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Abstract: In many applications, quality of a process is best characterized by a

functional relationship between a response variable and one or more explanatory

variables. Profile monitoring is used for checking the stability of this relationship

over time. Control charts based on nonparametric regression are particularly useful

when the in-control (IC) or out-of-control (OC) relationship is too complicated to

be specified parametrically. This paper proposes a novel nonparametric control

chart, using a sequential change-point formulation with generalized likelihood ratio

tests. Its control limits are determined by a bootstrap procedure. This chart can

be implemented without any knowledge about the error distributions, as long as a

few IC profiles are available beforehand. Moreover, benefiting from certain good

properties of the dynamic change-point approach and of the proposed charting

statistic, the proposed control chart not only offers a balanced protection against

shifts of different magnitudes, but also adapts to the smoothness of the difference

between IC and OC regression functions. Consequently, it has a nearly optimal

performance for various OC conditions.
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1. Introduction

Because of recent progress in sensing and information technologies, auto-

matic data acquisition is commonly used in industry. Consequently, a large

amount of quality related data of certain processes become available. Statistical

process control (SPC) of such data-rich processes is an important component

for monitoring their performance. In many applications, quality of a process is

characterized by the relationship between a response variable and one or more

explanatory variables. At each sampling stage, one observes a collection of data

points of these variables that can be represented by a curve (or, profile). In
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some calibration applications, the profile can be described adequately by a linear

regression model. In some other applications, more flexible models are necessary

for describing profiles properly. This paper focuses on monitoring nonparametric

profiles over time.

Most existing references on profile monitoring focus on cases in which profiles

can be adequately described by a linear regression model. See, for instance, Kang

and Albin (2000), Kim, Mahmoud and Woodall (2003), Mahmoud and Woodall

(2004), Zou, Zhang and Wang (2006), and Mahmoud et al. (2007), among sev-

eral others. Multiple and polynomial regression profile models are considered by

Zou, Tsung and Wang (2007), and Kazemzadeh, Noorossana and Amiri (2007).

Recently, nonlinear regression profile models have attracted much attention from

statisticians. For instance, Williams, Woodall and Birch (2007) suggest three

general approaches to nonlinear profile monitoring in Phase I analysis. Colosimo

and Pacella (2007) propose methods for monitoring roundness profiles of manu-

factured items. Williams et al. (2007) apply the nonlinear regression approach by

Williams, Woodall and Birch (2007) to monitoring nonlinear dose-response pro-

files. Lada, Lu and Wilson (2002) and Ding, Zeng and Zhou (2006) investigate

a general category of nonlinear profiles, using dimension-reduction techniques,

wavelet transformations, and independent component analysis. See Woodall et

al. (2004) for an overview on this topic.

Recently, Zou, Tsung and Wang (2008) considered the nonparametric profile

model

yij = g (xij) + εij, i = 1, . . . , nj , j = 1, 2, . . . , (1.1)

where {xij , yij}nj

i=1 is the jth random sample, xij is the ith design point in the

jth sample, g is a smooth nonparametric profile, and εij are i.i.d. random errors

with mean 0 and variance σ2. Zou, Tsung and Wang propose a control chart

that integrates the classical multivariate exponentially weighted moving average

procedure with the generalized likelihood ratio testing procedure that is based

on nonparametric regression. This chart can monitor shifts in both g and σ2.

It has been shown that this approach overcomes the fundamental limitation of

parametric profile monitoring techniques that they cannot detect certain shifts

due to misspecified out-of-control (OC) models.

Zou, Tsung and Wang’s (2008) control chart, which is called the nonpara-
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metric exponentially weighted moving averaging (NEWMA) chart hereafter, has

a number of model assumptions. In certain applications, these assumptions may

not all hold and performance may be unsatisfactory. This is briefly discussed

below. First, the NEWMA chart makes explicit use of the IC true regression

function g and the error variance σ2 in model (1.1). In practice, both g and

σ2 are often unknown and need to be estimated from IC data. If such data are

of small to moderate size, then there would be considerable uncertainty in the

parameter estimates, which in turn would distort the IC run length distribution

of the control chart. Even if the control limit of the chart is adjusted properly to

attain a desired IC run length behavior, its OC run length would still be severely

compromised (cf. Jones (2002)). Second, the NEWMA chart assumes that the

error distribution, say F , is Normal, while in practice F is often unknown. In

such cases, it remains challenging to design the NEWMA chart properly (see

Remark 2 in Zou, Tsung and Wang (2008) for related discussion). Third, numer-

ical examples in Zou, Tsung and Wang (2008) demonstrate that the NEWMA

chart depends heavily on the choice of a bandwidth used in smoothing profile

data. However, the proper choice of this parameter is not discussed thoroughly.

Fourth, the NEWMA chart has another challenge that its best performance can

be achieved only after it is “tuned” to the shift magnitude that is again often

unknown in practice.

In this article, we propose a new control chart that addresses the issues raised

above. The new control chart adopts the on-line change-point detection approach

(cf. Hawkins Qiu and Kang (2003)). It handles sequential profile readings by

simultaneously updating parameter estimates and checking for OC conditions.

An adaptive procedure for selecting the bandwidth parameter is incorporated

into the construction of the control chart so that it can adapt to the unknown

smoothness of the difference between the IC and OC regression functions which,

remarkably, improves its robustness to various OC profile conditions. Further-

more, a bootstrap procedure is used to determine the control limits of the pro-

posed chart without any knowledge of F , as long as a few, say m0, IC profiles

are available beforehand. These m0 IC profiles are mainly used for estimating

the error distribution. Thus, m0 does not need to be large.

The proposed control chart is described in detail in Section 2. Its numeri-
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cal performance is investigated in Section 3. In Section 4, we demonstrate the

method using an example from the semiconductor manufacturing industry. Sev-

eral remarks conclude the article in Section 5. Some technical details are provided

in the Appendix.

2. Methodology

We describe the proposed control chart in four parts. In Subsection 2.1,

the change-point formulation and the associated generalized likelihood ratio test

are introduced. A Phase II control chart based on these techniques is described

in Subsection 2.2. A bootstrap procedure for determining the control limits is

presented in Subsection 2.3. Finally, some practical guidelines regarding design

and implementation of the proposed control chart are provided in Subsection 2.4.

2.1. Change-point model and generalized likelihood ratio test

To ease presentation, we assume that model (1.1) has an unknown but sta-

ble error variance over time, the nj’s all have the same value n, and design

points {x1j , . . . , xnj} are fixed for different j, denoted as X = {x1, . . . , xn}. The

assumption of stable error variance is often approximately valid in calibration

applications of manufacturing industry, and is also consistent with the existing

literature on profile monitoring. Possible extensions of the proposed control chart

to cases in which both the regression function and the error variance have shifts,

or the design points are random, are briefly discussed in Section 5.

The change-point model can be expressed as

yij =

{
g(xi) + εij , i = 1, . . . , n, if 1 ≤ j ≤ τ

g1(xi) + εij , i = 1, . . . , n, if τ < j ≤ t,
(2.1)

where τ is the unknown change point, g 6= g1 are the unknown IC and OC

regression functions, and εij are i.i.d. errors with an unknown distribution F of

mean 0 and unknown variance σ2.

To check whether a possible change point occurs at τ = k, a two-sample

generalized likelihood ratio (GLR) test for testing the null hypothesis that g and

g1 are the same can be derived in a way similar to that in Fan, Zhang and Zhang

(2001). For ease of exposition, we can think of F as normal, although this is

not necessary in either asymptotic theory or practical use of the proposed chart.

The major idea in deriving the GLR test is to replace the unknown functions g
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and g1 by their nonparametric estimators constructed from profile data when we

define the GLR statistic. To be specific, the generalized log-likelihood functions

under the IC and OC conditions are, respectively,

l0 = −nt ln
(√

2πσ
)
−

t∑

j=1

[ 1

2σ2

n∑

i=1

(
yij − ĝ(0)(xij)

)2 ]

l1 = −nt ln
(√

2πσ
)
−

k∑

j=1

[ 1

2σ2

n∑

i=1

(
yij − ĝ(1)(xij)

)2 ]

−
t∑

j=k+1

[ 1

2σ2

n∑

i=1

(yij − ĝ1(xij))
2
]
,

where ĝ(0)(·) denotes the local linear kernel estimator (LLKE) of g based on the

pooled t profiles, and ĝ(1)(·) and ĝ1(·) denote the LLKEs of g and g1 based on the

first k and the remaining t − k profiles, respectively. After some mathematical

manipulations, the GLR statistic up to time point t is defined by

Th,k,t = −2(l0 − l1) =
k(t − k)

tσ2

(
Ȳ 0,k − Ȳ k,t

)T
Vh

(
Ȳ 0,k − Ȳ k,t

)
, (2.2)

where

Ȳ i,m =
1

m − i

m∑

j=i+1

Y j, Y j = (y1j , . . . , ynj)
T ,

Vh = WT
h + Wh − W⊗

h , Wh = (W n(x1), . . . ,W n(xn))T ,

W n(xi) = (Wn1(xi), . . . ,Wnn(xi))
T , Wnj(x) = Unj(x)

/ n∑

i=1

Uni(x),

Unj(x) = Kh(xj − x) [mn2(x) − (xj − x)mn1(x)] ,

mnl(x) =
1

n

n∑

j=1

(xj − x)lKh(xj − x), l = 1, 2,

Kh(·) = K(·/h)/h, K is a symmetric density kernel function, h is a bandwidth,

and A⊗ = AT A. Obviously, the test statistic (2.2) is a two-sample counterpart

of the one-sample GLR test statistic in Fan, Zhang and Zhang (2001). Since σ2 is

assumed unknown here, we replace it by the consistent nonparametric estimator
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originally suggested by Hall and Marron (1990),

σ̂2
t =

1

t(n − df)

t∑

j=1

(Y j − WhY j)
⊗, (2.3)

where df = tr(Vh).

Remark 1 The above testing problem is analogous to nonparametric covari-

ance analysis or comparisons of multiple curves in the context of nonparametric

regression testing. Many references in this area can be found in the literature un-

der various settings and assumptions, including Hall and Hart (1990), Young and

Bowman (1995), Kulasekera and Wang (1997), and Dette and Neumeyer (2001).

A recent review on this topic is given by Neumeyer and Dette (2003). From an

asymptotic viewpoint, Th,k,t in (2.2) is similar to the test statistic based on the

difference of two variance estimators constructed from the data that are before

and after the change-point, respectively. Dette and Neumeyer (2001) show that

the latter statistic has good finite sample properties and is often more power-

ful than several alternative test statistics found in the literature, partly because

certain good properties of the classical likelihood ratio test are inherited by the

GLR method, as demonstrated in Fan, Zhang and Zhang (2001). �

Like many other smoothing-based tests, performance of the test (2.2) de-

pends upon the smoothing bandwidth h. Selection of h such that the testing

power is optimal remains an open problem in this area. It is widely recognized

that the optimal h for nonparametric curve estimation is generally not optimal for

testing (see e.g., Hart (1997)). A uniformly most powerful test usually does not

exist due to the fact that nonparametric regression functions have infinite dimen-

sions. For the lack-of-fit testing problem, Horowitz and Spokoiny (2001) suggest

choosing a single h based on the maximum of a studentized conditional moment

test statistic over a sequence of smoothing parameters, and prove that the re-

sulting test would have certain optimality properties. Based on these results,

Guerre and Lavergne (2005) suggest choosing h from a sequence of pre-specified

values, and demonstrate that their method has a number of favorable properties.

Because this method is easy to use and has good performance in various cases, we

use it here for choosing h. Let Hn be a set of admissible smoothing parameters
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defined as

Hn = {hj = hmaxa
−j : hj ≥ hmin, j = 0, . . . , Jn}, (2.4)

where 0 < hmin < hmax are the lower and upper bounds, and a > 1 is a parameter.

Clearly, the number of values in Hn is Jn ≤ loga(hmax/hmin). Following Guerre

and Lavergne (2005), we select h to be

h̃ = arg max
h∈Hn

{(Th,k,t − µh) − (Th0,k,t − µh0
) − γnvh,h0

} ,

where γn > 0 is a chosen penalty parameter, µh is the mean of Th,k,t, and v2
h,h0

is

the variance of Th,k,t − Th0,k,t. After accommodating the chosen bandwidth, the

testing statistic becomes

T̃k,t = (Th̃,k,t − µh̃)/vh0
, (2.5)

where v2
h0

is the variance of Th0,k,t, µh̃ =
∑n

i=1 V
(ii)

h̃
, and V

(ij)

h̃
denotes the (i, j)-

th element of the matrix Vh̃. For given h and h0, it can be shown that consistent

estimators of v2
h and v2

h,h0
are, respectively,

v̂2
h = 2

n∑

i=1

n∑

j=1

[
V

(ij)
h

]2
, v̂2

h,h0
= 2

n∑

i=1

n∑

j=1

[
V

(ij)
h − V

(ij)
h0

]2
.

Some statistical properties of the adaptive GLR test statistic T̃k,t, including

asymptotic null distribution and consistency under contiguous alternatives, are

given in the Appendix.

Remark 2 Compared to the method of Horowitz and Spokoiny (2001), the pa-

rameter selection method of Guerre and Lavergne (2005) has a number of good

properties. First, their selection criterion favors a baseline statistic under H0,

which guarantees that the asymptotic distribution of T̃k,t is the same as that

of (Th0,k,t − µh0
)/vh0

. Hence, asymptotically speaking, the selected smoothing

parameter based on data would not inflate the type-I error probability (i.e., test

size); see Proposition 1 in the Appendix for more discussion. Second, this selec-

tion procedure allows us to use vh0
in T̃k,t, instead of vh̃, which would asymptot-

ically increase the test power. See Guerre and Lavergne (2005) for more detailed

discussions about these issues.
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In practice, the true change-point τ is often unknown. To test whether there

is a shift in the regression function g for profiles up to time point t, we consider

the adaptive GLR test statistic

T̃bτ = max
1≤k<t

T̃k,t, (2.6)

which is the maximum over all possible split points (i.e., binary segmentations).

The maximizer τ̂ is used as an estimator of τ . Consistency of this change-point

estimator can be established as in Proposition 2 in Zou, Tsung and Wang (2008).

2.2. Phase II SPC

The change point detection procedure (2.2)-(2.6) is developed for a collection

of profiles with fixed sample size (c.f. (2.1)). In this part, we adapt it for on-line

Phase II SPC. In traditional cases when observations are univariate and normally

distributed, Phase II applications of change-point detection with some parame-

ters specified beforehand have been discussed by Pollak and Siegmund (1991),

Siegmund and Venkatraman (1995), Gombay (2000), Lai (2001), and Pignatiello

and Simpson (2002). For the setting in which none of the parameters are as-

sumed known, Hawkins, Qiu and Kang (2003), Hawkins and Zamba (2005a, b)

discuss Phase II SPC for detecting possible shifts in the mean, the variance, and

both the mean and variance. Zamba and Hawkins (2006) discuss multivariate

SPC in which the measurement mean can change but the measurement covari-

ance remains constant. Phase II linear profile monitoring by the change-point

approach has been discussed by Zou, Zhang and Wang (2006). In this paper,

we discuss nonparametric profile monitoring using the change point detection

procedure introduced in the previous subsection.

Assume that there are m0 IC profiles available. In many applications, one

could collect a larger number of observations for each profile in Phase I analy-

sis than in Phase II monitoring, because of the additional care commonly taken

in Phase I analysis, while the OC condition could usually be effectively cap-

tured by using relatively small n. To make a distinction, hereafter we use

n0 to denote the number of observations in each of the m0 IC profiles and n

(n ≤ n0) to denote the number of observations in each future profile. Moreover,

let XIC = {x1, . . . , xn, xn+1, . . . , xn0
} be the set of design points in the m0 IC

profiles with the corresponding response variables {y1j , . . . , ynj, y(n+1)j , . . . , yn0j},
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for j = 1, . . . ,m0. Our proposed Phase II SPC procedure is described as follows.

• After the (t − m0)th Phase II profile has been obtained, where t > m0,

calculate

lrm0,t = max
m0≤k<t

T̃k,t. (2.7)

• If lrm0,t > hm0,t,α, where hm0,t,α is some suitable control limit (see next

subsection for discussion about its selection), then an out-of-control signal

is trigged. After the signal, the systematic diagnostic procedure described

in Zou et al. (2008) can be used for locating the mean profile change.

• If lrm0,t ≤ hm0,t,α, then the monitoring process continues by obtaining the

(t + 1)th Phase II profile and by repeating the previous two steps.

This sequential scheme differs from the NEWMA chart in an obvious way

in that the IC regression function and the error variance in each observed profile

can be both unknown in the former scheme, while they are assumed known in the

latter one. Furthermore, in the NEWMA chart, we need to choose the procedure

parameter λ, besides the smoothing bandwidth, which is not necessary in the

change-point approach (cf., Hawkins, Qiu and Kang (2003); Han and Tsung

(2004)).

It should be noted that computing (2.7) involves estimation of the error

variance σ2 for each t. When t is given, (2.3) gives a consistent estimator of σ2.

From the t-th to the (t + 1)-st profile, this estimator can be easily updated as

σ̂2
t+1 = [(t + m0)(n − df)σ̂2

t + (Y t − Whb
Y t)

⊗]/[(t + 1 + m0)(n − df)], (2.8)

where hb is a pre-specified bandwidth. Zou et al. (2008) provide some practical

guidelines about the selection of hb. This parameter can also be selected before

Phase II monitoring from the m0 IC profiles by certain data-driven procedures,

such as CV and GCV.

Remark 3 The statistic lrm0,t is a little different from its counterpart used

in Hawkins et al. (2003). Here, lrm0,t is the maximum of T̃k,t on a constrained

interval m0 ≤ k < t, instead of across all possible values of k. Since the first m0

profiles are IC, this modification should be reasonable. �
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In practice, it might be more convenient to plot the normalized statistic

lrm0,t/hm0,t,α over t in a control chart. In such cases, the normalized control

limit is a constant 1. Besides hm0,t,α, our proposed control chart has a number

of other parameters. Selection of all these parameters is discussed in the next

two subsections.

2.3. A Bootstrap Procedure for Determining Control Limits

From the construction of lrm0,t, it is easy to check that it does not depend on

the IC regression function g. Therefore, hm0,t,α should not depend on g either.

In this part, we propose a bootstrap procedure for determining hm0,t,α based on

the m0 IC profiles.

First the m0 IC profiles are averaged, and then the averaged data are smoothed

by local linear kernel smoothing. The resulting m0 × n0 residuals are

êij := yij − W n0
(xi)Ȳ 0,m0

, j = 1, . . . ,m0, i = 1, . . . , n0,

where W n0
(xi) is the smoothing operator defined immediately below (2.2), using

XIC (instead of X) and hb (which is mentioned below (2.8)). Second, generate

a bootstrap profile {(xi, y
∗
i ), i = 1, . . . , n} by defining y∗i = e∗i , for i = 1, . . . , n,

where e∗i is drawn from {êij , i = 1, . . . , n0, j = 1, . . . ,m0} with replacement.

Third, for each given t value, by this resampling procedure, simulate the whole

monitoring process, including generating the first m0 IC profiles (at design points

X) and all future profiles, and then computing the corresponding lr∗m0,t value.

Fourth, repeat step three B times. Then, for a given false alarm probability α

that corresponds to the IC average run lengths (ARL) 1/α, the control limits

hm0,t,α can be approximated by values satisfying

Pr
(
lr∗m0,t > hm0,t,α

∣∣∣lr∗m0,i ≤ hm0,i,α, 1 ≤ i < t
)

= α, for t > 1,

Pr
(
lr∗m0,1 > hm,1,α

)
= α.

Of course, the above probabilities should be interpreted as frequencies in B boot-

strap replications.

Based on our numerical experience and the empirical results in Hawkins, Qiu

and Kang (2003), which discusses similar simulation-based control limits, hm0,t,α

gradually converges to a constant as t increases. Therefore, we suggest comput-

ing the first (about) 1/(2α) control limits and then using the last one of this
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sequence to approximate the remaining control limits. In addition, for comput-

ing each hm0,t,α, about 10,000 bootstrap replications should be good enough to

obtain reliable approximations. For instance, if IC ARL is 200, then we need to

compute the first 100 control limits, and this requires about 16,500 bootstrap se-

quences such that there are about 10,000 sequences left for computing the 100th

control limit hm0,100,α. Numerical accuracy of this bootstrap procedure is further

investigated in Section 3.

2.4. Practical Guidelines

On choosing m0, n0 and n: From the description of the proposed SPC pro-

cedure, we can see that its control limits are computed from the m0 IC profiles

(each with n0 observations) by the bootstrap procedure. Therefore, both m0 and

n0 should not be too small. If the IC error distribution F is known, then the

control limits can be computed directly from F using the method in Hawkins,

Qiu and Kang (2003). In practice, F is often unknown and most practitioners

would accumulate a few IC profiles before starting monitoring, which is a major

motivation for us to propose the current SPC procedure. Based on our numeri-

cal experience, to describe the error distribution reasonably well in various cases,

use n0 > 50 and m0 ≥ 8. Note that the recommended m0 here is much smaller

than the recommended m0 in Zou, Tsung and Wang (2008), where m0 ≥ 40 is

suggested. That is mainly because the m0 IC profiles are used for estimating

both the IC regression function g and the error variance σ2 in the latter case,

while g does not need to be estimated in the former case. Regarding the choice

of n and design points positions, one may refer to Zou, Tsung and Wang (2008)

for a detailed discussion.

On choosing γn, a, hmax and hmin in (2.5): Theoretically speaking, these

quantities should satisfy certain conditions to obtain the corresponding asymp-

totic results. See the Appendix for detailed discussion. In our simulations, we

found that performance of the proposed control chart was hardly affected by

these parameters, consistent with the findings in Guerre and Lavergne (2005).

By both theoretical arguments and numerical studies, we recommend the choices

a = 1.4, γn = 2.5
√

ln(Jn + 1), Jn could be 4, 5 or 6, hmax = n−1/7, and

hj = hmaxa
−j , j = 1, . . . , Jn. Note that hmax = n−1/7 is recommended partially

due to Condition (C5) that nh8 → 0.
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On computation: To implement the proposed method efficiently, we suggest

recording a recursive array of the running total sums St = St−1+Y t. Then, com-

putation in (2.2) can be simplified by using Ȳ 0,k−Ȳ k,t = Sk/k−(St−Sk)/(t−k).

Considering that Vh can be calculated before monitoring and the estimators of

the error variance are also calculated in a recursive way (cf., (2.8)), the compu-

tational task involved in our proposed procedure is actually quite simple. For

instance, when IC ARL=200 and n = 35, it spends about five minutes in search-

ing for the control limits based on 20,000 simulations, using a Pentium 2.4MHz

CPU. Computer codes in Fortran are available from the authors upon request.

3. Simulation Study

We present some simulation results in this section regarding the numerical

performance of the proposed SPC procedure, called the adaptive change point

(ACP) procedure hereafter. In the procedure, parameters were chosen according

to the practical guidelines discussed in Subsection 2.4. More specifically, we chose

m0 = 8, n0 = 50, n = 25, Jn = 5, a = 1.4, γn = 2.5
√

ln(Jn + 1), hmax = n−1/7,

and hj = hmaxa
−j, for j = 1, . . . , Jn. The kernel function used in (2.2) was the

Epanechnikov kernel function K(x) = 0.75(1 − x2)I(−1 ≤ x ≤ 1), which has

certain optimality properties (cf., Fan and Gijbels (1996)). The IC ARL was

fixed at 200.

We first investigated the performance of IC run-length distribution of the

proposed procedure. As mentioned in Section 2.3, the IC distribution of our

charting statistic does not depend on the IC regression function g. Hence, we

used g = 0 in this example. Equally spaced design points xi = (i − 0.5)/n,

for i = 1, . . . , n, were used in all profiles. For the m0 IC profiles, another n

points i/n, for i = 1, . . . , n, were used as extra design points xn+1, . . . , xn0
. The

following four error distributions were considered: (I) εij ∼ N(0, 1); (II) εij ∼
U(0, 1) − 0.5; (III) εij ∼ t(5); and(IV) εij ∼ χ2(5) − 5, where U(0, 1) denotes

the Uniform distribution on [0,1], t(5) and χ2(5) denote the Student-t and chi-

squared distributions with degrees of freedom 5, respectively. For comparison

purposes, besides the proposed bootstrap procedure for determining the control

limits, we also investigated the run-length behavior of the ACP chart when its

control limits were approximated by the method used in Hawkins, Qiu and Kang

(2003) under the normal error distribution. The sample averages and sample
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Table 1. ARL and SDRL values of the ACP chart with and without bootstrap
approximations of the control limits

with bootstrap without bootstrap
ARL SDRL ARL SDRL

(I) 203.1 205.5 200.2 199.7
(II) 205.8 203.6 275.2 269.7
(III) 207.3 218.4 77.5 78.8
(IV) 195.4 212.9 54.6 55.2

standard deviations of the run length, denoted as ARL and SDRL respectively,

over 1000 replications are summarized in Table 1.

From Table 1, it can be seen that in case (I), the ARL and SDRL of the

ACP chart without using bootstrap approximations are both close to the nomi-

nal values 200, as expected. However, in cases (II)-(IV) when F is respectively

light-tailed, heavy-tailed and right-skewed, the ACP chart without using boot-

strap approximations produced large biases in both IC ARL and SDRL. In com-

parison, the actual IC ARL and SDRL values of the ACP chart with bootstrap

approximations are close to 200 in all cases considered.

Next, we investigated the OC performance of the proposed control chart. To

compare it with alternative methods turns out to be difficult, due to lack of an

obvious comparable method. One possible alternative method is the NEWMA

chart proposed by Zou, Tsung and Wang (2008), although a minor modification

is necessary because the original NEWMA chart assumes that the IC regres-

sion function g and error variance σ2 are known and both of them are assumed

unknown in the current setting. The NEWMA charting statistic is

Ej = λZj + (1 − λ)Ej−1, j = 1, 2, . . . ,

where Zj = (Y j−G)/σ, G = (g(x1), . . . , g(xn))T , E0 is a n-dimensional starting

vector, and λ is a smoothing parameter. The chart signals if

Qj = E′
jVhEj > L

λ

2 − λ
,

where L > 0 is a control limit chosen to achieve a specific IC ARL. A natural

modification of the NEWMA procedure is to replace g and σ2 by their sequential

estimators, referred to as the self-starting NEWMA procedure (SSN) hereafter.

To be specific, if the chart does not signal after the t-th observed profile, then

replace G and σ by Ĝ = WhȲ 0,t and σ̂t (cf., (2.8)), respectively. In addition, to
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illustrate effectiveness of the adaptive selection of the bandwidth, we also obtain

the OC ARLs of the change-point formulation with a fixed h. That is, in this

procedure, Th,k,t in (2.2), instead of T̃k,t, is used in (2.7). This procedure is

called the fixed change point (FCP) chart hereafter. Another possible method to

compare is the “naive” multivariate EWMA approach that treats Zj as a long

multivariate vector (cf., Lowry et al. 1992), referred to as the MEW chart. For all

the FCP, SSN and MEW charts, we followed the recommendation of Zou, Tsung

and Wang (2008) to choose the bandwidth h to be hE = 1.5n−1/5[
∑n

i=1(xi −
x̄)2/n]1/2.

Because the SSN chart cannot be implemented without knowing the error

distribution, the standard normal error distribution was used in this example,

and was assumed known to the SSN chart. In both SSN and MEW charts,

we chose λ = 0.2. For ACP, all parameters were chosen as in the previous

example. Control limits of all the charts considered here were searched by sim-

ulations to attain the nominal IC ARL 200. The IC model used was g(xi) =

1− exp(−xi), i = 1, . . . , n, and the following four OC models were considered:

(I)g1(xi) = 1 − exp(−xi) + δxi; (II)g1(xi) = 1 − (1 + δ) exp(−xi); (III)g1(xi) =

1 − exp(−xi) + δ cos(πxi); (IV)g1(xi) = 1 − exp(−xi) + 0.75 sin(δπ(xi − 0.5)).

By changing δ, these models can cover various cases with different smoothness of

g − g1 and different shift magnitudes from g to g1. We considered the shift time

to be τ = 20, and the first m0 profiles in the sequence of observed profiles were

used as IC profiles. Table 2 presents the OC ARLs over 10,000 replications of the

ACP, FCP, SSN and MEW charts. In addition, the OC ARLs of the NEWMA

chart with known g and σ and with λ = 0.2 are included in the last column. The

control limits L of the EWMA-type control charts are included in the last row

of the table.

From the table, we can observe the following results. First, effectiveness of

the change-point formulation can be clearly seen by comparing the OC ARLs of

the FCP and SSN charts. The FCP chart performed almost uniformly better than

the SSN charts, consistent with the findings in Hawkins, Qiu and Kang (2003)

about SPC of univariate normal processes, and with the theoretical and empir-

ical results in Han and Tsung (2004) as well about comparison of the EWMA

and GLR charts. Second, the ACP chart performed better than the FCP chart
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Table 2. OC ARL comparison of ACP, FCP, SSN, NEWMA and MEW charts when IC
ARL=200, m0 = 8, n = 25 and τ = 20.

δ ACP FCP SSN MEW NEWMA
0.20 132 (1.79) 136 (1.77) 151 (1.95) 177 (2.07) 35.4 (0.32)
0.30 66.5 (1.25) 78.3 (1.39) 97.1 (1.63) 149 (1.98) 16.5 (0.13)
0.40 24.8 (0.61) 30.2 (0.63) 50.6 (1.19) 112 (1.77) 9.82 (0.06)
0.60 6.11 (0.05) 7.31 (0.11) 8.13 (0.18) 37.8 (1.00) 5.20 (0.03)

(I) 0.80 3.44 (0.02) 3.88 (0.02) 4.04 (0.02) 8.53 (0.25) 3.58 (0.01)
1.00 2.33 (0.01) 2.59 (0.01) 2.96 (0.01) 4.44 (0.02) 2.76 (0.01)
1.50 1.29 (0.00) 1.39 (0.01) 1.90 (0.01) 2.55 (0.01) 1.88 (0.01)
0.20 119 (1.81) 123 (1.72) 141 (1.92) 171 (2.06) 28.3 (0.25)
0.30 45.8 (0.96) 58.1 (1.20) 83.5 (1.59) 134 (1.88) 12.8 (0.09)
0.40 14.9 (0.36) 19.2 (0.48) 34.5 (0.94) 88.8 (1.58) 7.92 (0.04)

(II) 0.60 4.64 (0.03) 5.30 (0.03) 5.65 (0.05) 18.5 (0.56) 4.43 (0.02)
0.80 2.72 (0.01) 3.03 (0.02) 3.45 (0.02) 5.33 (0.04) 3.07 (0.01)
1.20 1.46 (0.01) 1.59 (0.01) 2.13 (0.01) 2.85 (0.01) 2.05 (0.01)
2.00 1.00 (0.00) 1.00 (0.00) 1.34 (0.01) 1.72 (0.01) 1.31 (0.00)
0.20 102 (1.55) 111 (1.57) 121 (1.72) 166 (2.06) 24.7 (0.21)
0.30 32.4 (0.73) 39.3 (0.74) 54.2 (1.14) 123 (1.85) 11.4 (0.08)
0.40 10.5 (0.13) 13.4 (0.23) 17.5 (0.46) 75.4 (1.49) 7.02 (0.04)

(III) 0.50 5.93 (0.05) 6.94 (0.07) 7.28 (0.13) 33.1 (0.90) 5.10 (0.02)
0.75 2.70 (0.01) 2.97 (0.02) 3.29 (0.01) 5.25 (0.05) 3.07 (0.01)
1.00 1.69 (0.01) 1.86 (0.01) 2.34 (0.01) 3.28 (0.01) 2.26 (0.01)
1.50 1.07 (0.00) 1.12 (0.00) 1.59 (0.01) 2.06 (0.01) 1.57 (0.01)
0.25 70.9 (1.32) 85.4 (1.48) 109 (1.72) 152 (1.98) 17.6 (0.14)
0.50 7.56 (0.07) 8.90 (0.09) 12.4 (0.41) 51.9 (1.20) 5.84 (0.03)
0.75 3.71 (0.02) 4.20 (0.03) 4.37 (0.03) 9.96 (0.29) 3.78 (0.02)

(IV) 1.00 2.70 (0.01) 3.01 (0.02) 3.34 (0.02) 5.28 (0.06) 3.07 (0.01)
2.00 3.21 (0.02) 3.10 (0.02) 3.36 (0.02) 5.41 (0.10) 3.11 (0.01)
4.00 4.51 (0.02) 4.16 (0.02) 4.25 (0.03) 6.54 (0.43) 3.69 (0.01)
6.00 5.81 (0.03) 16.1 (0.28) 15.3 (0.24) 20.2 (1.82) 8.24 (0.04)

L 15.93 45.98 15.77
NOTE: Standard errors are in parentheses.
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in most cases, especially for detecting small and moderate shifts, which demon-

strates the benefit of adaptive bandwidth selection. It is worth mentioning that,

in case (IV) when δ = 6, g − g1 oscillated dramatically, and the ACP chart per-

formed substantially better. This demonstrates the fact that the adaptive GLR

statistic can adapt to the unknown smoothness of g−g1 and pick up smaller band-

widths automatically when detecting more irregular alternatives. See Proposition

2 and Remark A3 in Appendix for more detailed discussion. Of course, one may

want to use a relatively small h in the FCP or SSN chart as well in such cases.

However, the OC model is often unknown in advance. The FCP or SSN chart

with a fixed h can outperform the ACP chart for certain OC models, but they

can also be much worse for other OC models. As a comparison, the ACP chart

can always be nearly the best. Third, we found that the ACP chart can even

outperform the NEWMA chart constructed with known g and σ for detecting

moderate and large shifts. In fact, our simulations (not reported here) showed

that, when τ ≥ 120, the ACP chart outperformed the NEWMA chart nearly

uniformly, which is mainly due to the joint benefits of the adaptive GLR test

and the change-point approach. Regarding the MEW chart, as expected, it did

not perform well in all cases considered, because it completely ignores the profile

structure of the data. We conducted some other simulations with various F , n

and τ , to check whether the above conclusions would change in other cases. These

simulation results, not reported here but available from the authors, showed that

the ACP chart works well for other error distributions as well in terms of its OC

ARL, and its good performance still holds for other choices of n and τ .

4. Application to Monitoring a Deep Reactive Ion Etching Process

In this section, we demonstrate the ACP chart by applying it to a dataset

obtained from the semiconductor manufacturing industry for monitoring a deep

reactive ion etching (DRIE) process that is critical to the output wafer quality

and that requires careful monitoring. In the DRIE process, the desired profile

is the one with smooth and straight sidewalls and flat bottoms, and ideally the

sidewalls should be perpendicular to the bottom of the trench with certain degrees

of smoothness around the corners . Various shapes of profiles, such as positive and

negative profiles, which are due to underetching and overetching, are considered

to be unacceptable (cf., Figure 1). More detailed introduction about the DRIE



Nonparametric Profile Monitoring 17

process can be found in Rauf et al. (2002) and Zhou et al. (2004).

PositiveNegative

Figure 1. Illustrations of various etching profiles from a DRIE process.

Table 3. Results of various charts for monitoring the DRIE dataset. Note that profile
monitoring starts at t = 9 since the first 8 profiles are treated as IC ones.

ACP FCP SSN MEW
t lrm0,t σ̂t hm0,t,α lrm0,t/hm0,t,α τ̂
9 0.740 0.431 6.526 0.113 8 0.342 2.849 18.64

10 0.924 0.420 6.816 0.136 8 0.357 4.832 23.30
11 2.493 0.423 7.112 0.351 8 0.639 13.29 47.84
12 1.957 0.420 7.194 0.272 8 0.611 11.76 37.34
13 1.126 0.418 7.437 0.151 8 0.440 6.755 30.00
14 1.573 0.416 7.741 0.203 8 0.320 2.490 24.23
15 2.423 0.411 8.136 0.298 14 0.581 5.512 29.39
16 6.771 0.411 8.487 0.798 14 0.816 15.32 36.90
17 9.053 0.408 8.702 1.040 14 1.109 16.89 40.49

20.05 61.93

This dataset has been analyzed by Zou, Tsung and Wang (2008), and its

details can also be found in Wang and Tsung (2007) and the references cited

therein. In the dataset, the first 18 profiles are known to be IC. In order to

demonstrate the effectiveness of our proposed approach, we only take the first

eight IC profiles for implementing the bootstrap procedure and discard the re-

maining ten. In each of these eight IC profiles, profile dimensional readings are

collected at seventy design points (i.e., n0 = 70), which satisfies the requirements

of the bootstrap procedure. Hence, the desired IC performance could be well

approximated even if we do not make assumptions on the error distribution. As

in Zou, Tsung and Wang (2008), IC ARL is fixed at 370. All other parameters

of the ACP chart are chosen as in the simulation examples. Then the ACP chart

was used for monitoring Phase II profiles, each of which has n = 35 observations.

As detailed in Zou, Tsung and Wang (2008), there are nine Phase II profiles

in the dataset, and the last three are classified as inferior profiles based on en-

gineering knowledge. Table 3 tabulates the statistics lrm0,t, σ̂t, the bootstrap
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Figure 2. The ACP control chart for Phase II monitoring of the DRIE process. Note
that profile monitoring starts at t = 9 since the first 8 profiles are treated as IC ones.

approximated control limits hm0,t,α, the ratio lrm0,t/hm0,t,α, and the estimated

change-point τ̂ . The corresponding control chart based on the ratio charting

statistic lrm0,t/hm0,t,α is shown in Figure 2, where the control limit is 1. As a

comparison, corresponding results of the FCP, SSN, and MEW charts are also

presented in this table. As in the simulation examples, we chose λ = 0.2 in the

SSN and MEW charts. Their control limits are given in the last row of the table.

From Table 3 and Figure 2, it can be seen that the ACP chart signals a shift

after the 17-th profile is monitored, which matches the NEWMA chart of Zou,

Tsung and Wang (2008). As a by-product, the current chart gives a change-

point estimate of τ̂ = 14. In Zou, Tsung and Wang (2008), a separate diagnostic

method needs to be used. But it gives exactly the same result about the shift

position. From the table, we can see that the FCP chart also gives a signal at

t = 17, but the SSN and MEW charts do not give any signal by that time.

5. Concluding Remarks

In this paper, we propose a control chart for monitoring nonparametric pro-

files. Our proposed control chart integrates the dynamic change-point approach

with the adaptive generalized likelihood ratio test. A bootstrap procedure is sug-

gested for determining its control limits without specifying the error distribution.

This method does not assume the IC regression function g or the error variance
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σ2 to be known, which could substantially shorten the period of Phase I analysis.

The proposed control chart offers not only a balanced protection against shifts

of different magnitudes, but also adapts to different smoothness of the IC and

OC regression functions. Consequently, it has a nearly optimal performance for

various OC conditions. As demonstrated by the DRIE example, the proposed

approach can be implemented conveniently in industrial applications. It should

be quite effective as long as a few IC profiles are available. Besides these prop-

erties, the ACP chart can be easily extended to cases of unequally spaced or

even random design points, or cases in which monitoring of both the regression

function and the error variance is of interest. These generalizations would require

certain modifications in the GLR statistic (2.2).
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Appendix: Some Statistical Properties of the GLR Test T̃k,t

We now present some statistical properties of the GLR test statistic T̃k,t.

First, a set of conditions is presented for later use. Without loss of generality,

we take 0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ 1.

Conditions:

(C1) There exists a positive density f that is Lipschitz continuous and bounded

away from zero such that
∫ xi

0 f(u) du = i/n, i = 1, . . . , n.

(C2) Both g and g1 have continuous second derivatives in [0, 1].

(C3) K(u) is symmetric and bounded, u3K(u) and u3K ′(u) are bounded, and
∫

u4K(u) du < ∞.

(C4) E(|ε11|4) < ∞.

(C5) h = hn satisfies h → 0, nh3 → ∞, and nh8 → 0.

(C6) The penalty sequence γn is of order
√

ln ln n.

Remark A1 By condition C5, the set of bandwidths Hn (cf., (2.4)) should

roughly satisfy hmax = O(n− 1

8
−s1) and hmin = O(n− 1

3
+s2), where s1 and s2 are

two small positive constants. �
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Proposition 1 will establish the asymptotic null distribution of T̃k,t, its proof

requires the following lemmas.

Lemma 1 If C1-C5 hold, then σ̂2
t = σ2

[
1 + Op((tn)−1/2) + Op((nh)−1)

]
.

This lemma can be proved easily by combining proofs in Hall and Marron (1990),

about the Nadaraya-Watson estimator, with certain Lr-convergence properties

of LLKE (Fan (1993); Fan and Gijbels (1996)). The proof is omitted.

Lemma 2 Under C1-C5 and the null hypothesis, (Th,k,t − µ̌h)/σ̌h
L−→ N(0, 1),

where

µ̌h =
2

h

(
K(0) − 1

2

∫
K2(t)dt

)
, σ̌2

h =
8

h

∫ (
K(t) − 1

2
K ∗ K(t)

)2

dt.

Proof. Note that [k(t−k)/t]
1

2

(
Ȳ 0,k − Ȳ k,t

)
can be rewritten as ξk,t = (ξk,t,1, . . . ,

ξk,t,n)T , where ξk,t,i = [k(t− k)/t]
1

2 (ε̄0,k,i − ε̄k,t,i) and ε̄k,t,i =
∑t

j=k+1 εij/(t− k).

Obviously, ξk,t,i satisfies E(ξk,t,i) = 0, E(ξ2
k,t,i) = σ2, E(|ξk,t,i|4) < ∞, and ξk,t,i

and ξk,t,j are independent of each other when i 6= j. Thus, this lemma follows

by the technical arguments in the proof of Theorem 5 in Fan, Zhang and Zhang

(2001), and by the arguments on modification of conditions in Proposition 1 of

Zou, Tsung and Wang (2008). �

Lemma 3 Under C1-C5, we have v̂2
h = v2

h +op(h
−1) and v̂2

h,h0
= v2

h,h0
+op(h

−1).

This lemma can be easily proved by a direct calculation using Lemma 7.1 in Fan,

Zhang and Zhang (2001).

Lemma 4 Let T c
h,k,t=Th,k,t−µh, and νh be a n×n matrix with diagonal elements

zero and (i, j)-th off-diagonal elements V (ij). Under conditions C1-C6, if γn >

(1 + c)
√

2 ln Jn for some c > 0, then

(i) v̂h,h0
= Op(h

−1 − h−1
0 )1/2; (ii)

ξk,t
T (νh−νh0

)ξk,t

vh,h0

L−→ N(0, 1); and

(iii) max
h∈Hn\{h0}

∣∣∣
T c

h,k,t
−T c

h0,k,t

bvh,h0

∣∣∣ = (1 + op(1)) × max
h∈Hn\{h0}

∣∣∣ξk,t
T (νh−νh0

)ξk,t

vh,h0

∣∣∣+ op(1).

Results (i) and (ii) above can be shown by similar arguments to those in the

proof of Lemma 2; (iii) is a direct conclusion of (i).

Proposition 1 Under C1-C6 and the null hypothesis, if γn > (1+c)
√

2 ln Jn for

some c > 0, then T̃k,t
L−→ N(0, 1).
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Proof: By (i) and (iii) of Lemma 4,

Pr(h̃ 6= h0) = Pr

(
max

h∈Hn\{h0}

∣∣∣∣
T c

h,k,t − T c
h0,k,t

v̂h,h0

∣∣∣∣ > γn

)

≤ Pr

(

max
h∈Hn\{h0}

∣∣∣∣∣
ξk,t

T (νh − νh0
)ξk,t

vh,h0

∣∣∣∣∣ ≥
γn

1 + c

)

+ op(1).

It can be easily checked that νh − νh0
satisfies the conditions of Lemma 2 in

Guerre and Lavergne (2005). Using (ii) of that lemma, and Lemmas 1-4 above,

the remaining part of the proof can be completed by the same arguments as those

in the proof of Theorem 1 in Guerre and Lavergne (2005). �

Proposition 2 below considers the consistency of T̃k,t under local alternatives,

in which we use the notation

θ = k/t, δ(x) = g1(x) − g(x), η1 =

∫
K(t)t2dt,

η2 = 8

∫ (
K(t) − 1

2
K ∗ K(t)

)2

dt, ζδ =
tθ(1 − θ)

σ2

∫
δ2(u)f(u)du,

ζ1 =
tθ(1 − θ)η2

1

4σ2

∫
[δ′′(u)]2f(u)du.

Proposition 2 Assume that C1-C6 hold, and that ζ1 is of an order within

[n−7/16γn, n1/2γn]. Then the asymptotic power of the adaptive GLR test is at

least

Φ
[
n8/9ζδ

(γnη
1/2
2

8ζ1

)1/9
− 9

8
γnη

1/2
2

]
;

thus, the test is consistent when ζδ ≥ cζ
1/9
1

(
γnη

1/2
2 /n

)8/9
and c > 0 is large

enough.

Proof. First, the power of the test satisfies

P (T̃k,t ≥ vh0
zα) ≥ P (Th,k,t − µh ≥ vh0

zα + γnv̂h,h0
), (A.1)

where zα is the (1 − α)-quantile of the standard normal distribution. Thus, the

adaptive GLR test inherits the power properties of Th,k,t up to γnv̂h,h0
. See

Guerre and Lavergne (2005) for related discussions.

Under a local alternative δ, by similar mathematical manipulations to those

in the proof of Theorem 7 in Fan, Zhang and Zhang (2001), we have

Th,k,t − µh = h− 1

2 w + nζδ(1 + op(1)) − nh4ζ1, (A.2)
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where w = wn is asymptotically normal with variance η2. Since v̂h,h0
and v̂h are

of order h− 1

2 , we can find an appropriate h in Hn, say hn, such that nζδ−nh4ζ1−
γnv̂h,h0

attains its maximum value asymptotically. Such an hn can be defined

by hn = h0a
−jn , where jn is the integer part of (2/(9 ln a)) ln[8nζ1h0/(γnη

1/2
2 )].

Note that hn is indeed in Hn when ζ1 satisfies the condition imposed. After

substituting hn into (A.2), Proposition 2 follows from (A.1). �

Remark A2 By (A.2), we observe that the asymptotic power of the test statistic

Th,k,t depends not only on δ(·), but also on δ′′(·). The term nh4ζ1 in (A.2)

explains, intuitively, the major reason why choosing the smoothing parameter h

properly would gain test power. Practically, a smaller h is often more effective in

detecting shifts with sharp or oscillating δ (i.e., δ′′ is large), and a larger h often

performs better when δ is flat or smooth (i.e., δ′′ is small). This observation

motivates us to use the adaptive selection procedure when conducting the GLR

test. From the proof of Proposition 2, we can see that, to attain the stated

asymptotic power, the order of “optimal” h should be [γnη
1/2
2 /(nζ1)]

2/9. Thus,

the test based on T̃k,t would adapt to different magnitudes of δ′′. Consequently,

T̃k,t would be more robust to unknown alternatives than the test based on Th,k,t

with a fixed bandwidth. �
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