they differ quite significantly

for a number of spots, as demonstrated in Table 2.

To make a more specific comparison of the impact of different segmentation procedures on

the downstream analysis considered above, we consider a test dataset shown in Fig. 5(a). This

test image has 100 spots; the 50 genes in the first 5 columns are known to be non-differentially

expressed and the 50 genes in the remaining 5 columns are known to be differentially expressed.

The true image intensity functions of the first five columns are the same as those of cases (i)–(iv)

and (vi) considered in Figure 2, respectively, except that the constant 500 is changed to 1000 in the

definition of backgrounds, to make image segmentation more challenging (cf., definitions of some

image intensity functions in the second paragraph of this section). So, the largest possible true

intensity level is 1500 in the 50 spots of the first 5 columns. The true image intensity functions
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Figure 4: The first, second, and third rows present spotwise means, spotwise standard deviations,
and spotwise mean-standard deviation ratios, respectively, of the gene expression levels based on
segmentation of the proposed procedure Post-Smoothing versus the corresponding results based on
segmentation of alternative procedures.

of the last five columns are the same as those in the first five columns, except that the largest

possible true intensity level of the last five columns is set to be 1600. For all spots, observed image

intensities are generated from model (1) with i.i.d. random errors from normal distribution with

mean 0 and variance 6002 in the foreground and 3002 in the background. Fig. 5(a) can be regarded

as a red-fluorescent dye image. The paired green-fluorescent dye image is generated in the same

way, except that the largest possible true intensity level is set to be 1500 for all 100 spots. Ten

replicated pairs of images are used in this example.

Based on a given segmentation procedure, a gene is flagged to be differentially expressed if
∣∣∣∣
x̄

sx/2

∣∣∣∣ > u, (9)

where x̄ and sx are the spotwise mean and standard deviation of gene expression levels of a given

spot defined in the previous example, and u is a threshold parameter. In the literature, sensitivity

of a testing procedure is defined to be the probability that a truly differentially expressed gene

is flagged to be differentially expressed, and specificity is defined to be the probability that a

truly non-differentially expressed gene is not flagged by the testing procedure. In practice, both
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sensitivity and specificity are estimated by relative freqencies of related events. The curve of the

pair (1-specificity, sensitivity) generated by changing the value of u is called the receiver operating

characteristic (ROC) curve in the literature (cf., e.g., Qiu and Le 2001), and is often used for

evaluating the performance of a testing procedure. For instance, if the ROC curve of one testing

procedure is uniformly above the ROC curve of another testing procedure, then we can conclude

that the former performs uniformly better than the latter. In the current example, the ROC curves

of the testing procedure (9) based on segmentation of the five segmentation procedures are shown in

Fig. 5(b). From the plot, we can see that the ROC curve based on segmentation of Post-Smoothing

is above the other four ROC curves in the entire range, except that they overlap a little bit in

their right tails, which demonstrates that the proposed segmentation procedure would improve

downstream analysis in this example.
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Figure 5: (a) A red-fluorescent dye test image. (b) ROC curves of the testing procedure (9) based
on segmentation of various procedures.

4 Concluding Remarks

We have presented a general version of edge detectors based on first-order derivatives of the image

intensity function, and a post-smoothing procedure for estimating spot boundary curves of spot-

ted microarray images. By using the proposed post-smoothing procedure, theoretically speaking,

almost all existing edge detectors in the image processing literature can be used for solving the
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segmentation problem of spotted microarray images. It has been shown that segmentation results

by the proposed edge detector together with the proposed post-smoothing procedure are reasonably

good, compared to those by several routinely used segmentation procedures. We also suggested a

data-driven method for choosing appropriate values of the procedure parameters.

The proposed segmentation method can be easily computed because both the edge detection

and the post-smoothing steps are based on local smoothing procedures which are generally fast

to compute. For instance, with the 4 replicated pairs of red-fluorescent dye and green-fluorescent

dye images (each image has 384 spots) in the real-image example discussed in Section 3, the

entire process to generate gene expression data from the observed images, which includes image

addressing, image segmentation, and background corrections and normalizations, takes about 20

seconds of CPU time on our 1.2-GHz Pentium III PC running a Linux Operating system. We

would also want to point out that, although each image has only 384 spots in this example, which

is for demonstration purposes only, the proposed segmentation procedure has no difficulty to handle

larger microarray images, due to the parallel nature of the segmentation problem that individual

spots can be segmented separately after image addressing. The 4 replicated pairs of red-fluorescent

dye and green-fluorescent dye images from the HIV-1 infection study, which are used in Section 3,

are available from the JCGS website, along with some computer programs used in our numerical

studies.
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