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Abstract

Conventional Phase II statistical process control (SPC) charts are designed using control

limits; a chart gives a signal of process distributional shift when its charting statistic exceeds a

properly chosen control limit. To do so, we only know whether a chart is out-of-control (OC)

at a given time. It is therefore not informative enough about the likelihood of a potential

distributional shift. In this paper, we suggest designing the SPC charts using p-values. By this

approach, at each time point of Phase II process monitoring, the p-value of the observed charting

statistic is computed, under the assumption that the process is in-control (IC). If the p-value

is less than a pre-specified significance level, then a signal of distributional shift is delivered.

This p-value approach has several benefits, compared to the conventional design using control

limits. First, after a signal of distributional shift is delivered, we could know how strong the

signal is. Second, even when the p-value at a given time point is larger than the significance

level, it still provides us useful information about how stable the process performs at that time

point. The second benefit is especially useful when we adopt a variable sampling scheme, by

which the sampling time can be longer when we have more evidence that the process runs stably,

supported by a larger p-value. To demonstrate the p-value approach, we consider univariate

process monitoring by cumulative sum (CUSUM) control charts in various cases.

Key words: Bootstrap; Cumulative sum control charts; Process monitoring; Self-starting;

Variable Sampling.

1 Introduction

Statistical process control (SPC) charts are used widely for monitoring the stability of different

processes over time. Practical applications of SPC charts have now extended far beyond manu-

1



facturing industries to other industries such as biology, genetics, medicine, finance and so forth.

Some widely used control charts include the Shewhart charts (Shewhart 1931), the cumulative sum

(CUSUM) control charts (Page 1954), and the exponentially weighted moving average (EWMA)

control charts (Roberts 1959). It is well known that Shewhart charts are effective in detecting

isolated shifts or relatively large sustained shifts, while CUSUM and EWMA control charts are

effective in detecting small to moderate sustained shifts. Comparing CUSUM with EWMA control

charts, it has been demonstrated that they often have similar performance in terms of the average

run length (ARL) (cf., Lucas and Saccucci 1990, Luo et al. 2009), which is the average number

of observations needed for a control chart to signal a shift. Recently, process monitoring based on

change-point detection also receives much attention (cf., Hawkins et al. 2003, Zhou et al. 2009).

By the change-point approach, besides a signal of shift, the shift location can be obtained simul-

taneously. See Hawkins and Olwell (1998) and Montgomery (2004) for more complete discussion

about theory and methodologies about SPC.

A conventional control chart gives a signal of process distributional shift when its charting

statistic falls beyond the control limit(s). In practice, after a signal of shift is obtained, practitioners

would also be interested in knowing how strong the signal is, so that appropriate subsequent actions

can be taken accordingly. In cases when a variable sampling scheme is adopted (cf., Reynolds et

al. 1990), even if a shift is not detected at a given time point, it would still be helpful to know the

likelihood of a potential shift. The sampling time can be adjusted according to the likelihood as

follows. It can be longer if the likelihood is smaller, and shorter otherwise. With a conventional

design of control charts using control limits, such a quantitative measure of the shift likelihood is

difficult to obtain.

In the context of hypothesis testing, early testing procedures make decisions using the concepts

of rejection region and acception region (cf., Lehmann 1997). A null hypothesis would be rejected

when the observed value of the related test statistic falls in the rejection region. This conventional

way of hypothesis testing has been replaced by the p-value approach in recent text books, because

the p-value approach can not only make a decision about the hypotheses, but also tell us how

strong the evidence in the observed data is against the null hypothesis. Motivated by the p-value

approach in hypothesis testing, in this paper, we suggest designing control charts using the p-value

approach as well. By the p-value approach, for a given control chart, the in-control (IC) distribution

of the charting statistic is first computed or estimated. Then, at a given time point, the p-value

2



corresponding to the observed value of the charting statistic can be obtained. If the p-value is

less than a pre-specified significance level, then the chart signals a process distributional shift.

Compared to conventional control charts using control limits, this p-value approach has several

benefits, including the following ones. First, at a given time point, even if a shift is not detected,

the p-value can provide us a quantitative measure of the likelihood of a potential shift, so that the

subsequent sampling interval can be adjusted properly. Second, conventional control charts may

take different forms (e.g., the one-sided or two-sided charts) and their control limits are different

in different situations. As a comparison, all control charts using the p-value approach have a same

format, in the sense that the vertical axis is always in the range of [0, 1], denoting the p-values, and

there is only one control limit corresponding to the significance level. This makes the charts more

convenient to use.

In the literature, p-value calculation of the charting statistic of a traditionally designed control

chart has been discussed by several papers. In cases when the IC process distribution is assumed

normal with a known variance, Grigg and Spiegelhalter (2008) provide an approximation formula

for the IC distribution of the charting statistic of the conventional CUSUM chart. Li and Tsung

(2009) study the false discovery rate in multistage process monitoring, in which p-value calculation

of the charting statistics used in different stages of process monitoring is discussed. However,

general discussion about how to design control charts using p-values in various cases is still lacking.

In this paper, we demonstrate the p-value approach in cases when we are interested in detecting

mean shifts in Phase II SPC using a CUSUM control chart. Its applications in Phase I SPC, or

its applications in Phase II SPC for detecting scale shifts and other process distributional shifts

using other charting schemes can be discussed similarly. The rest part of the paper is organized

as follows. In Section 2, our p-value approach is described in detail. Its numerical performance is

evaluated in Section 3. We then demonstrate this approach using a real data example in Section

4. Finally, several remarks conclude the paper in Section 5.

2 Designing Phase II CUSUM Charts Using p-Values

In this section, we describe our proposed p-value approach in cases to design Phase II CUSUM charts

for detecting mean shifts of univariate processes. In the literature, the IC process distribution is

often assumed known in Phase II SPC. However, in practice, the IC process distribution is rarely
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known. Instead, it needs to be estimated from an IC dataset obtained at the end of Phase I analysis

after the process has been adjusted properly so that it works stably. Hawkins (1987) proposes the

self-starting CUSUM chart for Phase II SPC in cases when the IC process distribution is assumed

normal but its mean and variance parameters need to be estimated. Chatterjee and Qiu (2009)

discuss Phase II SPC in cases when the IC process distribution is estimated from an IC dataset

using bootstrap.

To account for different cases, our description of the p-value approach is organized in four parts.

In Section 2.1, the p-value approach is introduced in cases when the IC process distribution is com-

pletely known. The cases when the IC process distribution follows a parametric distribution with

unknown parameters and when the IC process distribution is completely unknown are discussed in

Sections 2.2 and 2.3, respectively. Then, CUSUM chart using the p-value approach together with

the variable sampling scheme is discussed in Section 2.4.

2.1 Cases when the IC process distribution is known

Assume that X1, X2, . . . , Xt, . . . are a sequence of independent observations obtained during Phase

II process monitoring. Their cumulative distribution functions (cdfs) are the same to be F0 up to

an unknown time point τ , and change to another cdf F1 after the time point τ . For simplicity, we

further assume that F0 and F1 are the same except their means µ0 and µ1. Then, the process has

a mean shift at τ , and the major goal of Phase II process monitoring is to detect the mean shift as

soon as possible. To this end, the conventional CUSUM chart for detecting an upward mean shift

uses the charting statistic







C+
0
= 0,

C+
t = max(0, C+

t−1
+Xt − µ0 − k), for t ≥ 1,

(1)

where k is an allowance constant. The chart gives a signal of mean shift when

C+
t > h,

where h is a control limit chosen to achieve a pre-specified IC ARL (denoted as ARL0) value.

Instead of comparing the charting statistic C+
t with the control limit value h, in this paper,

we suggest computing the p-value corresponding to the value of C+
t , and then comparing the
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p-value with a pre-specified significance level α for making a decision whether the process is out-

of-control (OC). To this end, we need to find the IC distribution of C+
t first. Recently, Grigg

and Spiegelhalter (2008) provide an approximation formula for this IC distribution in cases when

the IC process distribution is normal with a known variance. The derivation of this formula is

part theoretical and part empirical. Since we will discuss various other cases, including the ones

when the IC process distribution is a t distribution or a chi-squared distribution that represents

a symmetric distribution with heavy tails or a skewed distribution, the conditions required by the

method of Grigg and Spiegelhalter (2008) are not satisfied in such cases. Therefore, we suggest

computing p-values by simulation as follows.

Assume that the IC process distribution is completely known. Then, for a given time point

t ≥ 1 and a given allowance constant k, we generate Phase II observations X1, X2, . . . , Xt and

compute the value of C+
t

by (1). This process is then repeated many times (e.g., 1 million times),

and the empirical distribution of C+
t can be determined by the computed C+

t values. For a given

observed value of C+
t , denoted as C+∗

t , the corresponding p-value is then computed by

p
C

+∗

t

= P(C+
t > C+∗

t ). (2)

Figure 1 presents the p-values computed by (2) in cases when the IC distribution of C+
t

is de-

termined by 1 million replications, k = 0.5, t = 1, 5, 10, 50 and 100, and the IC process distribution

is the normalized versions of the standard normal N(0, 1), t distribution with 4 degrees of freedom

(denoted as t4), chi-squared distribution with 1 degree of freedom (denoted as χ2
1), and chi-squared

distribution with 4 degrees of freedom (denoted as χ2
4). From the plots of the figure, it can be seen

that the p-values, which are the right-tail probabilities of the IC distribution of C+
t
, depend on t;

but they are stable when t ≥ 50, which is consistent with the well-known steady-state distribution

of C+
t (cf., Hawkins and Olwell 1998). Therefore, in practice, to use the p-values to monitor the

process, we only need to compute the probability distributions of C+
t , for t < 50. From Figure

1, we can also see that the p-values depend slightly on the IC process distribution. For instance,

p-values in the case of N(0, 1) are slightly different from the corresponding ones in the case of t4.

Next, for several commonly used significance levels α =0.01, 0.02, 0.05, and 0.10, we provide

the corresponding critical values (CVs) of C+
t in Table 1, in cases when k = 0.25 or 0.5, and the IC

process distribution is the normalized version of N(0, 1), t4, χ
2
1, or χ2

4. The corresponding ARL0

values are also provided. These values are all computed based on 1 million simulation runs for C+
t

5



0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ct
+*

P C
t+*

t=1
t=5
t=10
t=50
t=100

(a)

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ct
+*

P C
t+*

t=1
t=5
t=10
t=50
t=100

(b)

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ct
+*

P C
t+*

t=1
t=5
t=10
t=50
t=100

(c)

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ct
+*

P C
t+*

t=1
t=5
t=10
t=50
t=100

(d)

Figure 1: p-values computed by (2) with different t and IC process distributions. (a) N(0, 1), (b)

t4, (c) χ
2
1, (d) χ

2
4.

when t = 50. From the table, it can be seen that the CV values and the ARL0 values decrease

when k increases or α increases. By the way, the CVs listed in Table 1 are the upper α-quantiles of

C+
t . To use the CVs in Table 1, one can have a rough idea about the p-value after he computes the

value of the charting statistic. For instance, in cases when the IC process is N(0, 1) and k = 0.25,

if the computed value of the charting statistic is 8.2, then from Table 1, we can know that the

corresponding p-value would be less than 0.01 because 8.2 is larger than 8.1841 which is the upper

0.01-quantile in such cases.
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Table 1: Critical values (CVs) and the corresponding ARL0 values for several commonly used

significance levels α =0.01, 0.02, 0.05, and 0.10, and several IC process distributions.

α=0.01 α=0.02 α=0.05 α=0.10

k CV ARL0 CV ARL0 CV ARL0 CV ARL0

N(0, 1) 0.25 8.1841 996.238 6.9167 464.853 5.2237 172.234 3.9236 71.278

0.50 4.0606 322.823 3.3483 169.538 2.4170 56.003 1.7237 25.425

t4 0.25 8.8185 1262.625 7.2411 576.815 5.2305 195.717 3.7918 82.608

0.50 4.9217 506.946 3.7781 218.192 2.5281 73.202 1.6415 33.620

χ2
1 0.25 11.5085 1153.281 9.5924 582.298 6.9887 212.468 5.0404 86.091

0.50 7.3315 481.008 5.8988 233.748 4.0530 82.886 2.6607 35.554

χ2
4 0.25 9.9038 1048.514 8.3649 512.733 6.1924 183.958 4.5247 76.111

0.50 5.6788 419.965 4.6678 203.735 3.3290 68.505 2.2905 28.742

2.2 Cases when the IC process distribution follows a parametric model with

unknown parameters

The assumption that the IC distribution is completely known may not be reasonable for some

applications. In this part, we consider a more general case when the IC process distribution follows

a parametric model with one or more unknown parameters. One example of this scenario is when

it is reasonable to assume that the IC process distribution is N(µ0, σ
2), but the parameters µ0 and

σ are both unknown. In such cases, if there is an IC dataset, then µ0 and σ can be estimated from

the IC dataset beforehand. However, the sample size of the IC dataset should be large enough to

guarantee that the resulting control chart performs reasonably well. Otherwise, control charts with

estimated parameters would have a large bias in terms of the ARL0 value, and they will lose some

power in detecting process distributional shifts as well. See, for instance, Jensen et al. (2006). To

overcome this difficulty, Hawkins (1987) proposes the self-starting method for constructing control

charts in such cases. Construction of the self-starting CUSUM using p-values is described below.

Assume that X1, X2, . . . , Xt, . . . are a sequence of i.i.d. observations with common distribution
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N(µ0, σ
2). Let m ≥ 3 be a fixed number. For t ≥ m, define

Tt =
Xt −Xt−1

st−1

,

Ut = Φ−1

[

Gt−2

(

Tt

√

t− 1

t

)]

, (3)

where Xt−1 and st−1 are the sample mean and sample standard deviation of the first t− 1 obser-

vations, and Φ(·) and Gt−2(·) are the cdf’s of the standard normal and the t distribution with t− 2

degrees of freedom, respectively. Then, it can be shown that the sequence {Ut, t ≥ m} are i.i.d. with

the common distribution N(0, 1) (cf., Hawkins (1969) and Quesenberry (1991)). Therefore, we can

now monitor the sequence {Ut, t ≥ m} for possible mean shifts using the control chart discussed

in Section 2.1. Design of self-starting CUSUM charts when the IC process distribution is Gamma,

binomial, and Poisson has been discussed in Hawkins and Olwell (1998).

By using the self-starting control chart based on (3), we need to have m IC observations

collected before process monitoring. Otherwise, the sample standard deviation st−1 is not well

defined. Figure 2 presents the ARL0 values at several commonly used α levels when m takes values

of 3, 5, 7, 10 and ∞. Note that the case of m = ∞ actually denotes the case when the IC process

distribution is completely known. From the plot, it can be seen that the ARL0 values do not depend

on the value of m much, which is appealing because it implies that we do not have to collect too

many IC observations before using the self-starting control chart for process monitoring, in cases

when we know the parametric form of the IC distribution. This result is not surprising because

the self-starting control chart keeps updating the estimates of the IC parameters by using the first

m IC observations and all subsequent observations as long as no signal of mean shifts is delivered.

See related discussion in Hawkins and Olwell (1998, Section 7.2).

2.3 Cases when the IC process distribution is completely unknown

In this part, we discuss the case when the IC process distribution is completely unknown and when

a set of IC data is available. In such cases, there are two possible ways to use the IC data for process

monitoring. One way is to first estimate the IC process distribution from the IC data, and then

monitor the process as usual using the estimated IC process distribution. The second approach

is to estimate the IC distribution of the charting statistic using a bootstrap resampling technique

from the IC data. Chatterjee and Qiu (2009) has demonstrated that the bootstrap approach is
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Figure 2: ARL0 values at several commonly used α levels when m takes values of 3, 5, 7, 10 and

∞.

often more effective, which is also adopted here.

By the bootstrap method (cf., Efron 1979, Efron and Tibshirani 1993), we repeatedly draw

bootstrap observations with replacement from the IC dataset, and the bootstrap observations are

used as the Phase II observations. Then, we can compute the value of the charting statistic C+
t .

This process is then repeated B times, and the IC distribution of C+
t

can be estimated from the B

calculated values of C+
t .

It is expected that the size m of the IC data would have an impact on the performance of our

control chart. To see this, we compute the ARL0 values at several commonly used α levels when

m changes its value among 100, 500, 1000, 2000, and ∞. Again, the case when m = ∞ denotes

the case when the IC process distribution is completely known. These ARL0 values are shown in

the plots of Figure 3. From the plots, we can see that, as long as m ≥ 1000, the ARL0 values

are quite stable in various cases. Therefore, we suggest collecting 1000-2000 IC observations before

Phase II process monitoring in cases when the IC process distribution is completely unknown. This

requirement on the IC data size is similar to those given by Jones et al. (2001), Jones (2002) and

Jones et al. (2004) in cases when certain IC parameters need to be estimated from an IC data with
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the traditional control charts.

2.4 CUSUM charts using variable sampling schemes

In recent years, variable sample rate (VSR) control charts have received much attention in the

literature, by which the sampling rate changes as a function of the current and prior sample results.

One major advantage of the VSR charts, compared to the fixed sampling rate (FSR) charts, is that

VSR charts often provide faster detection of small to moderate process changes, for a given ARL0

and a given IC average sampling rate. There are several possible approaches that can be used to

vary the sampling rate, which include the variable sampling intervals (VSI), the variable sample

size (VSS), and the variable sample size and sampling intervals (VSSI) schemes (e.g., Montgomery

2007). The sampling scheme of the conventional VSI charts is to use a longer sampling interval

when the charting statistic value is far away from the control limits (i.e., within the so-called central

region), and use a shorter sampling interval when the charting statistic value does not exceed the

control limits but within the so-called warning region. If the charting statistic value exceeds the

control limits (i.e., falls in the so-called action region), then the process is considered to be OC.

In this paper, we propose to monitor the p-values of the charting statistic. In this context,

the variable sampling scheme can work as follows. We use a longer sampling interval as long as

P
C

+∗

t

is much larger than the significance level α, and a shorter sampling interval if P
C

+∗

t

is larger

than α but their values are close to α. The process is considered OC if P
C

+∗

t

< α. Intuitively, it

might be reasonable to set the sampling interval to be a continuously increasing function of P
C

+∗

t

.

However, previous research has demonstrated that it is sufficient to use only two possible values of

the sampling interval for the control chart with a variable sampling scheme to achieve some good

statistical properties (cf., Costa 1998, Luo et al. 2009, Reynolds and Arnold 2001, Wu et al. 2007).

For this reason, we also use two values of the sampling interval here. Let 0 < d1 < d2 be two

possible sampling intervals. Then, the sampling interval function, denoted as d(t), can be defined

by

d(t) =







d1, if P
C

+∗

t

∈ Rw,

d2, if P
C

+∗

t

∈ Rc.

where Rw and Rc denote the warning region and central region, respectively.

Traditionally, the ARL value is commonly used as a performance measure of a control chart.
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Figure 3: ARL0 values at several commonly used α levels. (a) N(0, 1), (b) t4, (c) χ
2
1, (d) χ

2
4.
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However, when the sampling interval is variable, the time to signal may not be a constant multiple

of the ARL. In such cases, widely used performance measures are the average time to signal (ATS),

which is defined to be the expected value of the time from the start of the process to the time when

the chart indicates an OC signal, and the adjusted average time to signal (AATS), which is defined

to be the expected value of the time from the occurrence of an assignable cause of shifts to the time

when the chart gives an OC signal. The AATS is also called the steady-state ATS (SSATS) if the

assignable cause of shifts occurs at a late time. When the process is IC, the ATS value can be used

to setup the chart so that the false alarm rate is controlled at a certain level. When the process is

OC, the AATS value can be used to measure the performance of the chart. A chart with a smaller

OC AATS value, denoted as AATS1, performs better. Regarding d1 and d2, existing research (cf.,

Costa 1998, Luo et al. 2009, Reynolds and Arnold 2001, Wu et al. 2007) shows that d1 should be

small and d2 should be large. Based on extensive numerical study, Reynolds et al. (1990) suggest

using d1 = 0.1 and d2 = 1.9. These values of d1 and d2 are also used in this paper. It should be

pointed out that the design of the above VSI control chart using p-values may not be optimal. As

a matter of fact, even using the conventional control limits in its design, it is still an open problem

how to design an optimal VSI control chart. The optimal design of the VSI control chart based on

p-values will be left for our future research.

To use the VSI control chart, we still need to choose the warning and central regions Rw and

Rc properly. To this end, let d0 be the fixed sampling interval without employing VSI. Without

loss of generality, we assume that d0 = 1 in this paper. In existing control charts using variable

sampling schemes, the warning and central regions are defined based on the charting statistic C+
t

directly. Usually, the central region takes the form of (−∞, h1], and the warning region takes the

form of (h1, h), where 0 < h1 < h are two control limits and they are chosen such that (i) a given

value of ARL0 is achieved, and (ii) ARL0 is about the same as the IC ATS value, denoted as

ATS0. Similarly, in the proposed chart using p-values, the warning and central regions can take

the forms of Rc = [α1, 1] and Rw = (α, α1), respectively, where 0 < α < α1 are two significance

levels. They are chosen such that a fixed level of ARL0 is achieved and ARL0 = ATS0. Next, we

briefly explain that the requirement of ARL0 = ATS0 guarantees that the IC average inspection

rates of the monitoring schemes based on p-values with and without the VSI are the same. To this

end, let

p1 = P [P
C

+∗

t

∈ Rw|PC
+∗

t

> α],
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p2 = P [P
C

+∗

t

∈ Rc|PC
+∗

t

> α],

n1 and n2 be the expected numbers of observations before C+∗

t falls into Rw and Rc, respectively.

Then, p1 = n1/ARL0 and p2 = n2/ARL0. By Reynolds and Arnold (2001), ATS0 can be written

as

ATS0 = d1n1 + d2n2.

Therefore, the requirement of ARL0 = ATS0 implies that

n1

ARL0

d1 +
n2

ARL0

d2 = 1,

which is equivalent to

p1d1 + p2d2 = d0.

The left-hand-side of the last equation is the IC average inspection rate of the monitoring scheme

with the VSI, and the right-hand-side is the IC average inspection rate of the monitoring scheme

without the VSI. Therefore, the two IC average inspection rates are the same.

To design the proposed CUSUM chart using p-values and VSI, we need to choose the parameters

(k, α, α1, d1, d2) properly such that the pre-specified ARL0 value is achieved. To this end, we can

follow the several steps described below.

1. Select the reference value k to be the half of a target mean shift, as usual. The resulting

control chart will be good for detecting small mean shifts if k is chosen small, and it will be

good for detecting large mean shifts if k is chosen large.

2. Determine the sampling intervals d1 and d2 properly. Usually, d1 is chosen to be the shortest

time to sample an item, and d2 is chosen to be 2 − d1. In such cases, the average of d1 and

d2 equals d0 = 1.

3. If the value of ARL0 is given beforehand, then choose α such that the CUSUM chart using

p-values and a fixed sampling scheme achieves the pre-specified ARL0 value. We can also

specify the value of α in advance (e.g., α = 0.05), as in the hypothesis testing setup. Then,

the value of ARL0 of the CUSUM chart using p-values and a fixed sampling scheme can be

determined accordingly.

4. The parameter α1 is searched such that the actual value of ATS0 of the CUSUM chart using

p-values and VSI equals the value of ARL0.
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3 Simulation Study

In this section, a comparative numerical study is conducted by Monte Carlo simulation to evaluate

the performance of our proposed CUSUM charts using p-values. The control charts considered

include the chart using p-values when the IC process distribution is assumed known to be normal

with known parameters (denoted as N-CUSUM), the self-starting chart using p-values when the

IC process distribution is assumed to follow a parametric distribution with unknown parameters

(denoted as S-CUSUM), the chart using p-values and bootstrap when the IC process distribution

is unknown but there is an IC dataset (denoted as B-CUSUM), the B-CUSUM chart used together

with a variable sampling intervals scheme (denoted as V-CUSUM), the CUSUM chart using the

traditional control limit, the fixed sampling scheme and bootstrap (denoted as NT-CUSUM), and

the NT-CUSUM chart using a variable sampling intervals scheme (denoted as VT-CUSUM).

As in Figures 1 and 3, four different IC distributions, including the normalized versions with

mean 0 and variance 1 of N(0, 1), t4, χ
2
1 and χ2

4, are considered. In all the CUSUM charts, the

reference value k is chosen to be 0.25. Since the V-CUSUM chart and VT-CUSUM chart are

involved, we use ATS as the performance measure in this numerical study, although ATS and ARL

are the same for the charts N-CUSUM, S-CUSUM, B-CUSUM and NT-CUSUM who use a fixed

sampling scheme. For all the control charts using p-values, the significant level is set to be α = 0.05.

From Table 1, the ARL0 values of the CUSUM chart using p-values in cases when the IC process

distribution is assumed known (which is called the ideal CUSUM here) to be the four distributions

are respectively 172.234, 195.717, 212.468, and 183.958. For the S-CUSUM chart, we set m = 10.

For the B-CUSUM chart, the IC sample size equals 2000. In the V-CUSUM chart, d1 = 0.1,

d2 = 1.9, and α1 is chosen so that ATS0 = ARL0, where the value of ARL0 is the same as that of

the ideal CUSUM chart. For all the charts using the traditional control limits, the control limits

and warning limits are searched by simulation such that ATS0 = ARL0 and their ARL0 values all

equal to that of the ideal CUSUM chart. All ATS values presented in this section are computed

from 1,000,000 replications. For charts B-CUSUM and V-CUSUM, these 1,000,000 replications

are arranged as follows. We first generate 2,000 IC observations. Then, the IC distribution of the

charting statistic is estimated by bootstrap from the IC data, and the ATS value is determined

based on 10,000 replications of Phase II monitoring. This process is then repeated 100 times, with

100 different IC datasets being generated and used.

14



Note that, when the IC distribution is not normal, the normal-distribution-based chart N-

CUSUM may not be appropriate to use, which has been well demonstrated in the literature (e.g.,

Qiu and Hawkins 2001, Qiu and Li 2011). Figure 4 further presents the nominal (dotted lines) and

actual ATS0 values of the chart N-CUSUM when the true IC distribution is t and χ2 distributions

with degrees of freedom changing from 1 to 20. We can see from Figure 4 that, when the degrees

of freedom is small, the actual ATS0 values are quite different from the nominal ATS0 values.

Therefore, it is misleading to use the N-CUSUM chart for detecting mean shifts in such cases. In

order to make the comparison fair, when the IC distribution is not normal, we adjust the significance

level of the N-CUSUM chart properly such that its actual ATS0 value is about the same as those

of other charts, and the adjusted N-CUSUM chart is denoted as N-CUSUM(A).
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Figure 4: (a) Actual ATS0 values of the chart N-CUSUM when the true IC distribution is χ2 with

different degrees of freedom. (b) Actual ATS0 values of the chart N-CUSUM when the true IC

distribution is t. In each plot, the dotted line denotes the nominal ARL0 value.

The OC ATS values of all the charts considered are presented in the four plots of Figure 5

for four different IC distributions. The S-CUSUM chart is not included in plot (b) when the IC

distribution is t4 because we have not found any existing discussion on how to construct such a

chart in that case yet.

From Figure 5, we can have the following conclusions. First, it seems that the charts V-CUSUM

and VT-CUSUM with variable sampling schemes perform the best in all cases considered, except

certain cases when the IC distribution is very skewed (cf., plot (c)). Therefore, in practice, it might
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Figure 5: ATS values when the mean shift changes from 0 to 1. (a) N(0, 1), (b) t4, (c) χ
2
1, (d) χ

2
4.
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be a good idea to adopt a variable sampling scheme, if it is practically convenient. Second, the

two charts V-CUSUM and VT-CUSUM perform similarly, because their only difference is that the

former uses a significance level α while the latter uses a control limit h in their decision rules and the

two charts are designed to have the same ARL0 and ATS0 values. The same conclusion can also be

made for the charts N-CUSUM and NT-CUSUM. Third, when the true IC distribution is known to

be N(0, 1), the charts N-CUSUM, B-CUSUM and NT-CUSUM all perform reasonably well, while

the chart S-CUSUM performs slightly worse because it does not assume the IC parameters to be

known and it does not use many IC data either. Fourth, when the true IC distribution is t4 which is

symmetric with heavy tails, the charts N-CUSUM, B-CUSUM and NT-CUSUM perform similarly

well. Fifth, when the true IC distribution is χ2
4 which is skewed with a relatively small skewness,

the self-starting chart S-CUSUM performs slightly better than the charts N-CUSUM, B-CUSUM

and NT-CUSUM. Sixth, when the true IC distribution is χ2
1 which is very skewed, the self-starting

chart S-CUSUM performs the best when the shift size is smaller than 0.6.

4 A Real Data Example

In this section, we demonstrate our proposed p-value approach using a real-data obtained from a

chemical process. The data set contains 149 readings of triglyceride content of chemical products,

which is described in more detail in Chapter 3 of Hawkins and Olwell (1998). The data can be

downloaded from the web page http://www.stat.umn.edu/cusum/data.htm.

Hawkins and Olwell (1998) have shown that the process mean appears to be well within its al-

lowable range in the early part of the data set. Based on that result, we use the first 75 observations

as an IC data, and the remaining observations are used for testing. Since the observations in this

example are collected at equally spaced time points, only the three control charts N-CUSUM, S-

CUSUM and B-CUSUM are considered here. In all three proposed control charts, we use k = 0.25,

and α = 0.05. In chart S-CUSUM, we choose m = 10. Then, the three charts are shown in Figure

6, where the horizontal dashed lines denote the significance level α = 0.05. From Figure 6, we can

see that all the three charts give a signal of mean shift at the 123rd time point and the subsequent

p-values are all well below the significant level. Therefore, these signals are convincing enough,

which are also consistent with the findings in Hawkins and Olwell (1998).

At the end of this section, we would like to use this example to illustrate the use of p-values
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Figure 6: Control charts using p-values for monitoring the chemical process concerning triglyceride

content. (a) N-CUSUM, (b) S-CUSUM, (c) B-CUSUM.
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in designing the V-CUSUM chart with variable sampling intervals. Note that, in the original data,

observations are collected at equally spaced time points. However, for the illustration purpose,

we assume that they are collected with variable sampling intervals specified by our V-CUSUM

chart. As in the simulation examples in Section 3, we choose d1 = 0.1, d2 = 1.9, α1 = 0.5, and

α = 0.05. In such cases, ATS0 = ARL0 ≈ 200. For the testing data (i.e., from the 76th to

149th observations), the charting statistic values C+∗

t
, the corresponding p-values P

C
+∗

t

, and the

sampling intervals d(t) of the V-CUSUM chart are presented in Table 2. From the table, after the

76th observation is obtained, the value of P
C

+∗

t

is computed to be 0.086, which is between (α, α1).

Therefore, we collect the next observation (i.e., the 77th observation) after d1 = 0.1 units of the

time. This monitoring process continues until the 123rd observation at which we obtain a signal of

mean shift.

5 Concluding Remarks

In this paper, we propose designing control charts using p-values and a significance level. Compared

to conventional control charts, a chart using p-values would have several advantages. First, at the

time when it gives a signal of process distributional shift, it also provides a measure of the likelihood

of the shift, so that subsequent actions can be taken properly. Second, even when the chart does

not give a signal of shift at a given time, it still provides a measure regarding the likelihood of a

potential shift, which is helpful especially when a variable sampling scheme is adopted. Third, a

chart using p-values is easier to interpret. Finally, it has a unified form with the y-axis ranging

between 0 and 1 in all cases. Although we demonstrate the proposed method only in cases when

upward process mean shifts are our concerns, it is a quite general method and can be used in most

other cases.
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Table 2: Values of C+∗

t , P
C

+∗

t

and d(t) of the V-CUSUM chart.

t C
+∗

t P
C

+∗

t

d(t) t C
+∗

t P
C

+∗

t

d(t)

76 4.4142 0.086 0.1 113 0.0000 1.000 1.9

77 2.6969 0.197 0.1 114 0.0000 1.000 1.9

78 1.9478 0.275 0.1 115 0.5417 0.569 1.9

79 0.0000 1.000 1.9 116 0.1153 0.686 1.9

80 0.0000 1.000 1.9 117 0.0000 1.000 1.9

81 0.0000 1.000 1.9 118 0.0000 1.000 1.9

82 0.0000 1.000 1.9 119 2.1552 0.252 0.1

83 1.5098 0.335 0.1 120 3.3424 0.144 0.1

84 0.1153 0.686 1.9 121 5.1749 0.060 0.1

85 1.6251 0.312 0.1 122 5.0712 0.062 0.1

86 0.0000 1.000 1.9 123 7.5491 0.019 0.1

87 0.0000 1.000 1.9 124 9.0589 0.009 0.1

88 0.0000 1.000 1.9 125 9.9234 0.007 0.1

89 0.0000 1.000 1.9 126 11.7559 0.002 0.1

90 0.0000 1.000 1.9 127 14.2338 0.001 0.1

91 0.0000 1.000 1.9 128 15.4209 0.001 0.1

92 0.2190 0.674 1.9 129 17.5762 0.001 0.1

93 1.4061 0.352 0.1 130 19.4087 0.001 0.1

94 0.3343 0.609 1.9 131 20.9185 0.001 0.1

95 0.0000 1.000 1.9 132 23.0738 0.001 0.1

96 0.0000 1.000 1.9 133 24.2609 0.001 0.1

97 0.8644 0.463 0.1 134 26.0934 0.001 0.1

98 1.7288 0.303 0.1 135 25.0216 0.001 0.1

99 0.9797 0.433 0.1 136 26.8541 0.001 0.1

100 1.1987 0.383 0.1 137 27.0731 0.001 0.1

101 0.7723 0.474 0.1 138 29.8738 0.001 0.1

102 0.9913 0.423 0.1 139 34.2880 0.001 0.1

103 0.0000 1.000 1.9 140 34.8297 0.001 0.1

104 0.0000 1.000 1.9 141 40.2120 0.001 0.1

105 0.0000 1.000 1.9 142 40.4310 0.001 0.1

106 0.0000 1.000 1.9 143 43.5543 0.001 0.1

107 0.0000 1.000 1.9 144 42.8052 0.001 0.1

108 0.0000 1.000 1.9 145 45.9286 0.001 0.1

109 0.0000 1.000 1.9 146 47.1157 0.001 0.1

110 0.0000 1.000 1.9 147 49.9163 0.001 0.1

111 0.0000 1.000 1.9 148 52.0716 0.001 0.1

112 0.2190 0.674 1.9 149 53.2587 0.001 0.1
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