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Abstract

It is known that a surface fitted by conventional local smoothing procedures is not statistically

consistent at the jump locations of the true regression surface. In this paper, a procedure

is suggested for modifying conventional local smoothing procedures such that the modified

procedures can fit the surface with jumps preserved automatically. Taking the local linear

kernel smoothing procedure as an example, in a neighborhood of a given point, we fit a bivariate

piecewisely linear function with possible jumps along the boundaries of four quadrants. The

fitted function provides four estimators of the surface at the given point, which are constructed

from observations in the four quadrants, respectively. When the difference among the four

estimators is smaller than a threshold value, the given point is most likely a continuous point

and the surface at that point is then estimated by the average of the four estimators. When

the difference is larger than the threshold value, the given point is likely a jump point and at

least one of the four estimators estimates the surface well under some regularity conditions. By

comparing the weighted residual sums of squares of the four estimators, the best one is selected

to define the surface estimator at the given point. Like most conventional estimators, the current

surface estimator has an explicit mathematical formula. Therefore it is easy to compute and

convenient to use. It can be applied directly to image reconstruction problems and other jump

surface estimation problems including mine surface estimation in geology and equi-temperature

surface estimation in meteorology and oceanography.

Key Words: Denoising; Edge detection; Image reconstruction; Jump location curves; Jump-

preserving surface estimation; Local linear kernel estimation; Nonparametric regression.
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1 Introduction

We discuss regression surface estimation when the surface has jumps in the design space. This

problem has broad applications. For example, an image can be regarded as a surface of the image

intensity at each pixel. Such a surface has jumps (called edges in the image processing literature) at

the outlines of objects. Edge-preserving image reconstruction is an important research problem for

several purposes including denoising, changing the image resolution and data compression (Gonzalez

and Woods 1992). Similar jump surface estimation problems can be found in other application

fields such as geology, meteorology and oceanography. In this paper, a procedure is suggested for

estimating jump surfaces with the jumps preserved.

Suppose that the related regression model is

zij = f(xi, yj) + εij, i, j = 1, 2, · · · , n, (1.1)

where {(xi, yj) = (i/n, j/n), i, j = 1, 2, · · · , n} are equally spaced design points in the design space

[0, 1]× [0, 1], {εij} are i.i.d. random errors with mean 0 and variance σ2, f is an unknown nonpara-

metric regression function which is continuous in the entire design space except on some curves

which are called the jump location curves (JLCs) hereafter, and N = n2 is the sample size.

It can be checked that the surface fitted by most conventional local smoothing procedures is not

statistically consistent at the JLCs. For example, the local linear kernel (LK) estimator f̂LK(x, y) of

f(x, y), for some (x, y) ∈ [0, 1]× [0, 1], is defined by the solution for α in the following minimization

problem (see e.g., Fan and Gijbels 1996; Ruppert and Wand 1994):

min
α,β1,β2

n∑

i=1

n∑

j=1

{zij − α − β1(xi − x) − β2(yj − y)}2 K(
xi − x

hn
,
yj − y

pn
), (1.2)

where K is a bivariate kernel function with support [−1/2, 1/2] × [−1/2, 1/2], hn and pn are two

bandwidth parameters. It can be checked that f̂LK(x, y) does not converge to f(x, y) if the point

(x, y) is on a JLC.

A main reason why conventional surface estimators are inconsistent around the JLCs is that a

“continuous” function, which is a linear function in the case of (1.2), is used for estimating a jump

function. A natural way to overcome this limitation is to fit a piecewisely linear function in (1.2),

which may have jumps along the boundaries of the four quadrants Q11(x, y), Q12(x, y), Q21(x, y)

and Q22(x, y) of the neighborhood [x−hn/2, x +hn/2]× [y − pn/2, y + pn/2] of a given point (x, y)
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as shown in Figure 1.1. The fitted function then provides four estimators of the surface at (x, y),

which correspond to the four pieces of fitted planes in Q11(x, y), Q12(x, y), Q21(x, y) and Q22(x, y),

respectively. In the case when (x, y) is on a single JLC and the JLC has right and left tangent

lines at (x, y) (a JLC with parametric expressions x = x(t) and y = y(t) has a right (left) tangent

line at a given point if the right (left) derivatives of x(t) and y(t) both exist at that point), at least

one of the four estimators should estimate f(x, y) well, as demonstrated by Figure 1.2. In Figure

1.2(a), the right and left tangent lines of the JLC at (x, y) are located in a single quadrant. In such

a case, the three estimators constructed from the other three quadrants should all estimate f(x, y)

well. In Figure 1.2(b), the right and left tangent lines are located in two different quadrants which

are next to each other. In this case, the two estimators constructed from the other two quadrants

should estimate f(x, y) well. In the last situation shown by Figure 1.2(c), the two tangent lines are

in two opposite quadrants. In this case, only one estimator constructed from one of the other two

quadrants estimates f(x, y) well. So in all three cases at least one of the four estimators estimates

f(x, y) well. The best one of the four, which can be determined by comparing the weighted residual

sums of squares of the four fitted planes in the four quadrants, can be used as the fitted value of

f(x, y). On the other hand, if there are no jumps in the neighborhood of (x, y), then all four

estimators estimate f(x, y) well and their average should provide a reasonable estimator of f(x, y).

In applications, however, it is often unknown whether or not (x, y) is a jump point. Therefore a

data-based mechanism is needed for making such a judgment. To this end, a threshold parameter

is introduced in our procedure and the point (x, y) is regarded as a jump point if the range of the

four estimators exceeds the threshold value.

In the literature, there are several conventional local smoothing procedures available which

include running averages (Tukey 1977), the locally weighted scatter plot smoothing procedure

(Cleveland 1979), kernel smoothing procedures (Härdle 1990), local polynomial kernel smoothing

procedures (Fan and Gijbels 1996) and several others. In this paper, we focus mainly on modifying

the local linear kernel smoothing procedure to accommodate jumps. The other conventional local

smoothing procedures can be modified in a similar way.

There are some existing procedures in the statistical literature for fitting jump regression sur-

faces. Donoho and Johnstone (1994) pointed out that jump curves/surfaces could be estimated

well by discrete wavelet transformation (DWT) and thresholding procedures. Qiu (1998) proposed

a three-stage procedure for fitting jump surfaces. In the first stage, jump candidate points were
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Q12(x, y)

Q21(x, y)

Q22(x, y)
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y
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Figure 1.1: The neighborhood of a given point (x, y) consists of four quadrants
Q11(x, y), Q12(x, y), Q21(x, y) and Q22(x, y).
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Figure 1.2: (a) The right and left tangent lines of the JLC at (x, y) are located in a single quadrant;
(b) the two tangent lines are in two different quadrants which are next to each other; (c) the two
tangent lines are in two opposite quadrants.

detected by a jump detector. A local principal component line was then fitted through these points

in a neighborhood of a given point. Finally, observations on the same side of the line as the given

point were combined using a weighted average procedure to fit the surface at that point. Chu at

al. (1998) studied two types of jump-preserving smoothers: the sigma filter and the M smoother.

Both of them were based on the idea of robust estimation. Polzehl and Spokoiny (2000) suggested

an adaptive weights smoothing algorithm for estimating jump surfaces when they contain large

homogeneous regions. When the number of JLCs is assumed to be known and the JLCs satisfy

some smoothing conditions, Korostelev and Tsybakov (1993), Müller and Song (1994), O’Sullivan

and Qian (1994), Qiu (1997), Wang (1998) and several others suggested various two-stage proce-

dures: the JLCs were estimated first and then the regression surface was fitted in design sub-spaces
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separated by the estimated JLCs. Several papers including Hall and Rau (2000), Hall, Peng and

Rau (2001), Qiu (2002), Qiu and Bhandarkar (1996) and Qiu and Yandell (1997) focus mainly on

estimation of the JLCs.

Edge-preserving image reconstruction is essentially the same problem as jump-preserving re-

gression surface fitting. When the image has a limited number of colors, several authors including

Switzer (1983), Switzer et al. (1982) and Owen (1984) suggested using discriminant analysis to

classify each pixel of the image as the most probable color type. Image reconstruction based on

Markov random field (MRF) models is an active research area in recent years. The true image is

assumed to be a MRF, or equivalently, to have a Gibbs distribution. Geman and Geman (1984)

suggested reconstructing the image by maximizing a posteriori (MAP) with a restoration algo-

rithm which is based on stochastic relaxation and annealing. Besag (1986) suggested maximizing

the marginal posterior distribution at each pixel by using the Iterated Conditional Modes (ICM)

algorithm. See Besag et al. (1995), Fessler et al. (2000), Li (1995) and Marroquin et al. (2001) for

discussions of recent developments in this area, especially for image reconstruction with Markov

chain Monte Carlo (McMC).

Compared to existing procedures, the current procedure has several advantages. Many jump-

preserving surface reconstruction procedures impose various restrictive assumptions on the model.

For example, O’Sullivan and Qian (1994) assumed that the JLCs were “smooth, simple and closed”

curves. Müller and Song (1994) assumed that the population of the JLCs was known. Qiu (1997)

assumed that there was only one JLC and the JLC satisfied a Lipschitz condition. All these

methods required that the number of JLCs was known beforehand. As more structure is assumed

for the model, the reconstruction of the jump surface becomes easier. But some real applications

are excluded at the same time. The current procedure can work well under milder conditions on

the model. Therefore it can be applied to some real-life surface estimation problems that cannot

be handled directly by these other procedures.

From a computational viewpoint, many existing procedures are relatively complicated. For

example, the procedure by Qiu (1998) consists of three steps. Before the surface estimator is

defined at a given point, the jump positions need to be detected and a principal component line

needs to be fitted in a neighborhood of the given point. The M smoother discussed by Chu et al.

(1998), the additive weights smoothing procedure by Polzehl and Spokoiny (2000) and the MRF
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procedures are all based on iterative algorithms. In comparison, the fitted surface of the current

procedure has an explicit mathematical formula, making it simple to compute and convenient to

use.

Because of the iterative nature of some existing procedures (e.g., Geman and Geman 1984;

Polzehl and Spokoiny 2000), we do not know much about their theoretical properties. Although

the performance of these procedures can be evaluated by numerical experiments based on visual

impression, we believe that theoretical justifications can help us understand their strengths and

limitations so that they can be further improved. With the current procedure, some mild conditions

on the model will be given explicitly so that users know beforehand where in the design space this

method could work well and where it may fail to reconstruct the surface properly.

The rest of the article is organized as follows. In next section, our jump-preserving surface

fitting procedure is introduced in some detail. Selection of the related procedure parameters is

discussed in Section 3. In Section 4, some numerical examples are presented regarding the numerical

performance of the proposed procedure. Several remarks conclude the article in Section 5. Some

statistical properties of the fitted surface of the proposed procedure are given in Appendix A.

2 The Jump-Preserving Surface Fitting Procedure

In a neighborhood Nn(x, y) = [x − hn/2, x + hn/2] × [y − pn/2, y + pn/2] of a given point (x, y) ∈

[0, 1] × [0, 1], a local piecewisely linear function is fitted by the following minimization problem:

minas1s2 ,bs1s2 ,cs1s2 ; s1,s2=1,2

n∑

i=1

n∑

j=1

{zij−[ a11 + b11(xi − x) + c11(yj − y) +

(a21 − a11)I(xi − x) + (b21 − b11)(xi − x)I(xi − x) +

(c21 − c11)(yj − y)I(xi − x) +

(a12 − a11)I(yj − y) + (b12 − b11)(xi − x)I(yj − y) +

(c12 − c11)(yj − y)I(yj − y) +

(a22 − a21 − a12 + a11)I(xi − x)I(yj − y) +

(b22 − b21 − b12 + b11)(xi − x)I(xi − x)I(yj − y) +

(c22 − c21 − c12 + c11)(yj − y)I(xi − x)I(yj − y) ]}2

K(
xi − x

hn
,
yj − y

pn
), (2.1)
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where I(·) is an indicator function defined by I(x) = 1 if x ≥ 0 and 0 otherwise. It can be checked

that the procedure (2.1) is equivalent to fitting a linear function as1s2 + bs1s2(u− x) + cs1s2(v − y),

which is regarded as a function of (u, v) in Qs1s2(x, y) (cf. Figure 1.1), by the weighted least squares

procedure (1.2) for s1, s2 = 1, 2. By some routine algebraic manipulations, the solution of (2.1) is

âs1s2(x, y) =

∑n
i=1

∑n
j=1{A

(1)
s1s2 + A

(2)
s1s2(xi − x) + A

(3)
s1s2(yj − y)}zijK(xi−x

hn
,

yj−y
pn

)

∆s1s2

,

b̂s1s2(x, y) =

∑n
i=1

∑n
j=1{A

(2)
s1s2 + A

(4)
s1s2(xi − x) + A

(5)
s1s2(yj − y)}zijK(xi−x

hn
,

yj−y
pn

)

∆s1s2

,

ĉs1s2(x, y) =

∑n
i=1

∑n
j=1{A

(3)
s1s2 + A

(5)
s1s2(xi − x) + A

(6)
s1s2(yj − y)}zijK(xi−x

hn
,

yj−y
pn

)

∆s1s2

,

for s1, s2 = 1, 2, (2.2)

where

∆s1s2 =

∣∣∣∣∣∣∣∣∣∣

B
(00)
s1s2 B

(10)
s1s2 B

(01)
s1s2

B
(10)
s1s2 B

(20)
s1s2 B

(11)
s1s2

B
(01)
s1s2 B

(11)
s1s2 B

(02)
s1s2

∣∣∣∣∣∣∣∣∣∣

,

A
(1)
s1s2 = B

(20)
s1s2B

(02)
s1s2 − B

(11)
s1s2B

(11)
s1s2 , A

(2)
s1s2 = B

(01)
s1s2B

(11)
s1s2 − B

(10)
s1s2B

(02)
s1s2 ,

A
(3)
s1s2 = B

(10)
s1s2B

(11)
s1s2 − B

(01)
s1s2B

(20)
s1s2 , A

(4)
s1s2 = B

(00)
s1s2B

(02)
s1s2 − B

(01)
s1s2B

(01)
s1s2 ,

A
(5)
s1s2 = B

(01)
s1s2B

(10)
s1s2 − B

(00)
s1s2B

(11)
s1s2 , A

(6)
s1s2 = B

(00)
s1s2B

(20)
s1s2 − B

(10)
s1s2B

(10)
s1s2 ,

B(r1r2)
s1s2

=
n∑

i=1

n∑

j=1

(xi − x)r1(yj − y)r2Ks1s2(
xi − x

hn
,
yj − y

pn
),

and Ks1s2(x/hn, y/pn) = K(x/hn, y/pn) if (x, y) ∈ Qs1s2(0, 0) and 0 otherwise, for s1, s2 = 1, 2 and

r1, r2 = 0, 1, 2.

For simplicity of presentation, a point (x, y) is called a nonsingular point of the JLCs if it is on

a single JLC and the JLC has left and right tangent lines at (x, y). All other points on the JLCs

are called singular points. Obviously a point (x, y) is a singular point if it is a cross point of several

JLCs or it is on a single JLC but the JLC does not have left or right tangent lines at (x, y).

The quantities â11(x, y), â12(x, y), â21(x, y) and â22(x, y) defined in (2.2) provide four estima-

tors of f(x, y). If there are no jumps in Nn(x, y), then all of them should estimate f(x, y) well

and it is reasonable to use their average to estimate f(x, y). If the point (x, y) is a nonsingular

point of the JLCs, then at least one of the four estimators estimates f(x, y) well as explained in

Section 1 (cf. Figure 1.2). A natural way to estimate f(x, y) in the latter case is to choose one of
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â11(x, y), â12(x, y), â21(x, y) and â22(x, y) based on the weighted residual sums of squares (RSS) of

the four pieces of fitted planes in the four quadrants of Nn(x, y). In order to tell whether or not

there are jumps in Nn(x, y), a threshold parameter un is introduced and it is concluded that there

are no jumps in Nn(x, y) if

range (â11(x, y), â12(x, y), â21(x, y), â22(x, y)) ≤ un. (2.3)

Our piecewisely linear kernel (PLK) estimator of f(x, y) is then defined by

f̂PLK(x, y) =





1
4 (â11(x, y) + â12(x, y) + â21(x, y) + â22(x, y)), if (2.3) is true,

ã(x, y), otherwise,
(2.4)

where ã(x, y) is one of â11(x, y), â12(x, y), â21(x, y) and â22(x, y) which satisfies

RSS(ã(x, y)) = min {RSS(â11(x, y)), RSS(â12(x, y)), RSS(â21(x, y)), RSS(â22(x, y))}

and RSS(âs1s2(x, y)) is the weighted residual sum of squares defined by

RSS(âs1s2(x, y)) =
n∑

i=1

n∑

j=1
{
zij − [âs1s2(x, y) + b̂s1s2(x, y)(xi − x) + ĉs1s2(x, y)(yj − y)]

}2
Ks1s2(

xi − x

hn
,
yj − y

pn
) (2.5)

for s1, s2 = 1, 2. If there are two or more of â11(x, y), â12(x, y), â21(x, y) and â22(x, y) with the same

and smallest RSS value, then ã(x, y) is defined by their simple average.

The entire jump-preserving surface fitting procedure can be summarized as follows:

• At a given point (x, y), compute the four estimators â11(x, y), â12(x, y), â21(x, y) and â22(x, y)

by (2.2).

• Compute the range of the four estimators and compare the range to the threshold value un.

• If the range is smaller than or equal to un, then use the simple average of the four estimators

as the surface estimator at (x, y).

• If the range is larger than un, then compute RSS(â11(x, y)), RSS(â12(x, y)), RSS(â21(x, y))

and RSS(â22(x, y)) by (2.5) and determine ã(x, y) which is one of â11(x, y), â12(x, y), â21(x, y)

and â22(x, y) with the smallest RSS value. The surface estimator at (x, y) is then defined by

ã(x, y).
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By using the above procedure, the regression surface is estimated with jumps preserved auto-

matically. Unlike two-stage or three-stage procedures such as those suggested by Müller and Song

(1994), O’Sullivan and Qian (1994) and Qiu (1997, 1998), explicit jump detection is avoided in the

current procedure. There are several benefits by doing so. One is that the current procedure is

very easy to use because its surface estimator has a mathematical formula and can be calculated

in a single stage like most conventional surface estimators. The second major benefit is that we

do not need any restrictive assumptions on the JLCs. In contrast, some existing procedures (e.g.

O’Sullivan and Qian 1994; Qiu 1997) use smooth curves to estimate JLCs. These procedures usu-

ally assume that the number of JLCs is known (e.g. there is only one JLC) and the JLCs are

smooth.

In (2.4), there are several alternative ways to define f̂PLK(x, y) when (2.3) is true. For example,

f̂PLK(x, y) could be defined by the weighted average
∑2

s1=1

∑2
s2=1 âs1s2(x, y)/RSS(âs1s2(x, y))

∑2
s1=1

∑2
s2=1 1/RSS(âs1s2(x, y))

.

It can also be defined by the conventional local linear kernel estimator constructed from the

entire neighborhood Nn(x, y). However, we need to compute RSS(â11(x, y)), RSS(â12(x, y)),

RSS(â21(x, y)) and RSS(â22(x, y)) if the first alternative approach is used, which is not neces-

sary by using the definition (2.4). Since most design points are continuity points of the regression

surface at which (2.3) is likely true, this extra computation is quite expensive. To use the second

alternative approach, we need to compute the conventional local linear kernel estimator of f(x, y)

in the entire neighborhood Nn(x, y) after â11(x, y), â12(x, y), â21(x, y) and â22(x, y) are computed.

Therefore these two alternative approaches require much extra computation compared to the ap-

proach of (2.4). If the extra computation involved is not an issue for a specific application problem,

then the alternative approaches might be more reasonable to use.

From Figures 1.2(a) and 1.2(b), it seems that a potential improvement of (2.4) is to use more

than one of â11(x, y), â12(x, y), â21(x, y) and â22(x, y) for estimating f(x, y) when (2.3) is not true.

For example, in the case of Figure 1.2(a), f̂PLK(x, y) could be defined as the average of â11(x, y),

â12(x, y) and â21(x, y). However, it is a challenging task to distinguish the three cases demonstrated

in Figure 1.2 based on data, and this approach is left for future research.

In model (1.1), it is assumed that the design points are equally spaced in the design space, which

is true in many applications including the image reconstruction problem. From the construction
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of f̂PLK(x, y), it can be seen that this procedure will also work when the design points are not

equally spaced. In such cases, if the design points have some homogeneity, which is often assumed

in multivariate nonparametric regression (cf. Müller 1988, Chapter 6, for related discussion), then

constant bandwidths may be still appropriate to use. If the design points have no homogeneity at

all, then variable bandwidths might be more appropriate. In regions where the design points are

sparse, the bandwidths need to be relatively large to include enough observations for estimating f .

In regions where the design points are dense, the bandwidths need to be relatively small.

Like most local smoothing estimators, the estimator f̂PLK(x, y) is defined only for (x, y) ∈

[hn/2, 1−hn/2]× [pn/2, 1−pn/2]. It is not well defined in the boundary regions of the design space.

This is the notorious “boundary problem” in the literature. There are several existing proposals

to overcome this problem. For example, most DWT software packages use periodic or symmetric

“padding” methods to define neighborhoods in the boundary regions (Nason and Silverman 1994).

In this paper, the symmetric “padding” method is used in all numerical examples. It should be

noted that different padding procedures may introduce different artificial jumps at the border of

the design space. But this would not affect the estimated surface of (2.4) much due to the fact that

procedure (2.4) is jump preserving.

3 Parameter Selection

For a given point (x, y) in the design space, if un = ∞ in (2.4), then f̂PLK(x, y) is close to the

conventional local linear kernel estimator f̂LK(x, y), which removes noise well in the continuity

regions of f . But it blurs the jumps at the same time. On the other hand, if un = 0, then

f̂PLK(x, y) = ã(x, y), which preserves jumps well. But its ability to remove noise is limited because

it is constructed in a single quadrant of Nn(x, y) only. The main purpose for using the threshold

parameter un is to make the estimator f̂PLK(x, y) able to preserve the jumps around the JLCs and

remove noise efficiently as well. It is therefore important to choose its value properly.

From (2.2), the four estimators â11(x, y), â12(x, y), â21(x, y) and â22(x, y) are obviously inde-

pendent of each other. They are all linear estimators. Therefore they are asymptotically normally

distributed when the sample size tends to infinity. It can be checked that when there are no jumps
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in Nn(x, y), their asymptotic means all equal f(x, y) and their asymptotic variances (AV) are

AV (âs1s2(x, y)) =

σ2

n2hnpn∆̃2
s1s2

∫ 1/2

−1/2

∫ 1/2

−1/2
(γ̃(1)

s1s2
+ γ̃(2)

s1s2
u + γ̃(3)

s1s2
v)2K2

s1s2
(u, v) dudv, for s1, s2 = 1, 2,

where

∆̃s1s2 =

∣∣∣∣∣∣∣∣∣∣

β̃
(00)
s1s2 β̃

(10)
s1s2 β̃

(01)
s1s2

β̃
(10)
s1s2 β̃

(20)
s1s2 β̃

(11)
s1s2

β̃
(01)
s1s2 β̃

(11)
s1s2 β̃

(02)
s1s2

∣∣∣∣∣∣∣∣∣∣

,

γ̃
(1)
s1s2 = β̃

(20)
s1s2 β̃

(02)
s1s2 − β̃

(11)
s1s2 β̃

(11)
s1s2 , γ̃

(2)
s1s2 = β̃

(01)
s1s2 β̃

(11)
s1s2 − β̃

(10)
s1s2 β̃

(02)
s1s2 ,

γ̃
(3)
s1s2 = β̃

(10)
s1s2 β̃

(11)
s1s2 − β̃

(01)
s1s2 β̃

(20)
s1s2 , γ̃

(4)
s1s2 = β̃

(00)
s1s2 β̃

(02)
s1s2 − β̃

(01)
s1s2 β̃

(01)
s1s2 ,

γ̃
(5)
s1s2 = β̃

(01)
s1s2 β̃

(10)
s1s2 − β̃

(00)
s1s2 β̃

(11)
s1s2 , γ̃

(6)
s1s2 = β̃

(00)
s1s2 β̃

(20)
s1s2 − β̃

(10)
s1s2 β̃

(10)
s1s2 ,

and

β̃(r1r2)
s1s2

=

∫ 1/2

−1/2

∫ 1/2

−1/2
ur1vr2Ks1s2(u, v) dudv, for s1, s2 = 1, 2; r1, r2 = 0, 1, 2.

Please notice that although γ̃
(4)
s1s2 , γ̃

(5)
s1s2 and γ̃

(6)
s1s2 are not used in the expression of AV (âs1s2(x, y)),

they will be used in Appendix A. So their definitions are also given here.

For simplicity, let us assume that the kernel function K(·, ·) is symmetric in the sense that

K(x, y) = K(y, x) = K(−x, y) for any (x, y) ∈ [−1/2, 1/2] × [−1/2, 1/2]. For example, the com-

monly used bivariate Epanechnikov kernel function K(x, y) = 144
121 (1 − x2)(1 − y2) satisfies this

condition. It can be checked that AV (â11(x, y)) = AV (â12(x, y)) = AV (â21(x, y)) = AV (â22(x, y))

= σ2φ2/(n2hnpn), where

φ2 =
1

∆̃2
11

∫ 1/2

−1/2

∫ 1/2

−1/2
(γ̃

(1)
11 + γ̃

(2)
11 u + γ̃

(3)
11 v)2K2

11(u, v) dudv.

If we define ξs1s2(x, y) = (âs1s2(x, y) − f(x, y))/(σφ/nh
1/2
n p

1/2
n ) for s1, s2 = 1, 2, then ξ11(x, y),

ξ12(x, y), ξ21(x, y) and ξ22(x, y) are asymptotically i.i.d. with a common asymptotic distribution

N(0, 1). Obviously,

range(â11(x, y), â12(x, y), â21(x, y), â22(x, y))

= range(ξ11(x, y), ξ12(x, y), ξ21(x, y), ξ22(x, y)) · (σφ/nh1/2
n p1/2

n ).

So a natural choice for un is

un = σ̂φRαn
/(nh1/2

n p1/2
n ), (3.1)

11



Table 3.1: Several quantiles of the limiting distribution of range(ξ11(x, y), ξ12(x, y), ξ21(x, y),
ξ22(x, y)).

1 − αn Rαn
1 − αn Rαn

0.5000 1.9746 0.9250 3.3959
0.6000 2.2070 0.9500 3.6253
0.7000 2.4596 0.9750 3.9647
0.8000 2.7785 0.9900 4.3911
0.8500 2.9747 0.9990 5.2724
0.9000 3.2314 0.9999 5.8557

where Rαn
is the 1−αn quantile of the limiting distribution of range(ξ11(x, y), ξ12(x, y), ξ21(x, y),

ξ22(x, y)), 0 ≤ αn ≤ 1 is a significance level and σ̂ is a consistent estimator of σ.

A formula for the limiting distribution of range(ξ11(x, y), ξ12(x, y), ξ21(x, y), ξ22(x, y)) can be

found in Balakrishnan and Cohen (1991). Based on that formula, several values of Rαn
are calcu-

lated and presented in Table 3.1.

In the literature, there are several existing data-driven bandwidth selection procedures such

as plug-in procedures, the cross-validation procedure, the Mallow’s Cp criterion and Akaike’s in-

formation criterion (cf. Loader 1999). Since explicit expressions for the mean and variance of

f̂PLK(x, y) are not available yet, plug-in procedures are not considered in this paper. In the nu-

merical examples presented in Section 4, the bandwidth parameters hn and pn are selected by the

cross-validation procedure. That is, the optimal values of hn and pn are chosen by minimizing the

following cross-validation (CV) criterion:

CV (hn, pn) =
1

n2

n∑

i=1

n∑

j=1

(
zij − f̂−i,−j(xi, yj)

)2
, (3.2)

where f̂−i,−j(x, y) is the “leave-one-out” estimator of f(x, y). Namely, the observation (xi, yj, zij) is

left out in constructing f̂−i,−j(x, y), for i, j = 1, 2, · · · , n. We would like to mention that bootstrap

techniques may also be used for choosing procedure parameters such as hn and pn, although more

computation is involved in these resampling techniques.

As discussed at the beginning of this section, the threshold parameter un controls the trade-

off between noise removal and jump preservation. By using (3.1) and Table 3.1, we know the

asymptotic probability that a continuity point is treated as a jump point by procedure (2.4). For

example if we use Rαn
= 4.3911 in (3.1), then asymptotically about one percent of the continuity

points are treated as jump points. The consequence of this type of mistake is that the surface

12



estimator loses some efficiency around those continuity points that are treated as jumps points,

which is not serious because the surface estimator is still statistically consistent at those points.

The threshold parameter un, or equivalently the quantile parameter Rαn
, can also be chosen by

the cross-validation criterion. Let us re-write the left hand side of (3.2) as CV (Rαn
, hn, pn). Then

the optimal values of Rαn
, hn and pn can be determined by minimizing CV (Rαn

, hn, pn).

4 Numerical Examples

We present some numerical examples in three parts. Section 4.1 includes several examples concern-

ing the numerical performance of the proposed procedure (2.4). The procedure (2.4) is compared

to some existing jump-preserving surface fitting procedures in Section 4.2. Then the related pro-

cedures are all applied to the elevation data of South America in Section 4.3.

4.1 Numerical performance of the procedure (2.4)

We first consider the regression function f(x, y) = −4(x − 0.5)2 − 4(y − 0.5)2 when 0 ≤ x < 0.5

and 0 ≤ y < 0.75 − 0.5x; and f(x, y) = −4(x − 0.5)2 − 4(y − 0.5)2 + 1 otherwise. This function

has a single JLC: {(x, y) : y = 0.75 − 0.5x, 0 ≤ x ≤ 0.5}
⋃
{(x, y) : x = 0.5, 0 ≤ y ≤ 0.5}, which

has an angle at the point (0.5, 0.5). A set of observations are generated from the model (1.1) with

ε11 ∼ N(0, σ2), σ = 0.25 and n = 100. The true regression function and the observations are

presented in Figures 4.1(a) and 4.1(b), respectively.

The jump-preserving surface fitting procedure (2.4) is then applied to the data set shown in

Figure 4.1(b). In the procedure, the kernel function is chosen to be the bivariate Epanechnikov

function K(x, y) = 144
121 (1 − x2)(1 − y2) if (x, y) ∈ [−1/2, 1/2] × [−1/2, 1/2] and 0 otherwise. The

significance level αn is fixed at 0.01. The bandwidths hn and pn are assumed to be equal. By the

cross-validation procedure (3.2), they are chosen to be 0.16. The surface fitted by procedure (2.4)

is presented in Figure 4.1(c). As a comparison, the surface fitted by the conventional local linear

kernel smoothing procedure (1.2) with the same kernel function is presented in Figure 4.1(d). In this

conventional procedure, the bandwidth is chosen to be 0.05 by the cross-validation procedure. From

the plots, it can be seen that the jumps are preserved reasonably well by the current procedure and

they are blurred by the conventional procedure as expected. It can also be noticed that procedure

13
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Figure 4.1: (a) The true regression surface; (b) a set of observations with σ = 0.25 and n = 100;
(c) the reconstructed surface by the procedure (2.4) with hn = pn = 0.16; (d) the reconstructed
surface by the conventional local linear kernel procedure with hn = pn = 0.05.

(2.4) performs pretty well in the boundary regions.

The above simulation is then repeated 100 times. The 2.5 and 97.5 percentiles of the 100

surface fits by procedure (2.4) in the cross section of y = 0.25 are presented in Figure 4.2(a) by the

lower and upper dashed curves, respectively. In the plot, the solid curve represents the cross section

of the true surface. The dotted curve is the average of the 100 fits. The corresponding results using

the conventional local linear kernel procedure are presented in Figure 4.2(b). It can be seen that

the conclusions drawn from Figures 4.1(c) and 4.1(d) are also true here. We can further notice

that the conventional estimator is slightly biased in the boundary regions, which is caused by the

symmetric “padding” procedure.

In Section 3, we mentioned that the window widths and the quantile parameter Rαn
used

in (3.1) could be chosen by the cross-validation procedure simultaneously. The next example

investigates the accuracy of the selected optimal values of these parameters. In order to see the

effect of the JLCs on the selected parameters, we use a more flexible regression function f(x, y) =

−4(x−0.5)2 −4(y−0.5)2 when 0 ≤ x < 0.5 and 0 ≤ y < c− (2c−1)x; and f(x, y) = −4(x−0.5)2−
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Figure 4.2: (a) The lower and upper dashed curves represent the 2.5 and 97.5 percentiles of the
100 replications of the fitted surface by the procedure (2.4) in the cross section of y = 0.25; (b) the
corresponding results by the conventional local linear kernel procedure. In the two plots, the solid
curves represent the cross section of the true surface and the dotted curves are the averaged fits.

Table 4.1: In each entry, the first line gives the searched values of hn, Rαn
by the CV procedure and

the corresponding CV score; the second line gives the corresponding results by the MSE criterion.

c σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4 σ = 0.5

0 .12,4.1,.0161 .16,4.0,.0478 .18,4.1,.1004 .18,4.3,.1738 .20,4.7,.2667
.12,3.7,.0016 .13,3.4,.0043 .17,3.5,.0082 .17,3.9,.0124 .20,4.6,.0160

.5 .14,4.1,.0108 .20,4.2,.0418 .23,3.9,.0932 .27,4.3,.1648 .30,4.7,.2569
.14,3.6,.0008 .20,3.9,.0019 .25,3.9,.0034 .26,4.2,.0054 .30,4.7,.0077

1.0 .17,4.6,.0153 .20,4.3,.0467 .22,4.2,.0995 .23,4.2,.1730 .25,4.3,.2668
.16,4.0,.0008 .18,3.7,.0031 .22,4.0,.0070 .23,3.9,.0114 .23,4.1,.0158

4(y − 0.5)2 + 1 otherwise. It has a single JLC: {(x, y) : y = c − (2c − 1)x, 0 ≤ x ≤ 0.5}
⋃
{(x, y) :

x = 0.5, 0 ≤ y ≤ 0.5}. The value of c controls the angle of the JLC at (0.5, 0.5). When c = 0.75,

this function is exactly the same as the one presented in Figure 4.1(a). For simplicity, we assume

that hn = pn as before. Let n = 100, c take values 0, 0.5 and 1.0, and σ take values .1, .2, .3, .4

and .5. When c = .5, the two JLC segments are parallel to the x and y axes. When c = 1 and 0,

the JLC has an obtuse and acute angle, respectively, at (.5,.5). For each combination of c and σ,

hn and Rαn
are determined by the cross-validation and MSE criteria, respectively, based on 100

replications. The results are presented in Table 4.1.

From Table 4.1, it can be seen that (1) the parameters selected by the cross-validation procedure

match those by the MSE criterion reasonably well; (2) when the data are noisier (i.e., σ is larger),

the window widths need to be chosen larger; (3) when the curvature of the JLC is larger (i.e., c is

smaller in this example), the window widths need to be chosen smaller to accommodate the jumps.
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However, when the JLCs are parallel to the x and y axes (the case when c = .5), the window widths

can still be chosen relatively large because of the square-shaped windows used in (2.4) (cf. Figure

1.1). From this example and our experience, it is often appropriate to choose (1−αn) ∈ [0.9, 0.999]

(or equivalently, Rαn
∈ [3.2314, 5.2724]).

The surface estimator (2.4) is based on local linear kernel estimation, which accommodates

the effect of the surface slope on the estimator. But the curvature of the true surface might still

have some effect on the estimator. To investigate this issue, let us consider the following regression

function: f(x, y) = d(x − 0.5)2 + d(y − 0.5)2 when 0 ≤ x < 0.5 and 0 ≤ y < 0.75 − 0.5x; and

f(x, y) = d(x − 0.5)2 + d(y − 0.5)2 + 1 otherwise, where d can take values -1,-2,-3,-4 and -5. When

d = −4, this function is the same as the one in Figure 4.1(a). Obviously f ′′
xx(x, y) = f ′′

yy(x, y) = 2d

and f ′′
xy(x, y) = 2d(x + y − 1) when (x, y) is a continuity point. Therefore the curvature of f is

larger when |d| is larger. Suppose that n = 100 and σ = 0.25. For each d value, the window width

hn (= pn) and the quantile parameter Rαn
are determined by the cross-validation procedure. The

corresponding MSE values are presented in Figure 4.3. It can be seen that the curvature of f does

have some effect on the estimated surface. But the effect is small: the MSE value only increases

about 10 percent when d changes from -1 to -5.

d
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0.
00
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00
4

Figure 4.3: The MSE values of the estimated surfaces when d changes from -1 to -5.

4.2 Some numerical comparisons

In this part, we compare the current procedure with three existing procedures in some numeri-

cal examples. The existing procedures considered are the MRF image reconstruction procedure
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suggested by Godtliebsen and Sebastiani (1994), the local median smoothing procedure and the

discrete wavelet transformation procedure included in the R package wavethresh (Nason and Sil-

verman 1994). The MRF procedure has three positive parameters α, β and λ. Godtliebsen and

Sebastiani (1994) showed that it performed better than some well-known image reconstruction pro-

cedures in some cases. The surface estimator of the local median smoothing procedure is defined

by the sample median of the observations in a neighborhood of a given point. Because it is robust

to outliers and has some ability to preserve the jumps, it is widely used in industry (cf. Gonzalez

and Woods 1992, Chapter 4). The discrete wavelet transformation procedure requires that several

parameters be determined before it can be used. In the numerical examples below, we use the

default family of wavelets (which is Daubechies’ “extremal phase” wavelet) and the “symmetric”

boundary handling condition. The parameter “filter.number”, which determines the regularity of

the wavelet, can vary from 1 to 10. The thresholding “policy” is either “hard” or “soft”. The

“levels” to be thresholded could be r : s where 2s+1 is the sample size and r is an integer number

ranging from 1 to s.

The true regression function considered is the one used in the example of Table 4.1. The value

of c is either 0.75 or 0.25. The angle of the JLC at the point (0.5, 0.5) is obtuse when c = 0.75 and

acute when c = 0.25. Since the discrete wavelet transformation procedure can only handle the case

where n is a power of 2, n is chosen to be 128 (i.e., 27). The value of σ can vary among 0.1, 0.25,

0.4 and 0.75. The noise level of the data is low when σ = 0.1, it is moderate when σ is 0.25 or 0.4,

and it is considered high when σ = 0.75. In each case, the optimal parameter values of the four

procedures are determined by searches based on the criterion of MSE and 100 replications. For

the PLK and the local median smoothing procedures, it is assumed that hn = pn and the optimal

value of hn is determined by searching among all values of k/n where 1 < k < n is an odd integer

number. This search is almost exhaustive because the MSE value when (k − 2)/n < hn ≤ k/n is

about the same as its value when hn = k/n. For the PLK procedure, the optimal values of Rαn

and hn are searched simultaneously. The optimal value of Rαn
is searched in steps of 0.1. For the

MRF procedure, its parameters α, β and λ are also searched in steps of 0.1.

The optimal MSE values of the four procedures when c is 0.75 and 0.25 are presented in Figures

4.4(a) and 4.4(b), respectively. From Figure 4.4(a), it can be seen that the current procedure out-

performs the local median smoothing procedure and the discrete wavelet transformation procedue

uniformly. It performs better than the MRF procedure when the noise level is moderate to high.
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The MRF procedure performs the best when the noise level is low. Similar conclusions can be

drawn from Figure 4.4(b).
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Figure 4.4: (a) The MSE values of the four procedures when c = 0.75; (b) the corresponding results
when c = 0.25.

4.3 Application to the elevation data of South America

Figure 4.5(a) shows elevation data for South America, contaminated by i.i.d. random noise with

distribution N(0, 10002). The resolution of the data is 1 degree × 1 degree in latitude and longitude

and the sample size is 642 = 4096. Because of the low resolution of the data, jumps exist between

land and sea, especially along the west coast of South America which is the famous Andes mountain

area.

We first applied the MRF procedure discussed in the previous part to the contaminated ele-

vation data. Since the cross-validation procedure is not appropriate for choosing the parameters

α, β and λ, we tried many combinations of these parameters and the reconstructed surface with

the best visual impression is presented in Figure 4.5(b). From the plot, it can be seen that some

noise is removed by this procedure. But the jumps along the west coast of South America are

slightly blurred. Then the local median smoothing procedure is applied to the same data. By the

cross-validation procedure, its window width is chosen to be 0.0625 and the reconstructed surface

is shown in Figure 4.5(c). It can be seen from the plot that the noise is removed well but the jumps

are mostly blurred. The discrete wavelet transformation procedure is then used. Since the cross-

validation procedure is not appropriate in this case either, its parameters (i.e., “filter.number”,
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“levels” and “policy”) are chosen for good visual impression. The fitted surface is presented in

Figures 4.5(d). We can see that the estimated surface is quite noisy and the jumps along the west

coast of South America are not preserved well either. Next we apply procedure (2.4) to the dataset

with the same kernel function and significance level as those in the example of Figure 4.1. The

window widths are determined to be hn = pn = 0.1875 (it is assumed that hn = pn as before). Its

estimated surface is displayed in Figures 4.5(e). We can see that the jumps along the west coast of

South America are preserved reasonably well by this procedure and the noise is removed well too.
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Figure 4.5: (a) The noisy elevation data of South America; (b)-(e) the reconstructed surfaces by
the MRF procedure, the local median smoothing procedure, the discrete wavelet transformation
procedure and the procedure (2.4), respectively. In the plots, negative latitudes denote latitudes
west and negative longitudes denote logitudes south.
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5 Concluding Remarks

We have presented a procedure for modifying conventional local smoothing procedures such that

the modified procedures can estimate regression surfaces with possible jumps preserved. Although

the local linear kernel smoothing procedure is our focus in the discussion, other conventional local

smoothing procedures can be handled in a similar way. One advantage of the current procedure

is that its surface estimator is expressed explicitly by a mathematical formula like most conven-

tional local smoothing estimators. Therefore it is convenient to use and easy to compute. Another

advantage of the current procedure is that it requires mild conditions on the model. It has been

shown that all types of jumps except those around the singular points of the JLCs can be pre-

served well by this procedure. Further improvements of the current procedure are possible. For

example, when (2.3) is true, other types of averages (other than the simple average used in (2.4))

of â11(x, y), â12(x, y), â21(x, y) and â22(x, y) could be used for estimating f(x, y) if the extra com-

putation involved is not a big issue. When (2.3) is not true, it is possible to use more than one

of â11(x, y), â12(x, y), â21(x, y) and â22(x, y) for defining f̂PLK(x, y). To this end, we need a data-

driven machenism to distinguish the three cases demonstrated by Figure 2.1, which might be a

challenging task.
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Appendix

A Some Statistical Properties Of The Procedure (2.4)

In this appendix, we discuss some properties of the fitted surface of the jump-preserving surface

fitting procedure (2.4). First, we have the following result.

Theorem A.1 Suppose that the regression function f(·, ·) has continuous second-order derivatives

in the design space [0, 1]× [0, 1]; the kernel function K(·, ·) is Lipschitz (1) continuous; E(ε2
11) < ∞;

hn = O(n−1/3); and pn = O(n−1/3). Then

n2/3

log n
‖â11 − f‖[hn/2,1]×[pn/2,1] = O(1), a.s.;

n2/3

log n
‖â12 − f‖[hn/2,1]×[0,1−pn/2] = O(1), a.s.;

n2/3

log n
‖â21 − f‖[0,1−hn/2]×[pn/2,1] = O(1), a.s.;

n2/3

log n
‖â22 − f‖[0,1−hn/2]×[0,1−pn/2] = O(1), a.s.

where ‖f‖Ω = max(x,y)∈Ω |f(x, y)|.

The above theorem establishes the uniformly strong consistency of the four estimators â11(x, y),

â12(x, y), â21(x, y) and â22(x, y) of f(x, y) when the true regression function f is continuous in the

entire design space. It can be proved by some arguments similar to those in the proof of Theorem

2.1 of Qiu (1997). Based on this theorem, the four estimators should be all close to f(x, y) when n is

large enough and the point (x, y) is located in a continuous region of f . Consequently f̂PLK(x, y) is

close to f(x, y) in such a case. A formal statement of this result is included in Theorem A.3 below.

When the point (x, y) is around the JLCs, we have the following result about RSS(â11(x, y)).

Theorem A.2 In model (1.1), suppose that the regression function f has continuous second-order

derivatives in each of its continuous regions in the design space [0, 1]× [0, 1]; E(ε4
11) < ∞; the kernel

function K(·, ·) is Lipschitz (1) continuous; hn = O(n−1/3); and pn = O(n−1/3). For a given point

(x, y) ∈ [hn/2, 1] × [pn/2, 1], if there are no jumps in Q11(x, y) = [x− hn/2, x) × [y − pn/2, y), then

RSS(â11(x, y)) = β̃
(00)
11 σ2n2hnpn + o(n2hnpn), a.s.; (A.1)

if there is a single JLC in Q11(x, y), then

RSS(â11(x, y)) = (β̃
(00)
11 σ2 + d2

τC2
τ )n2hnpn + o(n2hnpn), a.s., (A.2)
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where dτ > 0 denotes the jump magnitude of f at the point (xτ , yτ ) which is a point on the JLC

in Q11(x, y) that is closest to (x, y),

C2
τ = 1

∆̃2
11

∫ ∫
Q

(1)
11 (0,0)

{

∫ ∫

Q
(2)
11 (0,0)

(γ̃
(1)
11 + γ̃

(2)
11 u + γ̃

(3)
11 v)K11(u, v) dudv +

x

∫ ∫

Q
(2)
11 (0,0)

(γ̃
(2)
11 + γ̃

(4)
11 u + γ̃

(5)
11 v)K11(u, v) dudv +

y

∫ ∫

Q
(2)
11 (0,0)

(γ̃
(3)
11 + γ̃

(5)
11 u + γ̃

(6)
11 v)K11(u, v) dudv }2 K11(x, y) dxdy +

1

∆̃2
11

∫ ∫
Q

(2)
11 (0,0)

{

∫ ∫

Q
(1)
11 (0,0)

(γ̃
(1)
11 + γ̃

(2)
11 u + γ̃

(3)
11 v)K11(u, v) dudv +

x

∫ ∫

Q
(1)
11 (0,0)

(γ̃
(2)
11 + γ̃

(4)
11 u + γ̃

(5)
11 v)K11(u, v) dudv +

y

∫ ∫

Q
(1)
11 (0,0)

(γ̃
(3)
11 + γ̃

(5)
11 u + γ̃

(6)
11 v)K11(u, v) dudv }2 K11(x, y) dxdy,

Q
(1)
11 (x, y) and Q

(2)
11 (x, y) denote two different parts of Q11(x, y) separated by the JLC with a positive

jump at (xτ , yτ ) from Q
(1)
11 (x, y) to Q

(2)
11 (x, y), Q

(1)
11 (0, 0) = {(u, v) : (uhn + x, vpn + y) ∈ Q

(1)
11 (x, y)}

and Q
(2)
11 (0, 0) = {(u, v) : (uhn + x, vpn + y) ∈ Q

(2)
11 (x, y)}.

Outline of the Proof We first prove the equation (A.1) in the case that there are no jumps in

Q11(x, y). By the definition of RSS(â11(x, y)), it can be written as

RSS(â11(x, y))

=
n∑

i=1

n∑

j=1

ε2
ijK11(

xi − x

hn
,
yj − y

pn
) +

2
n∑

i=1

n∑

j=1

εij [f(xi, yj) − â11(x, y) − b̂11(x, y)(xi − x) − ĉ11(x, y)(yj − y)]K11(
xi − x

hn
,
yj − y

pn
) +

n∑

i=1

n∑

j=1

[f(xi, yj) − â11(x, y) − b̂11(x, y)(xi − x) − ĉ11(x, y)(yj − y)]2K11(
xi − x

hn
,
yj − y

pn
)

=: I1 + I2 + I3

It can be checked that

I1 = σ2β̃
(00)
11 n2hnpn + o(n2hnpn), a.s.. (A.3)

By the Taylor’s expansion,

I2 = 2(f(x, y) − â11(x, y))
n∑

i=1

n∑

j=1

εijK11(
xi − x

hn
,
yj − y

pn
) +

2(f ′
x(x, y) − b̂11(x, y))

n∑

i=1

n∑

j=1

εij(xi − x)K11(
xi − x

hn
,
yj − y

pn
) +
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2(f ′
y(x, y) − ĉ11(x, y))

n∑

i=1

n∑

j=1

εij(yj − y)K11(
xi − x

hn
,
yj − y

pn
) + o(n2hnpn)

= o(n2hnpn), a.s. (A.4)

Similarly it can be checked that

I3 = o(n2hnpn), a.s. (A.5)

After combining (A.3)-(A.5), the equation (A.1) is proved.

Next we assume that there is a JLC in Q11(x, y) which does not have any singular points in

Q11(x, y). The JLC devides Q11(x, y) into two parts: Q
(1)
11 (x, y) and Q

(2)
11 (x, y). The limits of f at

(xτ , yτ ) from Q
(1)
11 (x, y) and Q

(2)
11 (x, y) are denoted by f−(xτ , yτ ) and f+(xτ , yτ ), respectively. Then

it can be checked that (A.3) and (A.4) are still true and

E(â11(x, y)) =
f−(xτ , yτ )

∆̃11

∫ ∫

Q
(1)
11 (0,0)

(γ̃
(1)
11 + γ̃

(2)
11 x + γ̃

(3)
11 y)K11(x, y) dxdy +

f+(xτ , yτ )

∆̃11

∫ ∫

Q
(2)
11 (0,0)

(γ̃
(1)
11 + γ̃

(2)
11 x + γ̃

(3)
11 y)K11(x, y) dxdy + o(1); (A.6)

E(b̂11(x, y)) =
f−(xτ , yτ )

∆̃11hn

∫ ∫

Q
(1)
11 (0,0)

(γ̃
(2)
11 + γ̃

(4)
11 x + γ̃

(5)
11 y)K11(x, y) dxdy +

f+(xτ , yτ )

∆̃11hn

∫ ∫

Q
(2)
11 (0,0)

(γ̃
(2)
11 + γ̃

(4)
11 x + γ̃

(5)
11 y)K11(x, y) dxdy + o(1/hn); (A.7)

E(ĉ11(x, y)) =
f−(xτ , yτ )

∆̃11pn

∫ ∫

Q
(1)
11 (0,0)

(γ̃
(3)
11 + γ̃

(5)
11 x + γ̃

(6)
11 y)K11(x, y) dxdy +

f+(xτ , yτ )

∆̃11pn

∫ ∫

Q
(2)
11 (0,0)

(γ̃
(3)
11 + γ̃

(5)
11 x + γ̃

(6)
11 y)K11(x, y) dxdy + o(1/pn). (A.8)

By combining the equations (A.6)-(A.8), we have

I3 = d2
τC

2
τ n2hnpn (A.9)

Then the equation (A.2) is obtained after combining (A.3), (A.4) and (A.9).

Similar results can be derived for â12(x, y), â21(x, y) and â22(x, y). Based on Theorems A.1 and

A.2, the strong consistency of f̂PLK is established in the following theorem.

Theorem A.3 If Rαn
defined in (3.1) satisfies the conditions that (i) limn→∞ Rαn

n−2/3 = 0 and

(ii) limn→∞ Rαn
(log n)−1 = ∞, then under the assumptions in Theorem A.2, we have

(i) ‖f̂PLK − f‖Dε
= O(n−2/3 log n), a.s.;
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(ii) for any (x, y) ∈ D∗
ε , |f̂PLK(x, y) − f(x, y)| = O(n−2/3 log n), a.s.,

where ε > 0 is an arbitrarily small number, Dε = {(x, y) :
√

(x − x∗)2 + (y − y∗)2 ≥ ε, where

(x∗, y∗) is any point on the JLCs or on the border of the design space}, D∗
ε = Lε\Sε, Lε = {(x, y) :

√
(x − x∗)2 + (y − y∗)2 < ε, where (x∗, y∗) is any point on the JLCs} and Sε = {(x, y) :

√
(x − x∗)2 + (y − y∗)2 < ε, where (x∗, y∗) is any singular point of the JLCs or a point on the

border of the design space}.

Proof For any point (x, y) ∈ Dε, if limn→∞ Rαn
(log n)−1 = ∞, then when n is large enough we

have

range(â11(x, y), â12(x, y), â21(x, y), â22(x, y)) < un. (A.10)

By (2.4) and Theorem A.1, we have

n2/3

log n
|f̂PLK(x, y) − f(x, y)| = O(1), a.s. (A.11)

Since the expressions (A.10) and (A.11) are uniformly true with regard to (x, y) ∈ Dε,

n2/3

log n
‖f̂PLK − f‖Dε

= O(1), a.s.

When (x, y) ∈ D∗
ε , we only conside the case that the point (x, y) is on a JLC and the two

tangent lines of the JLC at (x, y) are located in Q11(x, y) and Q12(x, y), respectively. Other cases

can be discussed similarly. Then

E(â11(x, y)) = f−(x, y) +
d(x, y)

∆̃11

∫ ∫

Q
(2)
11 (0,0)

(γ̃
(1)
11 + γ̃

(2)
11 x + γ̃

(3)
11 y)K11(x, y) dxdy + o(h2

n),

where d(x, y) is the jump size of f at (x, y). Similarly, E(â22(x, y)) = f(x, y) + O(h2
n). Therefore

range(â11(x, y), â12(x, y), â21(x, y), â22(x, y)) ≥ |â11(x, y) − â22(x, y)| > un

under the condition that limn→∞ Rαn
n−2/3 = 0. Therefore f̂PLK(x, y) = ã(x, y) by (2.4). By

Theorem A.2, ã(x, y) must be one of â21(x, y) and â22(x, y) when n is large enough because their

RSS values are smaller than the RSS values of â11(x, y) and â12(x, y) in such a case. By Theorem

A.1, we have |f̂PLK(x, y) − f(x, y)| = O(n−2/3 log n), a.s. This finishes the proof.

Theorem A.3 says that the fitted surface of the procedure (2.4) is uniformly strongly consistent

in the continuous regions of f and the convergence rate is the same as that of the conventional

local linear kernel estimator. It is also pointwisely strongly consistent around the JLCs.
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