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Abstract

A new local smoothing procedure is suggested for jump-preserving surface reconstruction

from noisy data. In a neighborhood of a given point in the design space, a plane is fitted by

local linear kernel smoothing, giving the conventional local linear kernel estimator of the surface

at the point. The neighborhood is then divided into two parts by a line passing through the

given point and perpendicular to the gradient direction of the fitted plane. In the two parts,

two half planes are fitted, respectively, by local linear kernel smoothing, providing two one-sided

estimators of the surface at the given point. Our surface reconstruction procedure then proceeds

in the following two steps. First, the fitted surface is defined by one of the three estimators,

i.e., the conventional estimator and the two one-sided estimators, depending on the weighted

residual means of squares of the fitted planes. The fitted surface of this step preserves the jumps

well, but it is a bit noisy, compared to the conventional local linear kernel estimator. Second,

the estimated surface values at the original design points obtained in the first step are used as

new data, and the above procedure is applied to this data in the same way except that one of

the three estimators is selected based on their estimated variances. Theoretical justification and

numerical examples show that the fitted surface of the second step preserves jumps well and also

removes noise efficiently. Besides two window widths, this procedure does not introduce other

parameters. Its surface estimator has an explicit formula. All these features make it convenient

to use and simple to compute.

Key Words: Denoising; Edge detection; Image reconstruction; Gradient; Local linear kernel

estimation; Local smoothing; Neighborhood; One-sided estimators; Surface estimation.

1 Introduction

Local smoothing techniques are popular in applications for reconstructing regression curves and sur-

faces from noisy data. Conventional local smoothing procedures, including running averages (Tukey

(1977)), locally weighted scatter plot smoothing (Cleveland (1979)), kernel smoothing (Härdle
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(1990)), local polynomial kernel smoothing (Fan and Gijbels (1996)), and several others, are ap-

propriate for estimating continuous regression functions. When the underlying regression function

has jumps, the estimated functions by conventional procedures are not statistically consistent at the

jump positions. However, the problem of estimating jump regression functions is important because

true regression functions are often discontinuous in applications. For example, the image intensity

function of an image is discontinuous at the outlines of objects, and equi-temperature surfaces in

high sky or deep ocean are often discontinuous too. This article introduces a new jump-preserving

surface reconstruction procedure, which has good statistical properties and is convenient to use.

A main reason why most conventional surface estimators are not statistically consistent around

the jumps, I think, is that: a continuous function has been used by these procedures for estimating

a jump function. To preserve jumps while estimating a surface, the estimation procedure should

adapt itself to the jump structure of the surface, which is a major challenge in this research problem,

because the jump structure is unobservable and it is often too complicated to be expressed by any

mathematical formulas. In the image processing literature, most Bayesian estimation methods use

a so-called line process to denote the unobservable jump structure of the image intensity surface

(Geman and Geman (1984)). Each element in this process is binary and denotes the existence of

jumps between two neighboring pixels, with 1 denoting presence of jumps and 0 absence. The true

image intensity function and the line process are then assumed to form a joint Markov random field

(MRF). Under the assumption that observed image intensities follow a known distribution (e.g.,

Normal distribution), the true image is then estimated by maximizing a posteriori (MAP). The

MAP process is accomplished computationally by using the stochastic relaxation and simulated

annealing. This kind of procedures, however, require expensive computation, although some sim-

plifications and modifications exist (e.g., Besag (1986), Besag et al. (1995), Fessler et al. (2000),

Godtliebsen and Sebastiani (1994), Li (1995), Marroquin et al. (2001), Sebastiani and Godtliebsen

(1997), Titterington (1985), and Yi and Chelberg (1995)). Due to their iterative nature, it is also

difficult to study their statistical properties, including the consistency of the reconstructed images.

Another existing jump surface estimation method is based on bilateral filtering (Tomasi and

Manduchi (1998)). Its major idea is that: observations which are more different from the observa-

tion at a given point should receive less weights in the local averaging for estimating the surface

at the given point, because it is more likely that they are located on a different side of the related

jump location curve (JLC), relative to the given point. This strategy is accomplished by using

two kernel functions: one for pixel locations, and the other one for observations of the response.

Because observations on the different side of the JLC, relative to the given point, still receive some

weights, although such weights are generally small, some blurring may still happen around the
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jumps, using this method. Furthermore, blurring can also be generated by large surface slopes,

because in such cases observations on the different side of the JLC, relative to the given point,

could be even closer to the observation at the given point, compared to some observations on the

same side. A closely related procedure to this bilateral filtering procedure is the adaptive weights

smoothing (AWS) algorithm, suggested by Polzehl and Spokoiny (2000). In the AWS algorithm,

bilateral filtering is performed iteratively. Numerical studies show that it performs well when the

true surface has large homogeneous regions. Other related methods in the literature include the

nonlinear diffusion filter by Perona and Malik (1990) (also see Keeling and Stollberger (2002) and

Weickert et al. (1998) for modifications and generalizations), the sigma filter by Chu et al. (1998),

the three-stage procedure by Qiu (1998), and several others. See Qiu (2007) for a more detailed

discussion.

In special cases when the number of JLCs is known and the JLCs satisfy some smoothness

conditions, Müller and Song (1994), O’Sullivan and Qian (1994), Qiu (1997), and several others

suggest various two-stage procedures, by which the JLCs are first estimated by some curves, and

then the regression surface is fitted as usual in design sub-spaces separated by the estimated JLCs.

In applications, however, it is often difficult to obtain information about the number of JLCs and

their smoothness. Therefore, these procedures may not be appropriate for many applications.

Recently, Qiu (2004) suggests a jump surface estimation procedure by fitting four local planes in

four quadrants of a neighborhood of a given point. The best one of the four surface estimators

defined by the four fitted local planes is chosen by a criterion to be the final surface estimator at

the given point. It has been shown that this procedure preserves jumps well; but it is relatively

noisy around the JLCs, because only one quadrant of the neighborhood is actually used in defining

its surface estimator. Several papers, including Carlstein and Krishnamoorthy (1992), Hall and

Molchanov (2003), Hall, Peng and Rau (2001), Hall and Rau (2000), Qiu (2002), Qiu and Yandell

(1997), and Sun and Qiu (2007), focus mainly on estimation of the JLCs. For an overview of the

methods mentioned above, see Qiu (2005).

The major goal of this paper is to suggest a jump surface estimator, which would have an

explicit mathematical formula like most conventional surface estimators and which can preserve

jumps well and remove noise efficiently. Generally speaking, there are two major benefits for a

surface estimator to have an explicit mathematical formula. One is that such an estimator is often

easy to use and simple to compute; the other major benefit is that it is usually easier for us to

study its statistical properties. To achieve these goals, we suggest a three-stage procedure briefly

described below. In the first stage, a local plane is fitted in a neighborhood of a given point by

the local linear kernel smoothing, from which the conventional local linear kernel estimator of the
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surface at the given point can be obtained. In the second stage, the neighborhood is divided into two

parts by a line passing through the given point and perpendicular to the gradient direction of the

fitted local plane. Two one-sided local linear kernel estimators of the surface are then constructed,

respectively, in the two parts. The fitted surface is defined by one of the three estimators (i.e.,

the conventional estimator and the two one-sided estimators), depending on the weighted residual

means of squares of the corresponding fitted planes: the smaller, the better. To further remove

noise, in the third stage, the estimated surface values at the original design points obtained in the

second stage are used as a new dataset, and the surface estimation procedure of the second stage

is applied to this dataset in the same way except that one of the three estimators is selected as the

final surface estimator based on their estimated variances in this step. It will be shown that the

final surface estimator preserves jumps well and removes noise efficiently.

The idea to define an estimator of a jump regression function by one of the three estimators (i.e.,

the conventional estimator and the two one-sided estimators) has been discussed by Gijbels et al.

(2007) and Qiu (2003) in 1-D cases. However, 2-D problems are much more challenging than their

1-D counterparts due mainly to the following two facts. First, in 1-D cases, jump locations are at

most a series of points in the design interval; in 2-D cases, jump locations are often curves without

any mathematical expressions. Second, in 1-D cases, two different sides of a given point are well

defined; in 2-D cases, two different sides of a given point can be defined along a specific direction,

but the direction parameter would add much complexity to 2-D problems. Recently, Gijbels et

al. (2006) generalizes these 1-D methods to 2-D cases. In that paper, the surface estimator at

a given point is defined in a single step, by one of the three estimators constructed directly from

the observations. To choose among the three estimators, a threshold parameter is introduced and

used for comparing their weighted residual means of squares. That procedure is then modified for

preserving corners of edges. The random design case is also discussed in that paper along with

many numerical examples using various test images. But, theoretical properties of that procedure

are not derived. As a comparison, the proposed procedure in the current paper has three steps,

motivated by our theoretical study about the properties of the three local estimators, especially

about the specific relationship between their performance and the signal-to-noise ratio in the data

(see Sections 2 and 3 for detailed discussion). Besides the two bandwidths, no other parameters,

such as threshold values, are used in the current procedure. Its estimated surface is proved to be

strong consistent.

The rest of the article is organized as follows. In next section, the proposed jump-preserving

surface estimation procedure is introduced in some details. Some of its statistical properties are

discussed in Section 3. Several numerical examples are presented in Section 4. Some technical
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details, including two propositions and proofs of several theorems, are provided in Section 5. Some

remarks conclude the article in Section 6.

2 The Jump-Preserving Surface Reconstruction Procedure

In this section, we introduce our jump surface estimation procedure in detail. To make the in-

troduction easier to understand, we keep it intuitive here, and provide some mathematically more

rigorous justifications in Section 3.

Suppose that the regression model is

zij = f(xi, yj) + εij , i, j = 1, 2, . . . , n, (1)

where f is a bivariate nonparametric regression function, {(xi, yj) = (i/n, j/n), i, j = 1, 2, . . . , n}
are equally spaced design points in [0, 1] × [0, 1], {εij} are i.i.d. random errors with mean 0 and

variance σ2, {zij} are observations, and N = n2 is the sample size. The regression function f is

assumed to be continuous in the design space except on some curves, which are called the jump

location curves (JLCs). A formal definition of the JLCs can be found in Qiu (1998).

At a given point (x, y) in the design space, we consider a neighborhood Mn(x, y) = {(u, v) :

(u, v) ∈ [0, 1] × [0, 1],
√

(u − x)2 + (v − y)2 ≤ hn}, where hn ≤ 1 is a window width parameter. In

Mn(x, y), a local plane is fitted by the local linear kernel smoothing:

min
a,b,c∈R

n∑

i=1

n∑

j=1

{zij − [a + b(xi − x) + c(yj − y)]}2 K

(
xi − x

hn
,
yj − y

hn

)
, (2)

where K(·, ·) is an isotropic, bivariate density kernel function with support {(x, y) : x2 + y2 ≤ 1}.
The solution of (2) is denoted by â(x, y), b̂(x, y), and ĉ(x, y); â(x, y) is the conventional local linear

kernel estimator of f(x, y). Its weighted residual mean square (WRMS) is

e(x, y) =

∑n
i=1

∑n
j=1

{
zij − [â(x, y) + b̂(x, y)(xi − x) + ĉ(x, y)(yj − y)]

}2
K
(

xi−x
hn

,
yj−y
hn

)

∑n
i=1

∑n
j=1 K

(
xi−x
hn

,
yj−y
hn

) . (3)

The gradient direction of the fitted plane is G(x, y) = (b̂(x, y), ĉ(x, y)), and it is a good estimator

of the gradient direction of f .

A major consideration for using circular neighborhoods here is their rotation-invariance prop-

erty. For some applications in geology, meteorology, and oceanography, a pre-specified coordinate

system is not essential to the surface reconstruction problem. In such cases, it is desirable to have
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the estimated surface coordinate-free, and circular neighborhoods can make this possible. For some

other applications, such as image reconstruction, the coordinate system is well defined. In such

cases, square-shaped or other types of neighborhoods can also be used.

If the point (x, y) is on a JLC, then according to Corollary 1 in Section 3, G(x, y) also well

indicates the direction orthogonal to the JLC tangent at (x, y). In the literature, there are several

different ways to estimate the gradient direction of f . For example, in the image processing litera-

ture (cf. Gonzalez and Woods (1992)), people often use two discrete difference operators in the x

and y directions for estimating the gradient direction. Here, the gradient direction of f is estimated

by G(x, y) based on two considerations. One is computational. Since G(x, y) is a by-product of the

minimization problem (2), no extra computation is required for obtaining G(x, y) after the problem

(2) is solved. The other consideration is theoretical. It can be shown that G(x, y) converges to the

gradient direction of f with optimal convergence rate under some regularity conditions (cf., Fan

and Gijbels (1996)).

In order to accommodate the jump structure of the surface in surface fitting, the neighborhood

Mn(x, y) is then divided into two parts: M
(1)
n (x, y) and M

(2)
n (x, y), by a line which passes through

(x, y) and is perpendicular to G(x, y), as shown in Figure 1.

.
(x,y)

G(x,y)

Mn(x,y)^(1)

Mn(x,y)^(2)

Figure 1: The neighborhood Mn(x, y) is divided into two parts M
(1)
n (x, y) and M

(2)
n (x, y), along a

direction perpendicular to the gradient direction G(x, y).

Then, in M
(1)
n (x, y) and M

(2)
n (x, y), two one-sided local planes are fitted, respectively, by the

local linear kernel smoothing:

min
a,b,c∈R

∑

(xi,yj)∈M
(ℓ)
n (x,y)

{zij − [a + b(xi − x) + c(yj − y)]}2 K

(
xi − x

hn
,
yj − y

hn

)
, for ℓ = 1, 2. (4)

The solution of (4) is denoted by (â(ℓ)(x, y), b̂(ℓ)(x, y), ĉ(ℓ)(x, y)), for ℓ = 1 and 2. The WRMS values
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of the two fitted one-sided planes are

e(ℓ)(x, y) =

∑
(xi,yj)∈M

(ℓ)
n (x,y)

{
zij − [â(ℓ)(x, y) + b̂(ℓ)(x, y)(xi − x) + ĉ(ℓ)(x, y)(yj − y)]

}2

K
(

xi−x
hn

,
yj−y

hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y

hn

)

(5)

for ℓ = 1 and 2.

Intuitively, a comparison of the three estimators â(x, y), â(1)(x, y) and â(2)(x, y) can be done

to determine the best overall estimator of f(x, y), based on whether or not Mn(x, y) contains any

jump points. When there are no jumps in Mn(x, y), all three estimators are statistically consistent

for estimating f(x, y) under some regularity conditions. Then, the conventional estimator â(x, y) is

preferred, because it averages more observations. When there is a single JLC in Mn(x, y) and the

JLC has a unique tangent line on each of its points in the neighborhood, â(x, y) does not estimate

f(x, y) well, because observations on both sides of the JLC are averaged and jumps are blurred.

In such cases, one of the two parts of Mn(x, y) should be mostly on one side of the JLC, and the

one-sided estimator constructed in that part should be able to estimate the surface well. So, in

both cases, at least one of the three estimators â(x, y), â(1)(x, y) and â(2)(x, y) estimates f(x, y)

well when the sample size is reasonably large.

In applications, however, it is often unknown whether or not a given point (x, y) is close to a

JLC. So a data-driven mechanism is needed to choose one of the three estimators for estimating

f(x, y), which leads to three possible solutions, described below.

To estimate f(x, y) properly, one possibility is to choose one of the three estimators based

on the corresponding WRMS values, defined by (3) and (5). According to Proposition 1 given

in Section 5, e(x, y) ≥ min(e(1)(x, y), e(2)(x, y)), for any (x, y) ∈ [0, 1] × [0, 1]. Therefore, by this

proposal, â(x, y) can never be selected, and the surface estimator is actually defined by

f̂1(x, y; z) =





â(1)(x, y), if e(1)(x, y) < e(2)(x, y)

â(2)(x, y), if e(1)(x, y) > e(2)(x, y)

(â(1)(x, y) + â(2)(x, y))/2 if e(1)(x, y) = e(2)(x, y),

(6)

where z denotes the vector of all observations {zij , i, j = 1, 2, · · · , n}. As explained above, f̂1(x, y; z)

should preserve the jump well at each point of the JLCs at which the JLCs have a unique tangent

line and the jump magnitude is non-zero. The “unique tangent line” requirement is mainly due to

the fact that the neighborhood Mn(x, y) is divided into two half circles M
(1)
n (x, y) and M

(2)
n (x, y)

by a line in (4). This requirement can be made more flexible, if, for example, two opposite sectors

in Mn(x, y) along a direction perpendicular to G(x, y) are used in (4), for constructing the two

one-sided estimators of f(x, y).
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Like most local smoothing estimators, the estimator f̂1(x, y; z) is defined for (x, y) ∈ Hn =

[hn, 1 − hn] × [hn, 1 − hn] only. It is not well defined in the boundary regions of the design space.

This is the notorious “boundary problem” in the literature. There are several existing proposals

to partially overcome this problem. For example, most discrete wavelet transformation (DWT)

software packages use periodic or symmetric extension methods to define neighborhoods in the

boundary regions (Nason and Silverman (1994)). In this paper, the symmetric extension method

is used in all numerical examples.

While the surface estimator f̂1(x, y; z) should preserve jumps well, it is expected to be relatively

noisy, compared to the conventional estimator â(x, y), because it is defined by only half observations

in Mn(x, y). The major reason why f̂1(x, y; z) is noisy is that â(x, y) can not be selected in its

definition, even in continuity regions of f . One natural idea to overcome this limitation is to choose

one of â(x, y), â(1)(x, y) and â(2)(x, y) for estimating f(x, y) based on their variances, because the

variance of â(x, y) would be smaller than the variances of â(1)(x, y) and â(2)(x, y) in the continuity

regions of f due to the fact that the former averages more observations. As a matter of fact, when

the kernel function K is a constant (i.e., the three estimators are local constant kernel estimators),

it can be checked that V ar(â(1)(x, y)) ≈ V ar(â(2)(x, y)) ≈ 2V ar(â(x, y)) ≈ C∗(nhn)−2σ2, when

there are no jumps in Mn(x, y), where C∗ is a constant and “≈” denotes asymptotic equality. In

applications, σ2 is often unknown. But it can be estimated by the WRMS values e(x, y), e(1)(x, y)

and e(2)(x, y) for the three estimators. Based on these considerations, the surface estimator can be

defined by

f̂2(x, y; z) =





â(x, y), if e(x, y)/2 ≤ min(e(1)(x, y), e(2)(x, y))

â(1)(x, y), if e(1)(x, y) < e(x, y)/2 and e(1)(x, y) < e(2)(x, y)

â(2)(x, y), if e(2)(x, y) < e(x, y)/2 and e(2)(x, y) < e(1)(x, y)

(â(1)(x, y) + â(2)(x, y))/2 if e(1)(x, y) = e(2)(x, y) < e(x, y)/2.

(7)

From Proposition 1 in Section 5, e(x, y) can never be the smallest one among e(x, y), e(1)(x, y),

and e(2)(x, y)). So, by comparing (6) and (7), we can see that the estimator f̂1(x, y; z) can also

be obtained by equation (7), after the quantity e(x, y)/2 is replaced by e(x, y). This connection

between (6) and (7) is helpful for computer programming.

In continuity regions of f , e(x, y)/2 is less than both e(1)(x, y) and e(2)(x, y) when n is large,

because all of e(x, y), e(1)(x, y) and e(2)(x, y) are consistent estimators of σ2. In this case, â(x, y)

is selected in (7), and, consequently, f̂2(x, y; z) can remove noise well. When there are jumps in

Mn(x, y), e(x, y) would be relatively large, because of the jumps. If the jump size is large compared

to σ, then it can happen that e(x, y)/2 > min(e(1)(x, y), e(2)(x, y)). In such a case, f̂2(x, y; z) equals
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f̂1(x, y; z), and consequently the jumps are preserved well. If the jump size is small compared to

σ, however, e(x, y)/2 could be smaller than both e(1)(x, y) and e(2)(x, y). In such a case, the jumps

are blurred by (7). These facts will be formally justified in Section 3 when we discuss statistical

properties of f̂2(x, y; z).

From the above description, we notice that procedure (7) provides a good surface estimator

when the ratio of the jump size to σ (which is called the signal-to-noise ratio (SNR) hearafter) is

large, and procedure (6) is preferred when this ratio is small. Based on this observation, we suggest

the following procedure: procedure (6) is first applied to the original data to decrease the noise

level, and then procedure (7) is applied to the estimated surface of the previous step to further

remove noise. That is, the surface estimator is defined by

f̂(x, y; z) = f̂2(x, y; f̂
1
) (8)

where f̂
1

denotes the vector of {f̂1(i/n, j/n; z), i, j = 1, 2, . . . , n}. It should be noticed that the

window widths used in the two steps of (8) could be different. They are denoted by hn1 and hn2

hereafter. Since both steps of (8) involve local smoothing only, the computation of (8) is quite

straightforward. Its computational complexity is O(N2h2
n1) + O(N2h2

n2).

In applications, the window widths hn1 and hn2 can be determined by minimizing the following

cross-validation criterion

CV (hn1, hn2) =
1

n2

n∑

i=1

n∑

j=1

(
zij − f̂−i,−j(xi, yj ; z)

)2
, (9)

where f̂−i,−j(x, y; z) is the “leave-one-out” estimator of f(x, y). Namely, the observation (xi, yj, zij)

is left out in constructing f̂−i,−j(x, y; z).

3 Some Statistical Properties of the Fitted Surfaces

In this section, we discuss some statistical properties of the estimated surfaces of procedures (6)-(8).

For simplicity of presentation, a point on the JLCs is called a nonsingular point below, if the JLCs

have a unique tangent line at this point and the jump magnitude is non-zero. Other points of the

JLCs are called singular points. Obviously, a singular point of the JLCs is: (i) a cross point of

several JLCs, or (ii) a point on a single JLC at which the JLC does not have a unique tangent line,

or (iii) a point on a single JLC at which there exists a neighborhood such that the jump magnitude

is zero at the given point but non-zero at any other points of the JLC in the neighborhood.
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The first theorem below is about the conventional local linear kernel estimators â(x, y), b̂(x, y)

and ĉ(x, y). Proofs of original theorems are given in Section 5.

Theorem 1 (This theorem can be proven similarly to some closely related theorems in Qiu

(1997) and Qiu and Yandell (1997)) Suppose that the regression function f has continuous second

order derivatives in each closed set of the design space in which it is continuous; E(ε3
11) < ∞; the

kernel function K(x, y) is a Lipschitz-1 continuous, isotropic, bivariate density function; and hn

satisfies the condition that log2(n)/(nh3
n) = O(1). Then

‖â − f‖Dhn
= O(h2

n) + O

(
log(n)

nhn

)
a.s., (10)

‖b̂ − f ′
x‖Dhn

= O(hn) + O

(
log(n)

nh2
n

)
a.s., (11)

‖ĉ − f ′
y‖Dhn

= O(hn) + O

(
log(n)

nh2
n

)
a.s., (12)

where Dhn = Hn\Jhn , Jhn is a band of the JLCs with radius hn, and ‖g‖Dhn
denotes sup(x,y)∈Dhn

|g(x, y)|. For a given point (xτ , yτ ) ∈ J\S, where J denotes the set of points on the JLCs and S

denotes the set of all singular points of the JLCs, if the projection of a point (x, y) ∈ Jhn to J is

(xτ , yτ ) and the Euclidean distance between the two points is chn, where 0 < c < 1 is a constant

(note: the point (x, y) depends on n although it is not explicit in notation), then

â(x, y) = f−(xτ , yτ ) + dτ

∫ ∫

Q(2)
K(u, v) dudv + o(1) a.s., (13)

b̂(x, y) =
dτ

β̃02hn

∫ ∫

Q(2)
uK(u, v) dudv + o(1/hn) a.s., (14)

ĉ(x, y) =
dτ

β̃20hn

∫ ∫

Q(2)
vK(u, v) dudv + o(1/hn) a.s., (15)

where dτ > 0 is the jump magnitude of f at (xτ , yτ ), which is assumed to be finite, Q
(1)
n (x, y) and

Q
(2)
n (x, y) are two different parts of Mn(x, y) separated by the JLC with a positive jump at (xτ , yτ )

from Q
(1)
n (x, y) to Q

(2)
n (x, y), Q(1) and Q(2) are the two corresponding parts of the support of K(·, ·),

f−(xτ , yτ ) is the limit of f at (xτ , yτ ) from Q
(1)
n (x, y), and β̃s1s2 =

∫∞
−∞

∫∞
−∞ us1vs2K(u, v) dudv, for

s1, s2 = 0, 1, 2.

In Theorem 1, if hn ∼ n−1/3 log2/3(n), then ‖â − f‖Dhn
= o(1), ‖b̂ − f ′

x‖Dhn
= o(1), and

‖ĉ − f ′
y‖Dhn

= o(1). Therefore, â(x, y), b̂(x, y) and ĉ(x, y) converge uniformly to f(x, y), f ′
x(x, y)

and f ′
y(x, y), respectively, in Dhn where f is continuous. Theorem 3.1 also shows that â(x, y), b̂(x, y)

and ĉ(x, y) are affected by the jumps around the JLCs. In a special case when the point (x, y) is a

nonsingular point of the JLCs, it can be seen from (13) that â(x, y) does not converge to f(x, y),

as mentioned in Section 1.
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Corollary 1 If (x, y) ∈ Hn is a non-singular point on a JLC and the JLC has a unique tangent

line at (x, y) with the direction of θ, where θ ∈ [0, π], then it can be checked that: under all other

conditions in Theorem 1, we have

b̂(x, y) = − dτC

β̃02hn

sin(θ) + o(1/hn), ĉ(x, y) =
dτC

β̃20hn

cos(θ) + o(1/hn), a.s.,

where C is a constant, dτ , β̃02 and β̃20 are defined in Theorem 1.

Corollary 1 is a direct conclusion of equations (14) and (15) in Theorem 1. It implies that the

gradient direction G(x, y) = (b̂(x, y), ĉ(x, y)) is approximately in the direction of (− sin(θ), cos(θ)),

which is perpendicular to the direction of the tangent line of the JLC at (x, y). Therefore, G(x, y)

indeed indicates the orientation of the JLC at (x, y) well, which is one of the foundations of our

jump surface estimation procedures introduced in Section 2.

Theorem 2 Suppose that the conditions stated in Theorem 1 are all satisfied, and E(ε4
11) < ∞.

Then

‖e − σ2‖Dhn
= o(1) a.s.,

‖e(ℓ) − σ2‖Dhn
= o(1) a.s., for ℓ = 1, 2. (16)

For a given point (xτ , yτ ) ∈ J\S, if the projection of a point (x, y) ∈ Jhn to J is (xτ , yτ ) and the

Euclidean distance between the two points is chn, where 0 < c < 1 is a constant, then

e(x, y) = σ2 + d2
τC2

τ + o(1) a.s.,

e(ℓ)(x, y) = σ2 + d2
τ (C(ℓ)

τ )2 + o(1) a.s., for ℓ = 1, 2, (17)

where

C2
τ =

1

β̃2
02

∫ ∫

Q(1)

{∫ ∫

Q(2)
(β̃02 + us + vt)K(u, v) dudv

}2

K(s, t) dsdt +

1

β̃2
20

∫ ∫

Q(2)

{∫ ∫

Q(1)
(β̃20 + us + vt)K(u, v) dudv

}2

K(s, t) dsdt,

dτ , Q
(1) and Q(2) are defined in Theorem 1, and (C

(1)
τ )2 and (C

(2)
τ )2 are defined in Section 5,

similarly to C2
τ .

Theorem 2 says that the three WRMS values are all consistent estimators of σ2 in continuity

regions of f . When the point (x, y) is close to a JLC, the WRMS values are affected by the jumps.

Based on Theorems 1 and 2, the strong consistency of the estimated surfaces of procedures (6) and

(7) is established below.
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Theorem 3 Under the conditions in Theorem 2, we have

‖f̂1 − f‖Dhn
= O(h2

n) + O

(
log(n)

nhn

)
a.s. (18)

Theorem 4 Under the conditions in Theorem 2,

‖f̂2 − f‖Dhn
= O(h2

n) + O

(
log(n)

nhn

)
a.s. (19)

For a given point (xτ , yτ ) ∈ J\S, if the projection of a point (x, y) ∈ Jhn to J is (xτ , yτ ) and the

Euclidean distance between the two points is chn, where 0 < c < 1 is a constant, then

(i) if dτ/σ > 1/Cτ , then

f̂2(x, y) = f(x, y) + o(1), a.s. (20)

(ii) if dτ/σ ≤ 1/Cτ , then

f̂2(x, y) = f(x, y) + dτ

∫ ∫

Q(2)
K(u, v) dudv + o(1) a.s., (21)

where dτ , Cτ and Q(2) are defined in Theorems 1 and 2.

Theorem 3 says that f̂1 is uniformly consistent in regions where f is continuous. With regard

to f̂2, Theorem 4 says that it is uniformly consistent in regions where f is continuous. In regions

around the JLCs, f̂2 is consistent only when the SNR is larger than a certain value.

Theorem 5 Under the conditions in Theorem 2, if hn2 ∼ hn1, then

‖f̂ − f‖Dhn1+hn2
= O(h2

n1) + O

(
log(n)

nhn1

)
a.s. (22)

Theorem 5 establishes the strong consistency of the estimated surface of procedure (8) in conti-

nuity regions of f . By comparing (22) with (10), it can be seen that f̂ has the same convergence rate

in the continuity regions of f , as the rate of the conventional estimator â, which is O(n−2/3 log2(n))

when hn1 ∼ n−1/3 log(n). According to Stone (1982), this rate is optimal, up to a logarithmic

factor.

For most existing jump surface estimation procedures in the literature, we do not know much of

their theory yet, mainly due to their iterative nature which makes it hard to study their statistical

properties under reasonably flexible assumptions. For instance, Geman and Geman (1984) proves

that the image estimator obtained by their simulated annealing algorithm converges in probability

to the MAP estimator, under some quite restrictive assumptions (cf. Section 1 for some related

discussion). But it is still unknown at this moment whether the MAP estimator is a consistent

estimator or not of the original image. It is not clear either, where in the design space the MAP

estimator would work well and where it may estimate the original image poorly.
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4 Numerical Study

In this section, we present some numerical examples for evaluating the performance of procedures

(6)-(8). The examples are organized in four parts. Those regarding procedures (6) and (7) are

discussed in Section 4.1. The numerical performance of (8) is investigated in Section 4.2. In

Section 4.3, procedures (6)-(8) are compared to the local median smoother, a DWT procedure and

a MRF procedure by some examples. The related procedures are then applied to a test image in

Section 4.4.

4.1 Numerical performance of procedures (6) and (7)

Assume that the true regression surface is f(x, y) = −2(x−0.5)2−2(y−0.5)2 +1 if (x−0.5)2 +(y−
0.5)2 < 0.252; and f(x, y) = −2(x − 0.5)2 − 2(y − 0.5)2 otherwise. It has one JLC which is a circle

with constant jump size 1. We first apply procedures (6) and (7) to this example. The observations

are generated by (1) with n = 100 and σ = 0.2, 0.5 or 0.8. We let the window width hn in both

procedures change from 0.02 to 0.2 with step 0.01. The MSE values of the fitted surfaces in various

combinations of σ and hn are shown in Figure 2. If there is no further specification, all MSE values

presented in this section are averages of 100 replications. From the plots, it can be seen that for

each σ, the MSE values of each procedure first decrease and then increase when hn increases from

0.02 to 0.2. The optimal value of hn gets larger when σ is larger, which implies that hn needs to be

chosen larger for noisier data. By comparing the two plots, we can see that hn needs to be chosen

a little larger in (6) than its value in (7). This can be explained by the fact that procedure (6) uses

only half observations in Mn(x, y) for constructing its surface estimator while procedure (7) uses

more observations.

We then concentrate on the case when σ = 0.5. The 2.5 and 97.5 percentiles of 100 replications

of the fitted surface by (6) in the cross section of y = 0.5 are presented in Figure 3(a) by the lower

and upper dashed curves, respectively. In (6), hn is chosen to be 0.11 which is optimal according

to Figure 2(a). In Figure 3(a), the solid curve denotes the true surface in the cross section of

y = 0.5 and the dotted curve denotes the averaged surface fit. The corresponding results of (7)

are presented in Figure 3(b). As demonstrated by Theorem 4, the performance of (7) depends on

the value of SNR. To further see this, we present the corresponding results of (7) when σ = 0.2 in

Figure 3(c). The window width hn is 0.06 in Figure 3(b) and 0.05 in Figure 3(c). Both of them

are optimal according to Figure 2(b). Figure 3 shows that procedure (6) preserves the jumps well

but its estimated surface is relatively noisy (since its 95% confidence interval is relatively wide)
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Figure 2: The MSE values of the fitted surfaces of procedures (6) (plot (a)) and (7) (plot (b)).

compared to the estimated surface of (7). However, procedure (7) blurs the jumps when σ = 0.5

(the SNR value is relatively small in this case) and it preserves the jumps well when σ = 0.2 (the

SNR value is relatively large in this case).
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Figure 3: In each plot, the dashed curves denote the 2.5 and 97.5 percentiles of the 100 replications
of the fitted surface, the solid curve denotes the true surface and the dotted curve denotes the
averaged surface fit in the cross section of y = 0.5. (a) Procedure (6); (b) procedure (7) when
σ = 0.5; (c) procedure (7) when σ = 0.2.

The MSE value of the estimated surface of (7) is 0.0127 (cf. Figure 2) in the case of Figure

3(b), which is smaller than the MSE value (=0.0151) of the estimated surface of (6) in the same

case. So the MSE value does not reflect the blurring phenomenon seen in Figure 3(b). To better

see this, part of the two dotted curves (corresponding to σ = 0.5) in Figures 2(a) and 2(b) has

been put together in Figure 4(a). One explanation of this result is that MSE is computed from the

entire design space in which the blurring effect of (7) around the JLC is attenuated by the relatively
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small variability of its estimated surface in regions where f is continuous. To further check this

issue, local MSE values of the estimated surfaces of (6) and (7) are computed in a local band of

the JLC with radius hn. They are presented in Figure 4(b). We can see that the local MSE value

of (7) is much larger than that of (6) in the range of 0.06 ≤ hn ≤ 0.2. This example shows that

the conventional MSE is a good measurement of global performance of the surface reconstruction

procedures while the local MSE is a better measurement of jump preservation of these procedures.
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Figure 4: (a) The MSE values of the estimated surfaces of (6) and (7) when σ = 0.5; (b) the local
MSE values of the two procedures calculated in a local band of the JLC with radius hn.

4.2 Numerical performance of procedure (8)

Procedure (8) is a combination of (6) and (7), each of which has a window width. In the previous

part, the impact of the two window widths on the performance of the two individual procedures has

been studied. In the next example, we study their joint impact on the performance of (8). Suppose

that the true surface is the one used in the previous example, n = 100, and σ = 0.5. The two

window widths hn1 and hn2 in (8) can both vary from 0.03 to 0.16 with step 0.01. The averaged

MSE value of the estimated surface of (8) based on 10 replications is presented in Figure 5(a). This

plot shows that neither hn1 nor hn2 should be chosen too large or too small. The optimal values of

hn1 and hn2 are 0.05 and 0.08, respectively, with MSE=0.0112. Compared to the results shown in

Figure 2, i.e., the optimal values of hn1 and hn2 are respectively 0.11 and 0.06 with MSE=0.0150

and MSE=0.0127 for procedures (6) and (7) when σ = 0.5, we can see that: (1) hn1 should be

chosen larger than hn2 when the two procedures (6) and (7) are used separately, and (2) hn1 should

be chosen smaller than hn2 when the two procedures are used jointly in (8). With the optimal
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window widths, the 2.5 and 97.5 percentiles of 100 replications of the estimated surface of (8) in

the cross section of y = 0.5 are presented in Figure 5(b) by the lower and upper dashed curves,

respectively. Compared to Figures 3(a) and 3(b), we can see that the estimated surface of (8) is

smoother than that of (6), especially in regions where f is continuous, and it preserves the jumps

better than that of (7) as well.
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Figure 5: (a) The MSE values of the estimated surfaces of (8) are presented. (b) With the optimal
window widths, the 2.5 and 97.5 percentiles of 100 replications of the estimated surface of (8) in
the cross section of y = 0.5 are denoted by the lower and upper dashed curves, the true surface and
the averaged surface estimator are denoted by the solid and dotted curves, respectively. (c) The
local MSE values of the estimated surfaces of (8) are presented.

The averaged local MSE value of the estimated surface of (8) based on 10 replications is

presented in Figure 5(c). The local MSE is computed in a band of the true JLC with width

hn1 + hn2. From the plot, it can be seen that the local MSE has a similar pattern to that of the

global MSE shown in Figure 5(a), except that the local MSE seems more robust to selection of hn1

and hn2 in the sense that its value is minimal or close to minimal for more combinations of hn1 and

hn2. The minimum value 0.0221 of the local MSE is reached when hn1 and hn2 are 0.05 and 0.09,

respectively. It can be seen that the optimal values of hn1 and hn2 by the local MSE criterion are

similar to those by the MSE criterion. Also, the relationship between these local optimal bandwidth

values and the local optimal bandwidth values hn1 = 0.12 with local MSE=0.0293 and hn2 = 0.08

with local MSE=0.0522 (cf., Figure 4(b)) when procedures (6) and (7) are used separately is similar

to that under the MSE criterion discussed in the previous paragraph.

We then consider three σ values: 0.2, 0.5 and 0.8; and three n values: 100, 200 and 500. For

each combination of σ and n, the optimal window widths of (8) are searched with step 0.01 based

on 10 replications and on the MSE criterion. The results are presented in Table 1. It can be seen

that the optimal value of hn1 is smaller than the optimal value of hn2 in all cases. When n is larger,

both hn1 and hn2 need to be smaller and both nhn1 and nhn2 need to be larger, which is often
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Table 1: In each entry, the first two numbers are the optimal hn1 and hn2 and the last number is
the corresponding MSE value.

σ

n 0.2 0.5 0.8

100 0.03, 0.06, 0.0051 0.05, 0.08, 0.0112 0.06, 0.10, 0.0175

200 0.02, 0.04, 0.0022 0.03, 0.06, 0.0048 0.04, 0.07, 0.0078

500 0.01, 0.02, 0.0008 0.02, 0.03, 0.0019 0.02, 0.04, 0.0030

true for local smoothing procedures (Härdle 1990). When σ is larger, both hn1 and hn2 need to be

chosen larger, which is intuitively reasonable.

4.3 Some numerical comparisons

In this part, the three procedures (6)-(8) are compared to each other and to several existing pro-

cedures in some numerical examples. Three existing procedures are considered here. The first

one is the local median smoothing procedure, by which the surface estimator is defined by the

sample median of the observations in a neighborhood of a given point. Because this procedure

is simple and has some ability to preserve jumps while removing noise, it is widely used in the

image reconstruction literature (cf. Gonzalez and Woods (1992), Chapter 4). The second one is

the DWT procedure implemented by the R package wavethresh (see Nason and Silverman (1994)

for detailed introduction). It has several parameters to determine before it can be used for im-

age reconstruction. In this paper, the default family of wavelets (which is Daubechies’ “extremal

phase” wavelet) and the “symmetric” boundary handling condition are used. The parameter “fil-

ter.number” can vary from 1 to 10. The thresholding “policy” is either “hard” or “soft”. The

“levels” to be thresholded are r : s, where 2s+1 is the sample size and r is an integer ranging from 1

to s. The third existing procedure is the MRF procedure suggested by Godtliebsen and Sebastiani

(1994). It combines the idea of discontinuity labeling process (Geman and Geman (1984)) and the

iterated conditional modes algorithm (Besag (1986)). This procedure assumes that a binary line

component exists between any two vertically or horizontally neighboring pixels, with 1 denoting an

existing edge between the two pixels and 0 denoting no edge. In a 3 × 3 neighborhood of a given

pixel, there are 12 line components and 212 possible configurations of these components. To use

this procedure, probabilities of the 212 possible line configurations need to be specified. In this and

the next subsections, these probabilities are estimated from the true regression function values at

the design points, which is in favor of this procedure. Besides the line configurations, it has three

positive procedure parameters α, β and λ. The estimated surfaces by the three existing procedures

are denoted by f̂m, f̂w and f̂mrf , respectively.
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To compare their performance, we consider two regression functions f (1) and f (2), where f (1) is

the one used in the previous two subsections, f (2)(x, y) = −2(x−0.5)2 −2(y−0.5)2 + g(x, y) where

g(x, y) = 0,1 and 2 when (x, y) belongs to [0, 0.5] × [0, 0.5], ([0, 0.5] × (0.5, 1])
⋃

((0.5, 1] × [0, 0.5])

and (0.5, 1] × (0.5, 1], respectively. So, f (1) has one JLC without any singular points, and f (2) has

four JLC segments with one singular point at (0.5, 0.5). Observations are generated by model (1)

with n=100 and σ = 0.2, 0.5 or 0.8. Table 2 presents the optimal MSE values of the six procedures

in various cases along with the corresponding values of the procedure parameters. In order to see

the performance of the procedures around the JLCs, their local MSE values are also presented. For

each of f̂1, f̂2 and f̂m, the local MSE value is computed in a local band of the JLCs with radius

equal to the optimal window width. For f̂ , its local MSE value is computed in a local band of the

JLCs with radius equal to the sum of the two optimal window widths of (8). For f̂w and f̂mrf , no

window widths are involved. To make the results comparable, their local MSE values in the same

local band of the JLCs as that for f̂ are also presented in the table.

Table 2: In each entry, the numbers in the first two lines are the minimum MSE value and the
corresponding local MSE value, respectively. The third line gives the optimal values of the procedure
parameters (i.e., the optimal window widths for f̂ , f̂1, f̂2 and f̂m; the optimal “filter.number”,
“policy” and “levels” for f̂w; and the optimal α, β and λ for f̂mrf ).

f (1) f (2)

σ 0.2 0.5 0.8 0.2 0.5 0.8

0.0051 0.0112 0.0175 0.0022 0.0085 0.0168

f̂ 0.0157 0.0228 0.0295 0.0045 0.0142 0.0229
0.03,0.06 0.05,0.08 0.06,0.10 0.04,0.06 0.06,0.10 0.08,0.13

0.0055 0.0151 0.0260 0.0029 0.0114 0.0223

f̂1 0.0153 0.0297 0.0431 0.0053 0.0186 0.0313
0.07 0.11 0.14 0.09 0.14 0.18

0.0031 0.0127 0.0177 0.0021 0.0147 0.0205

f̂2 0.0151 0.0533 0.0553 0.0080 0.0507 0.0574
0.05 0.06 0.08 0.06 0.05 0.07

0.0036 0.0135 0.0207 0.0039 0.0169 0.0245

f̂m 0.0189 0.0584 0.0670 0.0163 0.0605 0.0686
0.04 0.05 0.07 0.04 0.05 0.07

0.0077 0.0146 0.0204 0.0057 0.0151 0.0212

f̂w 0.0209 0.0295 0.0302 0.0159 0.0294 0.0291
3,hard,5:6 5,hard,4:6 5,soft,4:6 4,hard,4:6 4,hard,3:6 5,soft,4:6

0.0013 0.0132 0.0220 0.0009 0.0160 0.0225

f̂mrf 0.0016 0.0219 0.0317 0.0008 0.0227 0.0286
3.8,41.5,1.9 7.5,5.9,0.2 17,2.5,6.0 35,33,0.4 3.9,2.8,6.7 7.7,2.1,5.1

First, let us compare the performance of (6)-(8). It can be seen from the table that the global

and local MSE values of (8) are smaller than the corresponding values of (6) and (7) when σ is
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0.5 or 0.8, in both cases of f (1) and f (2). So it might be safe to say that when the noise level is

moderate to high, procedure (8) outperforms procedures (6) and (7). When σ = 0.2, procedure (7)

performs better than both (6) and (8) in the case of f (1). In the case of f (2), the three procedures

perform similarly well. Therefore procedure (7) is competitive when the noise level is low, which is

consistent with the results found in Figure 3.

Next, let us compare the performance of (8) with the performance of f̂m, f̂w and f̂mrf . Table

2 shows that procedure (8) performs uniformly better than f̂w. It performs better than f̂m in all

cases except the case when f = f (1) and σ = 0.2, in which f̂m performs better than f̂ in MSE,

but f̂ is slightly better in terms of the local MSE. Compared to f̂mrf , f̂ performs better when σ is

either 0.5 or 0.8. When σ = 0.2, f̂mrf performs the best among all procedures.

4.4 Application to a test image

In this part, we apply all the related procedures discussed in the previous part to a test image

posted on the Waterloo Research Group’s web page http://links.uwaterloo.ca/bragzone.base.html.

The original image has four grey levels: 20, 75, 150 and 235; and several circular edges with three

different jump magnitudes: 75, 160 and 215. Its resolution is 256 × 256. We then add i.i.d. noise

with distribution N(0, 752) to the image, and the noisy image is shown in Figure 6(a). The darker

the color, the larger the image grey level.

Since the intensity function of this test image is piecewisely constant and it has large homoge-

neous regions, this image is ideal for the adaptive weights smoothing (AWS) procedure by Polzehl

and Spokoiny (2000), which adapts itself to edge structures iteratively in surface reconstruction.

We then use the AWS procedure as a golden standard in this example, and compare the others

with it. The AWS procedure has a number of parameters and functions to specify. We use their

default values specified in the R package aws(). The local median smoothing procedure, the DWT

procedure, the MRF procedure, the AWS procedure, and procedures (6)-(8) are then applied to

the noisy test image, and their reconstructed images are presented in Figures 6(b)-6(h), respec-

tively. For the local median smoothing procedure and the procedures (6)-(8), their window widths

are chosen to be 0.02, 0.05, 0.02 and (0.02,0.04), respectively, by the cross-validation procedure

(cf. (9)). For the DWT procedure, all possible combinations of its parameters are tried and the

combination with the best visual impression is selected, which turn out to be: filter.number=5,

policy=“soft” and levels=6:7. For the MRF procedure, as requested by one referee, the version by

Sebastiani and Godtliebsen (1997) is used here, which searches for the estimate of the true image

by MCMC and which chooses its parameter values automatically.
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Figure 6: Plot (a): The noisy test image. Plots (b)-(h): the reconstructed images by the local
median smoothing procedure, the DWT procedure, the MRF procedure, the AWS procedure, and
procedures (6)-(8), respectively.

From the plots, it can be seen that the local median smoothing procedure and procedure (7)

blur the edges much, especially in the region around the smallest circle. The reconstructed image

of the DWT procedure looks quite noisy and some edges are also blurred. The MRF procedure can

preserve the edges well, although its results include certain salt and pepper noise. The reconstructed

images by procedures (6) and (8) look compatible to that by the AWS procedure. If we compare

them carefully, then we can see that the reconstructed image of (8) is smoother than that of

(6). We can also see that both procedures slightly blur some parts of the edges close to the image

border. That is because they both use the “symmetric” extension procedure to handle the boundary

regions and these parts are close to some singular points of the edges artificially created by the

“symmetric” extension procedure. From Figure 6, it seems that procedure AWS does a good job

in removing noise and preserving edges, compared to all other procedures. That might due to the

facts that procedure AWS adapts its degree of smoothing to local features of the observed image by

constantly changing the neighborhood size at a given point, while all other procedures considered

here use constant procedure parameters for the entire image, and that procedure AWS smooths the

observed data iteratively, while procedure (8) is non-iterative. This example shows that a potential

improvement to the proposed procedure (8) is to use variable bandwidth and to apply procedure

(6) iteratively, which is left to our future research.
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5 Technical Details

This section mainly gives proofs of the theorems presented in Section 3. First, we give two propo-

sitions.

Proposition 1 For e(x, y), e(1)(x, y) and e(2)(x, y) defined by (3) and (5), there exists the

following relationship:

e(x, y) ≥ min
(
e(1)(x, y), e(2)(x, y)

)
,

for any (x, y) ∈ [0, 1] × [0, 1].

Proof. By the definition of e(x, y), we have

e(x, y) =

∑
(xi,yj)∈M

(1)
n (x,y)

{
zij − [â(x, y) + b̂(x, y)(xi − x) + ĉ(x, y)(yj − y)]

}2

K
(

xi−x
hn

,
yj−y

hn

)

∑n

i=1

∑n

j=1 K
(

xi−x
hn

,
yj−y

hn

)

+

∑
(xi,yj)∈M

(2)
n (x,y)

{
zij − [â(x, y) + b̂(x, y)(xi − x) + ĉ(x, y)(yj − y)]

}2

K
(

xi−x
hn

,
yj−y

hn

)

∑n

i=1

∑n

j=1 K
(

xi−x
hn

,
yj−y

hn

)

≥
∑

(xi,yj)∈M
(1)
n (x,y)

{
zij − [â(1)(x, y) + b̂(1)(x, y)(xi − x) + ĉ(1)(x, y)(yj − y)]

}2

K
(

xi−x
hn

,
yj−y

hn

)

∑n

i=1

∑n

j=1 K
(

xi−x
hn

,
yj−y

hn

)

+

∑
(xi,yj)∈M

(2)
n (x,y)

{
zij − [â(2)(x, y) + b̂(2)(x, y)(xi − x) + ĉ(2)(x, y)(yj − y)]

}2

K
(

xi−x
hn

,
yj−y

hn

)

∑n

i=1

∑n

j=1 K
(

xi−x
hn

,
yj−y

hn

)

=
e(1)(x, y)

∑
(xi,yj)∈M

(1)
n (x,y)

K
(

xi−x
hn

,
yj−y

hn

)
+ e(2)(x, y)

∑
(xi,yj)∈M

(2)
n (x,y)

K
(

xi−x
hn

,
yj−y

hn

)

∑n

i=1

∑n

j=1 K
(

xi−x
hn

,
yj−y

hn

)

≥ min(e(1)(x, y), e(2)(x, y)).

The first inequality in the above expressions is due to the definition (cf. equation (4)) of the one-

sided estimators (â(ℓ)(x, y), b̂(ℓ)(x, y), ĉ(ℓ)(x, y)), for ℓ = 1 and 2, and the second inequality is due

to the fact that a weighted average of two numbers must be larger than or equal to the smaller one

of the two numbers.

Proposition 2 Under the conditions in Theorem 1, we have

∥∥∥∥∥∥
1

n2h2
n

n∑

i=1

n∑

j=1

K

(
xi − x

hn
,
yj − y

hn

)
− 1

∥∥∥∥∥∥
Dhn

= O

(
1

nhn

)
, (23)

and ∥∥∥∥∥∥
1

n2h2
n

n∑

i=1

n∑

j=1

εijK

(
xi − x

hn
,
yj − y

hn

)∥∥∥∥∥∥
Dhn

= o

(
βn log(n)

nhn

)
, a.s. (24)
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for any positive sequence βn that diverges to infinity as n → ∞.

Proof. First, we prove equation (23). For any (x, y) ∈ Dhn , we can write

∣∣∣∣∣∣
1

n2h2
n

n∑

i=1

n∑

j=1

K

(
xi − x

hn
,
yj − y

hn

)
− 1

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

n2h2
n

n∑

i=1

n∑

j=1

K

(
xi − x

hn
,
yj − y

hn

)
− 1

h2
n

∫ ∫

Bhn (x,y)
K

(
u − x

hn
,
v − y

hn

)
dudv

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

n2h2
n

n∑

i=1

n∑

j=1

K

(
xi − x

hn
,
yj − y

hn

)
− 1

h2
n

n∑

i=1

n∑

j=1

∫ ∫

Bhn (x,y)
⋂

∆ij

K

(
u − x

hn
,
v − y

hn

)
dudv

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

h2
n

n∑

i=1

n∑

j=1

[
1

n2
K

(
xi − x

hn
,
yj − y

hn

)
−
∫ ∫

Bhn (x,y)
⋂

∆ij

K

(
u − x

hn
,
v − y

hn

)
dudv

]∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

h2
n

O

(
hn

n

)
+

1

h2
n

n∑

i=1

n∑

j=1

[
K

(
xi − x

hn
,
yj − y

hn

)∫ ∫

Bhn (x,y)
⋂

∆ij

dudv−

∫ ∫

Bhn (x,y)
⋂

∆ij

K

(
u − x

hn
,
v − y

hn

)
dudv

]∣∣∣∣∣

=

∣∣∣∣∣∣
1

h2
n

O

(
hn

n

)
+

1

h2
n

n∑

i=1

n∑

j=1

∫ ∫

Bhn (x,y)
⋂

∆ij

[
K

(
xi − x

hn
,
yj − y

hn

)
− K

(
u − x

hn
,
v − y

hn

)]
dudv

∣∣∣∣∣∣

≤
∣∣∣∣

1

h2
n

O

(
hn

n

)∣∣∣∣+
1

h2
n

n∑

i=1

n∑

j=1

∫ ∫

Bhn (x,y)
⋂

∆ij

∣∣∣∣K
(

xi − x

hn
,
yj − y

hn

)
− K

(
u − x

hn
,
v − y

hn

)∣∣∣∣ dudv

≤
∣∣∣∣

1

h2
n

O

(
hn

n

)∣∣∣∣+
1

h2
n

n∑

i=1

n∑

j=1

√
2CK

nhn

∫ ∫

Bhn (x,y)
⋂

∆ij

dudv

=

∣∣∣∣
1

h2
n

O

(
hn

n

)∣∣∣∣+
1

h2
n

√
2CK

nhn

∫ ∫

Bhn (x,y)
dudv

=

∣∣∣∣
1

h2
n

O

(
hn

n

)∣∣∣∣+
1

h2
n

√
2CK

nhn
πh2

n = O

(
1

nhn

)
,

where Bhn(x, y) is the circle centered at (x, y) with radius hn, ∆ij = [xi−1, xi]× [yj−1, yj ], x0 = y0 =

0, and CK > 0 is the Lipschitz constant that satisfies |K(x, y)−K(x′, y′)| ≤ CK

√
(x − x′)2 + (y − y′)2.

So, equation (23) is true.

To prove (24), let us first define

ε̄ij = εijI|εij |≤(tij log2(tij))1/3 , i, j = 1, 2, · · · , n

ḡn(x, y) =
1

n2h2
n

n∑

i=1

n∑

j=1

ε̄ijK

(
xi − x

hn
,
yj − y

hn

)

g∗n(x, y) =
1

n2h2
n

n∑

i=1

n∑

j=1

εijK

(
xi − x

hn
,
yj − y

hn

)
,
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where tij = (i−1)2+j if j ≤ i and tij = j2−(i−1) otherwise. By the definition, tij = 1, 2, 3, 4, 5, · · ·,
respectively, when (i, j) = (1, 1), (2, 1), (2, 2), (1, 2), (3, 1), · · ·. When (i, j) changes by a bijection

from (1,1) to (n, n), tij changes from 1 to n2.

Let An = {(i/[nη ], j/[nη ]) : i = 1, 2, · · · , [nη], j = 1, 2, · · · , [nη]}, where η is a positive constant

and [x] is the integer part of x. Then, there are [nη]2 points in An, and for any (x, y) ∈ [0, 1]× [0, 1],

there exists (v(x), w(y)) ∈ An such that |x− v(x)| ≤ 1/[nη ] and |y −w(y)| ≤ 1/[nη ]. Let βn > 0 be

an arbitrary sequence of constants diverging to infinity as n → ∞. Then, we have

nhn

βn log n
‖ḡn(x, y) − Eḡn(x, y)‖Dhn

≤ S1n + S2n + S3n,

where

S1n =
nhn

βn log n
‖ḡn(x, y) − ḡn(v(x), w(y))‖Dhn

S2n =
nhn

βn log n
‖ḡn(v(x), w(y)) − Eḡn(v(x), w(y))‖Dhn

S3n =
nhn

βn log n
‖Eḡn(v(x), w(y)) − Eḡn(x, y)‖Dhn

.

We can choose η large enough such that

S1n =
nhn

βn log n

∥∥∥∥∥∥
1

n2h2
n

n∑

i=1

n∑

j=1

ε̄ij

[
K

(
xi − x

hn
,
yj − y

hn

)
− K

(
xi − v(x)

hn
,
yj − w(y)

hn

)]∥∥∥∥∥∥
Dhn

≤ nhn

βn log n
· n2

n2h2
n

·
(
n2 log2(n2)

)1/3
· CK

√
2

[nη]hn
= o(1).

By similar arguments, we have S3n = o(1). Now, for any (x, y) ∈ Dhn ,

ḡn(x, y) − Eḡn(x, y) =
n∑

i=1

n∑

j=1

1

n2h2
n

(ε̄ij − Eε̄ij)K

(
xi − x

hn
,
yj − y

hn

)

=:
n∑

i=1

n∑

j=1

g̃n,ij(x, y)

For any small constant ǫ > 0, when n is large enough, we have

P

(
nhn

βn log n
[ḡn(x, y) − Eḡn(x, y)] > ǫ

)

≤ exp
(
−ǫβ1/2

n log n
)

E
{
Πn

i=1Π
n
j=1 exp

[
(nhn/β1/2

n )g̃n,ij(x, y)
]}

≤ n−ǫβ
1/2
n Πn

i=1Π
n
j=1

[
1 + (n2h2

n/βn)Var(g̃n,ij(x, y))
]

≤ n−ǫβ
1/2
n Πn

i=1Π
n
j=1 exp

(
(n2h2

n/βn)Var(g̃n,ij(x, y))
)

= n−ǫβ
1/2
n exp


(n2h2

n/βn)
n∑

i=1

n∑

j=1

Var(g̃n,ij(x, y))


 (25)
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In (25), the second line is obtained by using the Chebyshev’s inequality of the exponential form.

The third line is obtained by the facts that

(nhn/β1/2
n )g̃n,ij(x, y) ≤ (nhn/β1/2

n )
2(tnn log2(tnn))1/3‖K‖

n2h2
n

= O


 1

β
1/2
n

(
log2(n)

nh3
n

)1/3

 = o(1)

and that exp(x) ≤ 1+x+x2 when |x| ≤ 1/2, where ‖K‖ denotes the maximum value of the kernel

function K in its support. The fourth line in (5.3) is based on the fact that exp(x) ≥ 1 + x when

x ≥ 0. Now,

n∑

i=1

n∑

j=1

Var(g̃n,ij(x, y)) ≤
n∑

i=1

n∑

j=1

σ2

(n2h2
n)2

K2
(

xi − x

hn
,
yj − y

hn

)
= O

(
1

n2h2
n

)
.

Combining this result and (25), we have

P

(
nhn

βn log n
[ḡn(x, y) − Eḡn(x, y)] > ǫ

)
≤ O

(
n−ǫβ

1/2
n

)
,

which is uniformly true for (x, y) ∈ Dhn . By similar arguments, we have

P

(
nhn

βn log n
[(−ḡn(x, y)) − E(−ḡn(x, y))] > ǫ

)

= P

(
nhn

βn log n
[ḡn(x, y) − E(ḡn(x, y))] < −ǫ

)

≤ O

(
n−ǫβ

1/2
n

)
.

So,

P

(
nhn

βn log n
|ḡn(x, y) − Eḡn(x, y)| > ǫ

)
≤ O

(
n−ǫβ

1/2
n

)
,

and

P (S2n > ǫ) ≤ [nη]2 · O
(

n−ǫβ
1/2
n

)
= O

(
n−ǫβ

1/2
n +2η

)
.

Consequently,
∑∞

n=1 P (S2n > ǫ) < ∞. By the Borel-Cantelli Lemma, we have

S2n = o(1), a.s.

Therefore
nhn

βn log n
‖ḡn(x, y) − Eḡn(x, y)‖Dhn

= o(1), a.s. (26)

Next, we write

‖g∗n(x, y)‖Dhn
≤ ‖g∗n(x, y) − ḡn(x, y)‖Dhn

+ ‖ḡn(x, y) − Eḡn(x, y)‖Dhn
+ ‖Eḡn(x, y)‖Dhn

. (27)

Since P (|εij | > (tij log2(tij))
1/3) ≤ (tij log2(tij))

−1E(|ε11|3) and

∞∑

i=1

∞∑

j=1

(tij log2(tij))
−1 =

∞∑

ℓ=1

(ℓ log2(ℓ))−1 < ∞,

24



we have
∞∑

i=1

∞∑

j=1

P (|εij | > (tij log2(tij))
1/3) < ∞.

By the Borel-Cantelli lemma, P (|εij | > (tij log2(tij))
1/3, i.o.) = 0. Therefore, there exists a full set

Ω0 such that for each ω ∈ Ω0 there exists a finite positive integer Nω and when max(i, j) ≥ Nω we

have

εij(ω) = ε̄ij(ω).

Hence, for any (x, y) ∈ Dhn , when n ≥ Nω,

|g∗n(x, y) − ḡn(x, y)|

=

∣∣∣∣∣∣
1

n2h2
n

n∑

i=1

n∑

j=1

(εij − ε̄ij)K

(
xi − x

hn
,
yj − y

hn

)∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

n2h2
n

Nω∑

i=1

Nω∑

j=1

(εij − ε̄ij)K

(
xi − x

hn
,
yj − y

hn

)∣∣∣∣∣∣

≤
Nω∑

i=1

Nω∑

j=1

|εij − ε̄ij |
‖K‖
n2h2

n

.

So,
nhn

βn log n
‖g∗n(x, y) − ḡn(x, y)‖Dhn

≤ nhn

βn log n
· C(Nω,K)

n2h2
n

= o(1), (28)

where C(Nω,K) = ‖K‖∑Nω
i=1

∑Nω
j=1 |εij − ε̄ij| is a factor depending on both Nω and K.

Finally, for any (x, y) ∈ Dhn ,

|Eḡn(x, y)| ≤ ‖K‖
n2h2

n

∑ ∑

(xi,yj)∈Bhn (x,y)

|Eε̄ij |

=
‖K‖
n2h2

n

∑ ∑

(xi,yj)∈Bhn (x,y)

∣∣∣EεijI|εij |≤(tij log2(tij))1/3

∣∣∣

=
‖K‖
n2h2

n

∑ ∑

(xi,yj)∈Bhn (x,y)

∣∣∣EεijI|εij |>(tij log2(tij))1/3

∣∣∣

≤ ‖K‖
n2h2

n

∑ ∑

(xi,yj)∈Bhn (x,y)

E
(
|εij |I|εij |>(tij log2(tij ))1/3

)

≤ ‖K‖
n2h2

n

∑ ∑

(xi,yj)∈Bhn (x,y)

E|εij |3(tij log2(tij))
−2/3

≤ ‖K‖
n2h2

n

∑ ∑

(xi,yj)∈Bhn (hn,hn)

E|εij |3(tij log2(tij))
−2/3

≤ E(ε3
11)‖K‖
n2h2

n

2nhn+1∑

i=1

2nhn+1∑

j=1

(tij log2(tij))
−2/3
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=
E(ε3

11)‖K‖
n2h2

n

(2nhn+1)2∑

ℓ=1

(ℓ log2(ℓ))−2/3

= O

(
(nhn)2/3

n2h2
n

)
,

which is uniformly true for (x, y) ∈ Dhn . In the above expression, Bhn(x, y) denotes a circle

centered at (x, y) with radius hn, log(1) is defined to be 1 in lines 5–8 for simplicity of presenta-

tion, and line 6 is obtained based on the facts that x ≥ hn and y ≥ hn when (x, y) ∈ Dhn and
∑∑

(xi,yj)∈Bhn (x,y)(tij log2(tij))
−2/3 ≤ ∑∑

(xi,yj)∈Bhn (hn,hn)(tij log2(tij))
−2/3 in such cases. There-

fore,
nhn

βn log n
‖Eḡn(x, y)‖Dhn

= O

(
1

βn log n
· 1

(nhn)1/3

)
= o(1). (29)

By combining (26)–(29), we have ‖g∗n(x, y)‖Dhn
= o

(
βn log n

nhn

)
, a.s..

Remark 1: For any (x, y) ∈ Dhn , we have

∑n
i=1

∑n
j=1 εijK

(
xi−x
hn

,
yj−y
hn

)

∑n
i=1

∑n
j=1 K

(
xi−x
hn

,
yj−y
hn

)

=

1
n2h2

n

∑n
i=1

∑n
j=1 εijK

(
xi−x
hn

,
yj−y
hn

)

1 +
(

1
n2h2

n

∑n
i=1

∑n
j=1 K

(
xi−x
hn

,
yj−y
hn

)
− 1

)

=
1

n2h2
n

n∑

i=1

n∑

j=1

εijK

(
xi − x

hn
,
yj − y

hn

)
1 −


 1

n2h2
n

n∑

i=1

n∑

j=1

K

(
xi − x

hn
,
yj − y

hn

)
− 1


+ o

(
1

nhn

)
 .

So, by equations (23) and (24), we have

∥∥∥∥∥∥

∑n
i=1

∑n
j=1 εijK

(
xi−x
hn

,
yj−y
hn

)

∑n
i=1

∑n
j=1 K

(
xi−x
hn

,
yj−y
hn

)

∥∥∥∥∥∥
Dhn

= O

(
log(n)

nhn

)
, a.s. (30)

By similar arguments to those in Proposition 2, it can be shown that, under conditions stated in

Theorem 2, we have

∥∥∥∥∥∥

∑n
i=1

∑n
j=1

(
ε2
ij − σ2

)
K
(

xi−x
hn

,
yj−y
hn

)

∑n
i=1

∑n
j=1 K

(
xi−x
hn

,
yj−y
hn

)

∥∥∥∥∥∥
Dhn

= o(1), a.s. (31)

Proof of Theorem 2. First, we prove the second and third equations of (16). The first

equation of (16) can be proved in a similar way. For ℓ = 1, 2 and any (x, y) ∈ Dhn , based on (5),

we have

e(ℓ)(x, y)
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=

∑
(xi,yj)∈M

(ℓ)
n (x,y)

{
εij + f(xi, yj) − â(ℓ)(x, y) − b̂(ℓ)(x, y)(xi − x) − ĉ(ℓ)(x, y)(yj − y)

}2
K(xi−x

hn
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hn

)

∑
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(ℓ)
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K
(
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hn
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yj−y
hn

)

=
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(ℓ)
n (x,y)

ε2
ijK(xi−x

hn
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yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

) +

2
∑

(xi,yj)∈M
(ℓ)
n (x,y)

εij

[
f(xi, yj) − â(ℓ)(x, y) − b̂(ℓ)(x, y)(xi − x) − ĉ(ℓ)(x, y)(yj − y)

]
K(xi−x

hn
,

yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

) +

∑
(xi,yj)∈M

(ℓ)
n (x,y)

[
f(xi, yj) − â(ℓ)(x, y) − b̂(ℓ)(x, y)(xi − x) − ĉ(ℓ)(x, y)(yj − y)

]2
K(xi−x

hn
,

yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

)

=: I
(ℓ)
1 (x, y) + I

(ℓ)
2 (x, y) + I

(ℓ)
3 (x, y) (32)

By similar results to (31), we have

‖I(ℓ)
1 − σ2‖Dhn

= o(1); a.s. (33)

By Taylor’s expansion of f(xi, yj) at the point (x, y), we have

I
(ℓ)
3 (x, y)

=
(
f(x, y) − â(ℓ)(x, y)

)2
+

(
f ′

x(x, y) − b̂(ℓ)(x, y)
)2

h2
n

∑
(xi,yj)∈M

(ℓ)
n (x,y)

(
xi−x
hn

)2
K
(

xi−x
hn

,
yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

) +

(
f ′

y(x, y) − ĉ(ℓ)(x, y)
)2

h2
n

∑
(xi,yj)∈M

(ℓ)
n (x,y)

(
yj−y
hn

)2
K
(

xi−x
hn

,
yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

) +

2
(
f(x, y) − â(ℓ)(x, y)

) (
f ′

x(x, y) − b̂(ℓ)(x, y)
)

hn

∑
(xi,yj)∈M

(ℓ)
n (x,y)

xi−x
hn

K
(

xi−x
hn

,
yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

) +

2
(
f(x, y) − â(ℓ)(x, y)

) (
f ′

y(x, y) − ĉ(ℓ)(x, y)
)

hn

∑
(xi,yj)∈M

(ℓ)
n (x,y)

yj−y
hn

K
(

xi−x
hn

,
yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

) +

2
(
f ′

x(x, y) − b̂(ℓ)(x, y)
) (

f ′
y(x, y) − ĉ(ℓ)(x, y)

)
h2

n

∑
(xi,yj)∈M

(ℓ)
n (x,y)

(xi−x)(yj−y)
h2

n
K
(

xi−x
hn

,
yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

) +

o(h2
n)

By equations (10)–(12) and the fact that the absolute value of each ratio of two summations

appeared on the right hand side of the above equation is less than or equal to 1, we have

‖I(ℓ)
3 ‖Dhn

= o(1), a.s. (34)
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For I
(ℓ)
2 , by Taylor’s expansion and equations (10)-(12), we have

‖I(ℓ)
2 ‖Dhn

≤ 2‖f − â‖Dhn

∥∥∥∥∥∥∥

∑
(xi,yj)∈M

(ℓ)
n (x,y)

εijK(xi−x
hn

,
yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

)

∥∥∥∥∥∥∥
Dhn

+

2hn‖f ′
x − b̂‖Dhn

∥∥∥∥∥∥∥

∑
(xi,yj)∈M

(ℓ)
n (x,y)

εij
xi−x
hn

K(xi−x
hn

,
yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

)

∥∥∥∥∥∥∥
Dhn

+

2hn‖f ′
y − ĉ‖Dhn

∥∥∥∥∥∥∥

∑
(xi,yj)∈M

(ℓ)
n (x,y)

εij
yj−y
hn

K(xi−x
hn

,
yj−y
pn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

)

∥∥∥∥∥∥∥
Dhn

+

o(hn)

∥∥∥∥∥∥∥

∑
(xi,yj)∈M

(ℓ)
n (x,y)

εijK(xi−x
hn

,
yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

)

∥∥∥∥∥∥∥
Dhn

(35)

Using similar arguments to those in the proof of Proposition 2, we can prove that
∥∥∥∥∥∥∥

∑
(xi,yj)∈M

(ℓ)
n (x,y)

εij
xi−x
hn

K(xi−x
hn

,
yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

)

∥∥∥∥∥∥∥
Dhn

= o(1), a.s.

and ∥∥∥∥∥∥∥

∑
(xi,yj)∈M

(ℓ)
n (x,y)

εij
yj−y
hn

K(xi−x
hn

,
yj−y
pn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

)

∥∥∥∥∥∥∥
Dhn

= o(1), a.s.

Therefore, by combining these results with (10)–(12), (30) and (35), we have

‖I(ℓ)
2 ‖Dhn

= o(1), a.s. (36)

By (32)–(34) and (36), the second and third equations of (16) are proved.

Next, we assume that (xτ , yτ ) is a given nonsingular point of a JLC, the projection of a point

(x, y) ∈ Jhn to the JLC is (xτ , yτ ) and the Euclidean distance between the two points is chn with

0 < c < 1 a constant. In such cases, as in (5.10), we still write

e(ℓ)(x, y) = I
(ℓ)
1 (x, y) + I

(ℓ)
2 (x, y) + I

(ℓ)
3 (x, y).

Then, by (33), we have

I
(ℓ)
1 (x, y) = σ2 + o(1), a.s. (37)

For I
(ℓ)
2 (x, y), it can be written as

I
(ℓ)
2 (x, y) =

2
∑

(xi,yj)∈M
(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

)




∑

(xi,yj)∈Q
(1)
n (x,y)

⋂
M

(ℓ)
n (x,y)

+
∑

(xi,yj)∈Q
(2)
n (x,y)

⋂
M

(ℓ)
n (x,y)




εij

[
f(xi, yj) − â(ℓ)(x, y) − b̂(ℓ)(x, y)(xi − x) − ĉ(ℓ)(x, y)(yj − y)

]
K

(
xi − x

hn
,
yj − y

hn

)

=: I
(ℓ)
21 (x, y) + I

(ℓ)
22 (x, y). (38)
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By equations (13)-(15),

I
(ℓ)
21 (x, y) =

2
∑

(xi,yj)∈Q
(1)
n (x,y)

⋂
M

(ℓ)
n (x,y)

εij [f(xi, yj) − f−(xτ , yτ )]K(xi−x
hn

,
yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

) −

(C1 + o(1))
∑

(xi,yj)∈Q
(1)
n (x,y)

⋂
M

(ℓ)
n (x,y)

εijK(xi−x
hn

,
yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

) −

(C2 + o(1))
∑

(xi,yj)∈Q
(1)
n (x,y)

⋂
M

(ℓ)
n (x,y)

εij
xi−x
hn

K(xi−x
hn

,
yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

) −

(C3 + o(1))
∑

(xi,yj)∈Q
(1)
n (x,y)

⋂
M

(ℓ)
n (x,y)

εij
yj−y
hn

K(xi−x
hn

,
yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

)

= o(1), a.s., (39)

where C1, C2 and C3 are constants. In (39), we have used the results that the ratio of two summa-

tions appeared in each of the four terms on the right hand side of the first equation is of order o(1)

almost surely, which is a consequence of (30). Similarly,

I
(ℓ)
22 (x, y) = o(1), a.s. (40)

Now, let M̃ (ℓ), for ℓ = 1, 2, be two halves of the support of the kernel function K separated by a

line passing the center of the circular support in the direction perpendicular to the asymptotic direc-

tion of (b̂(x, y), ĉ(x, y)), which is ~g = ( 1

β̃02

∫ ∫
Q(2) uK(u, v) dudv, 1

β̃20

∫ ∫
Q(2) vK(u, v) dudv) (cf., equa-

tions (14) and (15)). Define Q(1ℓ) = Q(1)⋂ M̃ (ℓ), Q(2ℓ) = Q(2)⋂ M̃ (ℓ), A0ℓ =
∫ ∫

Q(2ℓ) K(u, v) dudv,

A1ℓ =
∫ ∫

Q(2ℓ) uK(u, v) dudv, and A2ℓ =
∫ ∫

Q(2ℓ) vK(u, v) dudv, where Q(1) and Q(2) are defined

in Theorem 1. By the isotropic property of K and by similar arguments to those in the proof of

equation (23), we have

∥∥∥∥∥∥∥

1

n2h2
n

∑

(xi,yj)∈M
(ℓ)
n (x,y)

K

(
xi − x

hn
,
yj − y

hn

)
− 1

2

∥∥∥∥∥∥∥
Dhn

= o(1). (41)

Also, for a function φ(x, y) satisfying the condition that supx2+y2≤1 |φ(x, y)| ≤ bφ < ∞, we have

∣∣∣∣∣∣∣

1

n2h2
n

∑

(xi,yj)∈Q
(1)
n (x,y)

⋂
M

(ℓ)
n (x,y)

φ

(
xi − x

hn
,
yj − y

hn

)
K

(
xi − x

hn
,
yj − y

hn

)
−

1

n2h2
n

∑

(xi,yj)∈Q
(1)
n (x,y)

⋂
M̃

(ℓ)
n (x,y)

φ

(
xi − x

hn
,
yj − y

hn

)
K

(
xi − x

hn
,
yj − y

hn

)
∣∣∣∣∣∣∣
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≤ bφ‖K‖ 1

n2h2
n

∑

(xi,yj)∈M
(ℓ)
n (x,y)∆M̃

(ℓ)
n (x,y)

1

= O(θn) = o(1) a.s., (42)

where M
(ℓ)
n (x, y)∆M̃

(ℓ)
n (x, y) = (M

(ℓ)
n (x, y)\M̃ (ℓ)

n (x, y))
⋃

(M̃
(ℓ)
n (x, y)\M (ℓ)

n (x, y)), M̃
(ℓ)
n (x, y), for

ℓ = 1, 2, are two halves of the neighborhood Mn(x, y) separated by a line passing the center of

Mn(x, y) in the direction perpendicular to ~g, and θn is the acute angle between the two directions

(b̂(x, y), ĉ(x, y)) and ~g. The last equation in (42) is a direct conclusion of equations (14) and (15).

Using (41), (42), and results about â(ℓ)(x, y), b̂(ℓ)(x, y) and ĉ(ℓ)(x, y) similar to those in (13)–

(15), we have

I
(ℓ)
3 (x, y)

=

∑
(xi,yj)∈M

(ℓ)
n (x,y)

[
f(xi, yj) − â(ℓ)(x, y) − b̂(ℓ)(x, y)(xi − x) − ĉ(ℓ)(x, y)(yj − y)

]2
K(xi−x

hn
,

yj−y
hn

)

∑
(xi,yj)∈M

(ℓ)
n (x,y)

K
(

xi−x
hn

,
yj−y
hn

)

=
2

n2h2
n

∑

(xi,yj)∈M
(ℓ)
n (x,y)

[
f(xi, yj) − f−(xτ , yτ ) − dτA0ℓ −

dτA1ℓ

β̃02

xi − x

hn
−

dτA2ℓ

β̃20

yj − y

hn

]2

K(
xi − x

hn
,
yj − y

hn
) + o(1)

=
2

n2h2
n




∑

(xi,yj)∈Q
(1)
n (x,y)

⋂
M

(ℓ)
n (x,y)

+
∑

(xi,yj)∈Q
(2)
n (x,y)

⋂
M

(ℓ)
n (x,y)




[
f(xi, yj) − f−(xτ , yτ ) − dτA0ℓ −

dτA1ℓ

β̃02

xi − x

hn
− dτA2ℓ

β̃20

yj − y

hn

]2

K(
xi − x

hn
,
yj − y

hn
) + o(1)

=
2

n2h2
n


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∑

(xi,yj)∈Q
(1)
n (x,y)

⋂
M̃

(ℓ)
n (x,y)

+
∑

(xi,yj)∈Q
(2)
n (x,y)

⋂
M̃

(ℓ)
n (x,y)




[
f(xi, yj) − f−(xτ , yτ ) − dτA0ℓ −

dτA1ℓ

β̃02

xi − x

hn
− dτA2ℓ

β̃20

yj − y

hn

]2

K(
xi − x

hn
,
yj − y

hn
) + o(1)

=
2

n2h2
n

∑

(xi,yj)∈Q
(1)
n (x,y)

⋂
M̃

(ℓ)
n (x,y)

[
−dτA0ℓ −

dτA1ℓ

β̃02

xi − x

hn
− dτA2ℓ

β̃20

yj − y

hn

]2

K(
xi − x

hn
,
yj − y

hn
) +

2

n2h2
n

∑

(xi,yj)∈Q
(2)
n (x,y)

⋂
M̃

(ℓ)
n (x,y)

[
dτ − dτA0ℓ −

dτA1ℓ

β̃02

xi − x

hn
− dτA2ℓ

β̃20

yj − y

hn

]2

K(
xi − x

hn
,
yj − y

hn
)

+o(1)

= 2d2
τ

∫ ∫

Q(1ℓ)

[
A0ℓ +

A1ℓs

β̃02

+
A2ℓt

β̃20

]2

K(s, t) dsdt +
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2d2
τ

∫ ∫

Q(2ℓ)

[
1 − A0ℓ −

A1ℓs

β̃02

− A2ℓt

β̃20

]2

K(s, t) dsdt + o(1)

= d2
τ

(
C(ℓ)

τ

)2
+ o(1), a.s. (43)

where

C(ℓ)
τ =



2

∫ ∫

Q(1ℓ)

[
A0ℓ +

A1ℓs

β̃02

+
A2ℓt

β̃20

]2

K(s, t) dsdt+

2

∫ ∫

Q(2ℓ)

[
1 − A0ℓ −

A1ℓs

β̃02

− A2ℓt

β̃20

]2

K(s, t) dsdt





1/2

.

In the fifth equation of (43), we have used the facts that (i) f(xi, yj)− f−(xτ , yτ ) = O
(

1
nhn

)
when

(xi, yj) ∈ Q
(1)
n (x, y), and (ii) f(xi, yj) − f−(xτ , yτ ) = dτ + O

(
1

nhn

)
when (xi, yj) ∈ Q

(2)
n (x, y).

By expressions (37)–(40) and (43), the second and third equations of (17) are proved. The

first equation of (17) can be proved in a similar way, after using the properties of the kernel

function that (i)
∫ ∫

Q(1) K(u, v) dudv = 1 −
∫ ∫

Q(2) K(u, v) dudv, (ii)
∫ ∫

Q(1) uK(u, v) dudv =

−
∫ ∫

Q(2) uK(u, v) dudv, and (iii)
∫ ∫

Q(1) vK(u, v) dudv = −
∫ ∫

Q(2) vK(u, v) dudv.

Proof of Theorem 3. The estimator f̂1(x, y) is one of â(1)(x, y) and â(2)(x, y) when (x, y) ∈
Dhn . By results similar to those in Theorem 1, both of them are uniformly consistent for estimating

f in Dhn . Therefore, equation (18) is true.

Proof of Theorem 4. The estimator f̂2(x, y) is one of â(x, y), â(1)(x, y), â(2)(x, y), and

(â(1)(x, y) + â(2)(x, y))/2, all of which are uniformly consistent for estimating f in Dhn (cf., (10)).

Therefore, equation (19) is true.

For a given nonsingular point (xτ , yτ ) on a JLC, suppose that the projection of a point (x, y) to

the JLC is (xτ , yτ ), the Euclidean distance between the two points is chn with 0 < c < 1 a constant,

without loss of generality the tangent line of the JLC at (xτ , yτ ) is assumed to be parallel to the

y-axis, and (x, y) is on the left side of (xτ , yτ ). Then, by (17), we have e(1)(x, y) = σ2 + o(1), a.s.,

e(2)(x, y) = σ2+d2
τ (C

(2)
τ )2+o(1), a.s., and e(x, y) = σ2+d2

τC
2
τ +o(1), a.s., where (C

(2)
τ )2 and C2

τ are

positive constants. Therefore, when dτ/σ > 1/Cτ and n is large enough, e(1)(x, y) < e(x, y)/2 and

e(1)(x, y) < e(2)(x, y). Consequently, f̂2(x, y) equals â1(x, y). So, equation (20) is true by results

similar to (10). When dτ/σ ≤ 1/Cτ , e(x, y)/2 ≤ min(e(1)(x, y), e(2)(x, y)). By (7), f̂2(x, y) = â(x, y)

in such a case. So equation (21) is true according to (13).

Proof of Theorem 5. For a given point (x, y) ∈ Dhn1+hn2 , we can write

â(x, y; f̂
1
) − f(x, y) =

(
â(x, y; f̂

1
) − â(x, y; f)

)
+
(
â(x, y; f ) − f(x, y)

)
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where f denotes the vector of {f(i/n, j/n), i, j = 1, 2, . . . , n}. So

‖â(x, y; f̂
1
) − f(x, y)‖Dhn1+hn2

≤ ‖â(x, y; f̂
1
) − â(x, y; f)‖Dhn1+hn2

+ ‖â(x, y; f) − f(x, y)‖Dhn1+hn2
.

(44)

Now, the local linear kernel estimator â(x, y; z), which uses kernel function K and bandwidth hn,

has the following expression (cf., e.g., equation (2.2) in Qiu (2004)):

â(x, y; z) =

∑n
i=1

∑n
j=1 wij(x, y)zij∑n

i=1

∑n
j=1 wij(x, y)

,

where

wij(x, y) =
[
A(1)(x, y) + A(2)(x, y)(xi − x) + A(3)(x, y)(yj − y)

]
K

(
xi − x

hn
,
yj − y

hn

)

A(1)(x, y) = B(20)(x, y)B(02)(x, y) − B(11)(x, y)B(11)(x, y)

A(2)(x, y) = B(01)(x, y)B(11)(x, y) − B(10)(x, y)B(02)(x, y)

A(3)(x, y) = B(10)(x, y)B(11)(x, y) − B(01)(x, y)B(20)(x, y)

B(r1r2)(x, y) =
n∑

i=1

n∑

j=1

(xi − x)r1(yj − y)r2K

(
xi − x

hn
,
yj − y

hn

)
, for r1, r2 = 0, 1, 2.

Similar to (23), we have, for r1, r2 = 0, 1, 2,
∥∥∥∥∥∥

1

n2h2
n

n∑

i=1

n∑

j=1

(
xi − x

hn

)r1
(

yj − y

hn

)r2

K

(
xi − x

hn
,
yj − y

hn

)
− β̃r1r2

∥∥∥∥∥∥
Dhn1+hn2

= O

(
1

nhn

)
, (45)

where β̃r1r2 =
∫ 1
−1

∫ 1
−1 ur1vr2K(u, v) dudv. Since the kernel function K is assumed to be an isotropic

bivariate density function, we have β̃01 = β̃10 = 0. By these results, we have
∥∥∥∥

1

n4h8
n

A(1)(x, y) − C∗
K

∥∥∥∥
Dhn1+hn2

= o(1),

∥∥∥∥
1

n4h7
n

A(2)(x, y)

∥∥∥∥
Dhn1+hn2

= o(1),

∥∥∥∥
1

n4h7
n

A(3)(x, y)

∥∥∥∥
Dhn1+hn2

= o(1), (46)

where C∗
K = β̃20β̃02 − β̃2

11 > 0. By these results and equation (18), we have
∥∥∥â(x, y; f̂

1
) − â(x, y; f )

∥∥∥
Dhn1+hn2

=

∥∥∥∥∥∥

∑n
i=1

∑n
j=1 wij(x, y)

(
f̂1(xi, yj) − f(xi, yj)

)

∑n
i=1

∑n
j=1 wij(x, y)

∥∥∥∥∥∥
Dhn1+hn2

=

∥∥∥∥∥∥

∑n
i=1

∑n
j=1

[
n4h8

n2C
∗
K + o(n4h8

n2)
] (

f̂1(xi, yj) − f(xi, yj)
)

K(xi−x
hn2

,
yj−y
hn2

)
∑n

i=1

∑n
j=1

[
n4h8

n2C
∗
K + o(n4h8

n2)
]
K(xi−x

hn2
,

yj−y
hn2

)

∥∥∥∥∥∥
Dhn1+hn2

≤
∥∥∥f̂1 − f

∥∥∥
Dhn1+hn2

(1 + o(1)) = O(h2
n1) + O

(
log(n)

nhn1

)
a.s., (47)
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where hn1 and hn2 are two bandwidths used in the two steps of (8). Since f(x, y) is assumed to have

continuous second order derivatives at any (x, y) ∈ Dhn1+hn2 , by Taylor’s expansion of f(xi, yj) at

(x, y) and by (45) and (46), we have

n∑

i=1

n∑

j=1

wij(x, y) [f(xi, yj) − f(x, y)]

= n4h8
n2C

∗
K

n∑

i=1

n∑

j=1

(1 + o(1)) [f(xi, yj) − f(x, y)] K

(
xi − x

hn2
,
yj − y

hn2

)

= n4h8
n2C

∗
K

n∑

i=1

n∑

j=1

(1 + o(1))
[
f ′

x(x, y)(xi − x) + f ′
y(x, y)(yj − y)

]
K

(
xi − x

hn2
,
yj − y

hn2

)
+

1

2
n4h8

n2C
∗
K

n∑

i=1

n∑

j=1

(1 + o(1))
[
f ′′

xx(x, y)(xi − x)2 + 2f ′′
xy(x, y)(xi − x)(yj − y)+

f ′′
yy(x, y)(yj − y)2

]
K

(
xi − x

hn2
,
yj − y

hn2

)
+ n4h8

n2C
∗
K(1 + o(1))o(n2h4

n2)

= n4h8
n2C

∗
K(1 + o(1))n2h3

n2


f ′

x(x, y)
1

n2h2
n2

n∑

i=1

n∑

j=1

(
xi − x

hn2

)
K

(
xi − x

hn2
,
yj − y

hn2

)
+

f ′
y(x, y)

1

n2h2
n2

n∑

i=1

n∑

j=1

(
yj − y

hn2

)
K

(
xi − x

hn2
,
yj − y

hn2

)
+

1

2
n4h8

n2C
∗
K(1 + o(1))n2h4

n2


f ′′

xx(x, y)
1

n2h2
n2

n∑

i=1

n∑

j=1

(
xi − x

hn2

)2

K

(
xi − x

hn2
,
yj − y

hn2

)
+

2f ′′
xy(x, y)

1

n2h2
n2

n∑

i=1

n∑

j=1

(
xi − x

hn2

)(
yj − y

hn2

)
K

(
xi − x

hn2
,
yj − y

hn2

)
+

f ′′
yy(x, y)

1

n2h2
n2

n∑

i=1

n∑

j=1

(
yj − y

hn2

)2

K

(
xi − x

hn2
,
yj − y

hn2

)
+ n4h8

n2C
∗
K(1 + o(1))o(n2h4

n2)

= n4h8
n2C

∗
K(1 + o(1))n2h3

n2

[
f ′

x(x, y)(β̃10 + O(
1

nhn2
)) + f ′

y(x, y)(β̃01 + O(
1

nhn2
))

]
+

1

2
n4h8

n2C
∗
K(1 + o(1))n2h4

n2

[
f ′′

xx(x, y)β̃20 + 2f ′′
xy(x, y)β̃11 + f ′′

yy(x, y)β̃02 + o(1)
]

+

n4h8
n2C

∗
K(1 + o(1))o(n2h4

n2)

= n4h8
n2C

∗
K(1 + o(1))n2h3

n2 o(hn2) +
1

2
n4h8

n2C
∗
K(1 + o(1))n2h4

n2

[
f ′′

xx(x, y)β̃20+

2f ′′
xy(x, y)β̃11 + f ′′

yy(x, y)β̃02 + o(1)
]

+ n4h8
n2C

∗
K(1 + o(1))o(n2h4

n2). (48)

In the last equation of (48), we have used the results β̃01 = β̃10 = 0 and the condition that

1/nh2
n2 = o(1). Obviously, (48) is uniformly true for (x, y) ∈ Dhn1+hn2 . Similarly, we have

n∑

i=1

n∑

j=1

wij(x, y)

= n4h8
n2C

∗
K(1 + o(1))n2h2

n2

1

n2h2
n2

n∑

i=1

n∑

j=1

K

(
xi − x

hn2
,
yj − y

hn2

)

33



= n4h8
n2C

∗
K(1 + o(1))n2h2

n2(1 + o(1)), (49)

which is uniformly true for (x, y) ∈ Dhn1+hn2 . By (48) and (49), we have

‖â(x, y; f) − f(x, y)‖Dhn1+hn2

=

∥∥∥∥∥

∑n
i=1

∑n
j=1 wij(x, y) [f(xi, yj) − f(x, y)]
∑n

i=1

∑n
j=1 wij(x, y)

∥∥∥∥∥
Dhn1+hn2

= O(h2
n2). (50)

By (44), (47), and (50) and the condition that hn2 ∼ hn1, we have

∥∥∥â(x, y; f̂
1
) − f(x, y)

∥∥∥
Dhn1+hn2

= O(h2
n1) + O

(
log(n)

nhn1

)
, a.s.

Similar results can be derived for â(1)(x, y; f̂
1
) and â(2)(x, y; f̂

1
). Since f̂(x, y; f̂

1
) is one of â(x, y; f̂

1
),

â(1)(x, y; f̂
1
), â(2)(x, y; f̂

1
), and (â(1)(x, y; f̂

1
) + â(2)(x, y; f̂

1
))/2, equation (22) is proved.

6 Concluding Remarks

We have introduced three jump-preserving surface reconstruction procedures (6)-(8). Procedure

(6) preserves the jumps well but its estimated surface is quite noisy compared to the estimated

surfaces of the other two procedures. Procedure (7) preserves the jumps well and also smooths

away the noise efficiently when the signal-to-noise ratio is high. When this ratio is low, its ability

to preserve jumps is limited. Procedure (8) is a combination of procedures (6) and (7). Numerical

examples show that it preserves the nonsingular points of the JLCs well and also smooths away the

noise efficiently. Theoretically, it has been proved that its estimated surface is uniformly, strongly

consistent in continuity regions of f .
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