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Abstract

Conventional statistical process control (SPC) charts require the normality assumption on

the process response distribution. In reality, this assumption is often invalid. In such cases,

it has been well demonstrated in the literature that results from control charts using the nor-

mality assumption may not be reliable in the sense that their actual false alarm rates could be

substantially larger or smaller than the assumed false alarm rate. In this paper, we explore one

natural solution to the phase II SPC problem in cases when the normality assumption is invalid,

which tries to define a transformation based on an IC dataset so that the transformed process

response distribution is close to normal and thus the conventional SPC charts can be applied to

the transformed phase II data. This approach is compared with several alternative approaches

in the literature, and some practical guidelines are provided regarding the use of all relevant

control charts.

Keywords: Comparison; Data categorization; False alarm rate; Nonparametric SPC; Normal-

ity assumption; Robustness; Transformation; Wilcoxon rank-sum.

1 Introduction

Statistical process control (SPC) charts are widely used in industry for monitoring the stability

of some sequential processes (e.g., manufacturing processes, health care systems, internet traffic

flow, and so forth). Traditional control charts require the assumption that the process response

distribution is normal. In practice, however, the normality assumption is often invalid. This paper

discusses some strategies to construct control charts without the normality assumption.

As pointed out in Subsection 2.3.1 of Qiu1, normal distributions play an important role in statis-

tics, because many continuous numerical variables in practice roughly follow normal distributions

and much statistical theory is developed for normally distributed random variables. An intuitive
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explanation about the reason why many continuous numerical variables in our daily life roughly

follow normal distributions can be given using the central limit theorem (CLT). For instance, a

quality characteristic in question (e.g., the lifetime of a machine) is often affected by many different

factors, including the quality of the raw material, labor, manufacturing facilities, proper operation

in the manufacturing process, and so forth. So, by the CLT, its distribution would be roughly

normal. By similar reasons, most existing SPC charts are developed based on the assumption

that the related quality characteristics follow a normal distribution when the production process

in question is in-control (IC) or after it becomes out-of-control (OC)1–3. It should be pointed out

that a large dataset has nothing to do with the validity of the normality assumption on the quality

characteristic variables. This is a common conceptual mistake made in the engineering literature.

In practice, however, there are many quality characteristic variables whose distributions are

substantially different from normal distributions. For instance, economic indices and other non-

negative indices are often skewed to the right. The lifetimes of products can often be described

by Weibull distributions which could be substantially different from normal distributions. In many

cases, it is difficult to find a parametric distribution to describe the distribution of certain quality

characteristic variables. See real-data examples in papers by Qiu and Hawkins4,5 and Qiu and Li6.

In cases when the normality assumption is invalid, several authors4, 7–10 have pointed out that the

conventional control charts would be unreliable for process monitoring because their actual false

alarm rates could be substantially larger or smaller than the assumed false alarm rate. In cases

when the actual false alarm rate of a control chart is larger than the assumed false alarm rate, much

labor and many other resources would be wasted because the production process is stopped too

often in such cases. On the other hand, if the actual false alarm rate of a control chart is smaller

than the assumed false alarm rate, then the chart cannot give signals of process distributional shift

in a timely manner. A direct consequence could be that many defective products are manufactured

without notice.

To handle cases when the normality assumption is invalid, a number of distribution-free or

nonparametric control charts have been developed in the literature4–6, 11–29. Chakraborti et al.30

and Qiu1 gave a quite thorough overview on this topic. Most existing nonparametric control charts

are based on the ranking information among observations at different time points18,19,26. Some of

them are based on data categorization and on categorical data analysis6, 22. It should be pointed

out that, in the literature, people do not always make a clear distinction between the terminologies
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of “nonparametric control charts” and “distribution-free control charts.” In many papers, both

terminologies are used to refer to the control charts that can be applied to cases when the process

distribution does not have a parametric form. Some “distribution-free control charts” may not be

really distribution-free, in the sense that their design may still depend on the process distribution,

although they do not require a parametric form of the process distribution.

In cases when the related production process has been adjusted properly so that it works

stably and satisfactorily (i.e., the process is IC), we can always collect a set of observations from

its manufactured products for designing a control chart to online monitor the process. These

observations constitute an IC dataset, and the online process monitoring problem is often called

phase II SPC (cf., Qiu1, Section 1.3). To handle phase II SPC in cases when the normality

is invalid, one natural idea is to first find a transformation from the IC dataset such that the

distribution of the transformed process observations is close to normal, and then a conventional

control chart is applied to the transformed process observations. In this paper, we explore this idea,

and compare the performance of the related control charts with that of some existing nonparametric

control charts. Our basic conclusion, based on a numerical study presented in Section 3, is that this

transformation approach should be used with a care. In many cases when the normality assumption

is invalid, a nonparametric chart, such as those described in the previous paragraph, might be more

reliable and effective to use.

It should be pointed out that the transformation approach has been considered in the paper by

Qiu and Li21. However, in that paper, we considered cases when batch data (i.e., the sample size

is bigger than 1 at each observation time) were available at each time point during a phase II SPC,

and we tried to transform the data at each time point separately to normal distributed data using

a parametric transformation family. So, the transformations used at different time points could be

all different and they are all determined by phase II observations. The problem discussed in the

current paper is different in that we try to determine a single transformation from an IC dataset,

and this transformation is then applied to all phase II observations. In the current setup, the phase

II data could be either single-observation data (i.e., the sample size is 1 at each observation time)

or batch data at individual observation times.

The rest part of the paper is organized as follows. In Section 2, certain statistical methods

for finding data transformations to normality are described. Numerical comparison of the related

control charts is presented in Section 3. A real-data example is discussed in Section 4 to demonstrate
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Table 1: Johnson’s transformation system

Label Transformation Parameter Conditions X Condition

SB γ + η log
(

x−ǫ
λ+ǫ−x

)
η, λ > 0,−∞ < γ < ∞ ǫ < x < ǫ+ λ

−∞ < ǫ < ∞

SL γ + η log (x− ǫ) η > 0,−∞ < γ < ∞ x > ǫ

−∞ < ǫ < ∞

SU γ + η sin−1
(
x−ǫ
λ

)
Same as those of SB −∞ < x < ∞

the application of the proposed transformation-based control charts. Several remarks conclude the

paper in Section 5.

2 Parametric Data Transformations to Normality

Assume that we have an IC dataset x1, x2, . . . , xM collected from a production process in cases

when it is IC, and that it has been verified by routine normality tests that the dataset does not

have a normal distribution. For phase II SPC, we would like to find a parametric transformation

from this dataset such that the distribution of the transformed data is close to normal. If that

parametric transformation can be found, then we can apply the conventional phase II SPC charts

to the transformed phase II observations. In this section, we describe two methods to find such

parametric transformations which have been popularly used in the statistical literature, and then

apply them to the SPC problem.

The first method is based on the three parametric distribution families originally proposed

by Johnson31. These distribution families with labels SB, SL and SU are listed in Table 1. The

subscripts B, L and U refer to the distribution support as bounded, lower-bounded, and unbounded.

For these three distribution families, the corresponding transformation functions have certain ability

to transform them to the standard normal distribution. For a given distribution F , Slifker and

Shapiro32 developed a criterion to classify it to one of the three families using the quantile ratio

(QR) defined as

QR =
(τ4 − τ3)(τ2 − τ1)

(τ3 − τ2)2
,

where τj is the qjth quantile of the distribution F , for j = 1, 2, 3, 4, q1 = Φ(−3z), q2 = Φ(−z), q3 =
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Φ(z), q4 = Φ(3z), Φ is the cdf of the standard normal distribution, and z is a parameter to choose.

Slifker and Shapiro’s suggested decision rule is

• if QR < 1, then classify F into the SB family,

• if QR = 1, then classify F into the SL family, and

• if QR > 1, then classify F into the SU family.

Based on the above decision rule, Chou et al.33 proposed an algorithm to determine a paramet-

ric transformation which can transform the IC dataset to a dataset with the standard normal

distribution, which is briefly described below.

Step 1 For a given z value, compute the estimated QR value by

Q̂R =
(τ̂4 − τ̂3)(τ̂2 − τ̂1)

(τ̂3 − τ̂2)2
,

where τ̂j is the qjth sample quantile obtained from the IC dataset, for j = 1, 2, 3, 4.

Step 2 Use the above decision rule and the estimated QR value to choose the transformation

family, and compute the maximum likelihood estimates of the distribution parameters as

well.

Step 3 For the transformed data by the estimated transformation obtained in Step 2, compute

the value of the Shapiro-Wilk test statistic W , which can be accomplished using almost all

statistical software packages. In R, the command is shapiro.test().

Step 4 For each z value in the set S = {z : z = 0.25, 0.26, . . . , 1.25}, compute the W value using

the above three steps, and the final estimated transformation is chosen to be the one with

the largest W value.

As a remark, although the Shapiro-Wilk test statistic W is used in the above algorithm sug-

gested by Chou et al.33, other statistics for testing the normality assumption can be used as well

and the overall result should not change much as long as the normality test used is reasonably

good.

5



In the literature, another popular parametric transformation is based on the following Box-Cox

transformation family34:

BCα(x) =





xα
−1
α

, if α 6= 0

log(x), otherwise,

where α is a parameter chosen by maximizing the Shapiro-Wilk normality test statistic W . Since

this transformation is only applicable for data with all positive observations, we can use its gener-

alized form in cases when some observations in a dataset are negative, which is defined as

BCα,λ(x) =





(x+λ)α−1
α

, if α 6= 0

log(x+ λ), otherwise,

where λ > 0 is a parameter chosen large enough such that x+λ > 0 for any x in the given dataset.

After a parametric transformation is obtained for a given IC dataset, then we can apply the

transformation to all phase II observations and apply the conventional control charts to the trans-

formed phase II observations. For instance, assume that ĝJ(x) is the Johnson transformation

obtained by the 4-step algorithm of Chou et al. described above from the IC dataset and the phase

II observations are y1, y2, . . .. Then, the two-sided CUSUM chart applied to the transformed phase

II observations has the charting statistics

C+
n = max

(
0, C+

n−1 + zn − k
)
, for n ≥ 1,

C−

n = min
(
0, C−

n−1 + zn + k
)
, (1)

where C+
0 = C−

0 = 0, zn = ĝJ(yn) for each n, and k > 0 is an allowance constant. The chart gives

a signal of mean shift when

C+
n > h or C−

n < −h, (2)

where h > 0 is a control limit. For some commonly used k and ARL0 values, the corresponding h

values can be found in Table 4.1 of Qiu1. They can also be computed easily using the R-package

spc.

It should be pointed out that, although the CUSUM chart (1)–(2) is used here, other SPC

charts, such as the Shewhart and EWMA charts, can also be applied to the transformed data

{zn, n ≥ 1}. Shewhart charts are popular in practice mainly because of their simplicity. Due to

the facts that they are good at detecting relatively large and transient shifts and such shifts are

common in phase I SPC, they provide a reasonably good statistical tool for phase I SPC. As a
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comparison, the CUSUM and EWMA charts are usually for phase II SPC, because these charts

are often good in detecting relatively small and persistent shifts which are often our major concern

in phase II SPC. Between the CUSUM and EWMA charts, their performance is generally similar.

The EWMA charts are easier to understand and implement. On the other hand, CUSUM charts

have certain theoretical optimality properties; the corresponding theory for the EWMA charts is

still lacking. For these reasons, both CUSUM and EWMA charts are popularly used in practice.

See Chapters 4 and 5 in Qiu1 for more detailed discussions.

At the end of this section, we would like to point out that although nonparametric methods

for estimating distribution functions, such as the empirical distribution estimation method and the

kernel density estimation method discussed in Section 2.8 of Qiu1, can also be considered here, they

are generally infeasible for phase II SPC for the two reasons explained below. First, assume that

F̂ is an estimator of the cdf F of the IC process distribution. Then, the transformation Φ−1[F̂ (x)]

can generally transform a random variable X with the cdf F to the random variable Φ−1[F̂ (X)]

whose distribution is close to N(0, 1). If F̂ is a nonparametric estimator of F , then for every phase

II observation yn, we need to compute the value of F̂ (yn) from the IC dataset, which takes much

time because F̂ (yn) does not have a parametric form and its value needs to be computed from all

IC observations for every yn. As a comparison, if F̂ is a parametric estimator, then the parametric

function F̂ (x) is well estimated before the phase II process monitoring. In such cases, we only need

to evaluate this function once for each phase II observation yn. So, the computation involved in this

case is much simpler. Second, if F̂ is a nonparametric estimator of F , then its variability is usually

large. Consequently, phase II SPC based on F̂ is not effective, especially when the IC sample size

M is relatively small. We actually tried the nonparametric method using the empirical estimator

of F , and the results were not good in most cases considered. For these reasons, this approach is

not considered in this paper.

3 Numerical Study

In this section, we evaluate the numerical performance of the CUSUM chart (1)-(2) based on the

parametric transformations described in Section 2. The two versions of the CUSUM chart (1)-(2)

based on the Johnson’s transformation families and the Box-Cox transformation family are denoted

as CUSUM-J and CUSUM-B, respectively. Besides these two transformation-based control charts,
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the conventional CUSUM chart (i.e., the CUSUM chart (1)-(2) applied to the original phase II

observations), denoted as CUSUM-C, and the two nonparametric CUSUM charts proposed by Li

et al.19 and Qiu and Li6, denoted as CUSUM-L and CUSUM-Q, respectively, are also considered

here for comparison purposes. The chart CUSUM-L is based on the Wilcoxon rank-sum test statistic

for comparing the means of the IC observations and a phase II observation. The chart CUSUM-Q

is based on categorization of phase II observations. The cut-points for observation categorization

is estimated from the IC dataset. By the suggestion of Qiu and Li6, the number of categories is

chosen to be 5 in all numerical examples in this paper. For all five charts, the IC dataset is used for

estimating the IC mean and IC standard deviation, and the phase II observations are standardized

by the estimated IC mean and IC standard deviation. So, all five control charts depend on the IC

dataset.

We first investigate the IC performance of the five CUSUM charts. In the charts CUSUM-C,

CUSUM-J, CUSUM-B, and CUSUM-L, the allowance constant k is chosen to be 0.5. In the chart

CUSUM-Q, the allowance constant is chosen to be 0.01 as suggested by Qiu and Li6. In all five

charts, the assumed ARL0 value is chosen to be 500. The control limits of the charts CUSUM-C,

CUSUM-J, and CUSUM-B are all chosen to be h = 5.072 which is obtained by the R-package spc

for the conventional CUSUM chart (1)-(2) in cases when the true process distribution is N(0, 1).

The control limits of the charts CUSUM-L and CUSUM-Q are obtained by simulation as follows.

First, we generate an IC dataset of size M from the N(0, 1) distribution. Then, the ARL0 value

of the chart under consideration with a control limit h1 is computed based on 10,000 replicated

simulations of phase II process monitoring. This entire process, from generating the IC dataset to

computing the ARL0 value, is then repeated 100 times, and the average of the 100 ARL0 values and

the corresponding standard error of this overall ARL0 estimate can be computed. The h1 value is

then searched until the assumed ARL0 value (i.e., 500) is reached within a certain accuracy. See the

pseudo code given in Subsection 4.2.2 of Qiu1 for a related discussion. In this example, we consider

cases when the true process distribution is one of the following four distributions: N(0, 1), t4, χ
2
4

and χ2
1, and the IC sample size M = 50, 100, 200, 500, or 1,000. The computed actual ARL0 values

of the five charts and their standard errors in all cases considered are presented in Table 2. From the

table, it can be seen as expected that the conventional CUSUM chart CUSUM-C performs poorly

in all non-normal cases considered. The chart CUSUM-J is reasonably reliable to handle symmetric

distributions when M ≥ 500. But, it performs poorly when handling skewed distributions, unless
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M is very large. As a comparison, the chart CUSUM-B performs well when handling skewed

distributions and when M ≥ 200. But, it performs poorly to handle symmetric distributions,

especially when the distribution has heavy tails. Its performance is not satisfactory even in the

N(0, 1) case because it uses the estimated IC mean and IC standard deviation obtained from the

IC dataset for standardising the phase II observations and the randomness in these estimators has

a quite big impact on its performance, which is consistent with the findings in Jones et al.35 Both

the CUSUM-L and CUSUM-Q charts are quite reliable. Between the two charts, it seems that

CUSUM-L has a more reliable performance.

Next, we study the OC performance of the five CUSUM charts in cases when M = 500, the

true process distribution is one of the four distributions: N(0, 1), t4, χ
2
4, and χ2

1, and the process

mean has a shift of size -1.0, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, or 1.0. In all five CUSUM

charts, their allowance constants are chosen to be the same as those in Table 2, but their control

limits have been adjusted such that their actual ARL0 values are all equal to 500 in order to make

the comparison meaningful. For each shift size, the ARL1 values of the five charts are computed

in the same way as that for computing the ARL0 values based on 1,000,000 replicated simulations.

They are shown in the four plots of Figure 1. From Figure 1(a), it can be seen that the chart

CUSUM-Q is the most effective one in cases with the N(0, 1) IC distribution, and the other four

charts perform similarly in such cases. Readers are reminded again that the conventional chart

CUSUM-C depends on the estimated IC mean and the estimated IC standard deviation obtained

from the IC dataset and thus its performance is not the best in these cases. From Figure 1(b), the

chart CUSUM-Q still performs the best in cases with the t4 IC distribution, the charts CUSUM-J,

CUSUM-B, and CUSUM-L perform similarly well, and the chart CUSUM-C performs the worst.

From Figure 1(c)-(d), in which the process IC distribution is skewed, the chart CUSUM-Q still

performs reasonably well, the charts CUSUM-J and CUSUM-L perform well in detecting shifts in

the direction of the shorter tail of the process distribution and do not perform well in detecting

shifts in the other direction, and the charts CUSUM-C and CUSUM-B do not perform well in these

cases.

From the above examples, we can have the following conclusions. First, in cases when the pro-

cess distribution is non-normal, the IC performance of the nonparametric CUSUM charts CUSUM-

L, and CUSUM-Q is much better than the transformation-based CUSUM charts CUSUM-J and

CUSUM-B, especially in cases when the IC sample size M is quite small. Second, when M is mod-
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Table 2: Actual ARL0 values and their standard errors (in parentheses) of the five charts CUSUM-

C, CUSUM-J, CUSUM-B, CUSUM-L, and CUSUM-Q in cases when the true process distribution

is one of the four distributions: N(0, 1), t4, χ
2
4 and χ2

1, and the IC sample size M = 50, 100, 200,

500, or 1,000.

M N(0, 1) t4 χ2
4 χ2

1

CUSUM-C 50 382.888 (250.525) 250.200 (205.969) 283.673 (236.838) 172.408 (165.861)

100 419.637 (207.654) 254.497 (164.393) 281.570 (192.550) 175.891 (123.687)

200 445.403 (152.254) 273.403 (138.348) 271.690 (135.320) 161.215 (98.398)

500 441.926 (100.754) 270.199 (90.543) 252.476 (86.057) 153.205 (45.654)

1000 461.632 (75.302) 280.434 (91.822) 249.044 (63.204) 151.081 (30.268)

CUSUM-J 50 369.620 (242.069) 245.861 (208.249) 190.468 (180.156) 210.960 (194.732)

100 419.981 (214.258) 370.054 (189.475) 301.840 (195.946) 255.321 (189.925)

200 439.772 (153.220) 426.193 (176.501) 347.987 (170.446) 287.343 (172.375)

500 436.556 (103.337) 448.818 (113.095) 409.316 (122.638) 367.177 (209.645)

1000 461.023 (79.379) 504.009 (91.748) 453.970 (105.538) 419.313 (264.276)

CUSUM-B 50 328.129 (230.997) 150.827 (128.142) 345.846 (240.819) 426.078 (216.423)

100 387.500 (206.079) 192.144 (136.465) 418.378 (177.347) 427.525 (203.283)

200 425.248 (150.238) 204.951 (94.686) 452.338 (133.049) 457.110 (147.270)

500 434.499 (100.228) 233.302 (76.723) 466.154 (88.147) 488.681 (86.533)

1000 458.152 (76.042) 238.587 (48.855) 485.871 (71.402) 501.757 (62.586)

CUSUM-L 50 499.987 (475.261) 409.224 (297.308) 443.384 (381.543) 472.958 (387.439)

100 500.409 (283.277) 480.287 (304.409) 478.479 (233.217) 506.940 (295.109)

200 500.223 (184.396) 497.329 (187.008) 485.958 (132.297) 490.173 (177.090)

500 500.855 (108.500) 516.224 (104.384) 504.302 (99.425) 514.469 (92.996)

1000 500.506 (78.758) 504.290 (74.383) 494.360 (73.924) 500.741 (63.737)

CUSUM-Q 50 499.185 (1474.81) 493.056 (1459.65) 511.651 (1637.72) 528.151 (909.546)

100 499.166 (665.627) 382.636 (350.420) 537.856 (766.362) 583.596 (914.399)

200 499.602 (440.295) 468.637 (415.753) 431.746 (327.797) 506.741 (469.711)

500 499.967 (231.967) 525.523 (249.106) 542.097 (259.191) 531.758 (244.535)

1000 499.361 (153.236) 496.961 (145.510) 494.523 (147.364) 530.653 (150.743)
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Figure 1: ARL1 values of the charts CUSUM-C, CUSUM-J, CUSUM-B, CUSUM-L, and CUSUM-
Q in cases when M = 500, ARL0 = 500, and the true process distribution is N(0, 1) (plot (a)), t4
(plot (b)), χ2

4 (plot (c)), or χ2
1 (plot (d)).
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erate to large and the process distribution is symmetric, the IC performance of CUSUM-J is quite

reliable. As a comparison, when M is moderate to large and the process distribution is skewed, the

IC performance of CUSUM-B is quite reliable. Third, results by the conventional CUSUM chart

CUSUM-C is unreliable in cases when the process distribution is non-normal. Fourth, among all

the five CUSUM charts considered, the chart CUSUM-Q is quite effective in detecting process mean

shifts in almost all cases considered. As a comparison, the other four charts are quite effective only

in certain special cases.

4 A Real-Data Application

In this section, we illustrate the application of the transformation-based CUSUM charts CUSUM-J

and CUSUM-B using a real-data example about daily exchange rates between Korean Won and

US Dollar between March 28, 1997 and December 02, 1997. During this period, the daily exchange

rates were quite stable early on and became unstable starting from early August, due to the world

financial crisis. This can be seen from Figure 2(a) in which 123 daily exchange rates (Won/Dollar)

observed in that period are shown. Like many other phase II SPC procedures, charts CUSUM-J

and CUSUM-B assume that observations at different time points are independent of each other.

However, for this data, we found that observations are substantially correlated. Following the

suggestions by Qiu and Hawkins4, we first pre-whiten the data using an auto-regression model that

can be accomplished by the R function ar.yw(), and the pre-whitened data are shown in Figure

2(b).

We then apply the related control charts considered in the previous section to the pre-whitened

data. To this end, the first 107 residuals are used as an IC data and the remaining residuals are used

for testing. In Figure 2(b), the training and testing data are separated by a dashed vertical line. To

take a closer look at the IC data and at the first several testing observations as well, the first 144

residuals are presented in Figure 2(c) again, in which the solid horizontal line denotes the sample

mean of the IC data and the dashed vertical line separates the IC data and testing data. From

Figure 2(c), it can be seen that there is an upward mean shift starting from the very beginning

of the test data. The Shapiro test for checking the normality of the IC data gives a p-value of

7.807 × 10−5, implying that the IC data are significantly non-normal. To demonstrate this, the

density histogram of the IC data is shown in Figure 2(d), along with its estimated density curve
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Figure 2: (a) Original observations of the exchange data. (b) Pre-whitened data. (c) The first
144 pre-whitened values. (d) Density histogram, estimated density curve (solid) of the first 107
pre-whitened values (i.e., IC data), and the density curve of a normal distribution (dashed) with
the same mean and variance as those of the IC data. In plots (b)–(c), the dashed vertical lines
separate the IC and testing data. In plot (c), the solid horizontal line denotes the sample mean of
the IC data.

13



(solid) and the density curve of a normal distribution (dashed) with the same mean and standard

deviation. We then apply the related control charts to this dataset. The allowance constants of

these charts are chosen to be the same as those used in the previous section, and their control limits

are searched such that ARL0 = 500. In the chart CUSUM-Q, the number of categories is still chosen

to be 5. The five control charts are shown in Figure 3, in which the dashed horizontal lines denote

the control limits of the related control charts. The charts CUSUM-C, CUSUM-J, CUSUM-B,

CUSUM-L, and CUSUM-Q give signals of process mean shift at the 112th, 112th, 112th, 113th,

and 111th time points, respectively. Therefore, the five charts perform similarly in this example.

These control charts confirm that the exchange rates between Korean Won and US Dollar started

to become unstable at the very beginning of the phase II monitoring, as demonstrated in Figure

2(c).

5 Concluding Remarks

This paper considers cases when the process distribution is non-normal. In such cases, if an IC

dataset is available, a natural idea for phase II SPC is to find a parametric transformation based

on the IC dataset such that the transformed process distribution is close to normal. Then, the

conventional SPC charts can be applied to the transformed phase II observations for online process

monitoring. In the previous sections, we have explored such an idea by using the two popular

parametric distributions (i.e., the Johnson’s transformation system and the Box-Cox transforma-

tion family) and by comparing the CUSUM charts obtained by this idea with two representative

nonparametric CUSUM charts. Based on the numerical results presented in the previous two sec-

tions, we can conclude that the nonparametric CUSUM charts are generally more reliable to use

in cases when the process distribution is non-normal in the sense that their actual ARL0 values

are usually closer to the assumed ARL0 value than the ARL0 values of the transformation-based

CUSUM charts. The performance of the transformation-based CUSUM charts could be potentially

improved by combining the IC data with the observations collected during phase II SPC through a

self-starting framework, which needs to be confirmed in our future research. Furthermore, the non-

parametric CUSUM chart CUSUM-Q seems much more effective in detecting process mean shifts

in various non-normal cases considered, compared to the transformation-based CUSUM charts. In

multivariate SPC, we might have similar conclusions, which needs to be confirmed in the future

research as well.
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Figure 3: Control charts CUSUM-C, CUSUM-J, CUSUM-B, CUSUM-L, and CUSUM-Q when
they are applied to the exchange rate data. In each plot, the horizontal dashed line(s) denotes the
control limit(s).
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