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Abstract

Observed images are usually blurred versions of the true images, due to imperfections of the

imaging devices, atmospheric turbulence, out of focus lens, motion blurs, and so forth. The

major purpose of image deblurring is to restore the original image from its blurred version. A

blurred image can be described by the convolution of the original image with a point spread

function (psf) that characterizes the blurring mechanism. Thus, one essential problem for image

deblurring is to estimate the psf from the observed but blurred image, which turns out to

be a challenging task, due to the “ill-posed” nature of the problem. In the literature, most

existing image deblurring procedures assume that either the psf is completely known or it

has a parametric form. Motivated by some image applications, including handwritten text

recognition and calibration of imaging devices, we suggest a method for estimating the psf

nonparametrically, in cases when the true image has one or more line edges, which is usually

satisfied in the applications mentioned above and which is not a big restriction in some other

image applications, because it is often convenient to take pictures of objects with line edges,

using the imaging device under study. Both theoretical justifications and numerical studies show

that the proposed method works well in applications.

Key Words: Camera calibration; Circularly symmetric function; Deconvolution; Handwritten

text recognition; Image deblurring; Image restoration; Least squares estimation; Line edges; Spatial

degradation; Test patterns.

1 Introduction

Observed images generated by image acquisition devices are usually not exactly the same as the

true images, but are instead degraded versions of their true images (cf., Qiu 2005, Chapter 7).
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Degradations can occur in the entire process of image acquisition, and there are many different

sources of degradation. For instance, in aerial reconnaissance, astronomy, and remote sensing,

images are often degraded by atmospheric turbulence, aberrations of the optical system, or relative

motion between the camera and the object. Image degradations can be classified into several

categories, among which point degradations (or, noise) and spatial degradations (or, blurring) are

most common in applications. Other types of degradations involve chromatic or temporal effects.

For a detailed discussion about formation and description of various degradations, please read books

such as Andrews and Hunt (1977) and Bates and McDonnell (1986).

Image restoration is a process to restore an original image f from its observed but degraded

version Z. In the literature, a commonly used model for describing the relationship between f and

Z is as follows:

Z(x, y) = h ⊗ f(x, y) + ε(x, y), for (x, y) ∈ Ω, (1.1)

where h is a 2-D function representing the spatial blurring mechanism, ε(x, y) is a pointwise noise

at (x, y), Ω is the design space, and h ⊗ f denotes the convolution between h and f , defined by

h ⊗ f(x, y) =

∫ ∫

R2

h(u, v)f(x − u, y − v) dudv. (1.2)

In model (1.1), it is assumed that the true image f is degraded spatially by h and pointwise by

ε, the spatial degradation is linear and location invariant, and the point degradation is additive.

These assumptions are valid (at least approximately) for most applications. But for some applica-

tions, one or more such assumptions may not hold. For instance, photocopies are often nonlinear

transformations of their original documents. For more discussion about these assumptions, see

Rosenfeld and Kak (1982, Chapters 6 and 7).

When the true image intensity function f is a delta (or, impulse) function having an area of

unity in any infinitesimal neighborhood of a given point (x∗, y∗), then, from expression (1.2), its

blurred version is just h(x − x∗, y − y∗). That is, the function h actually describes the degraded

version of a point source image. For this reason, h is called the point spread function (psf) in the

literature.

If the psf h is not zero at the origin and zero everywhere else, then there is no blurring in

the observed image. In such cases, the true image can be restored from the observed image by

removing noise, or denoising, and the major issue becomes how to preserve edges when removing

noise from the observed image. Several edge-preserving image restoration procedures have been
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proposed in the literature. For instance, see Besag (1986), Geman and Geman (1984), Gijbels et

al. (2006), Hillebrand and Müller (2007), Perona and Malik (1990), Polzehl and Spokoiny (2000,

2003), Saint-Marc et al. (1991), Tomasi and Manduchi (1998), Qiu (1998, 2004), and Wang (1998).

Overviews about these methods can be found in Li (1995) and Qiu (2005, 2007).

When there is blurring in the observed image, in order to restore the true image from the

observed one, the psf h should be specified properly, besides denoising. The research problem to

restore the true image from its blurred-and-noisy version is often called image deblurring. Generally

speaking, the image deblurring problem is ill-posed, in the sense that there might be two or more

different sets of h and f corresponding to a same blurred image and that the inverse problem to

estimate f from Z often involves some singularities (cf., equation (1.3) below). Therefore, it is

impossible to estimate both h and f properly from the observed image Z without using any extra

information about either f , or h, or both.

In the literature, many image deblurring procedures assume that the psf h is known. This

assumption is reasonable in some cases, because h can be specified (at least approximately) based

on our knowledge about the image acquisition device (e.g., camera). For instance, the relative

motion blur model is appropriate when blurring is mainly caused by relative motion between the

image acquisition device and the object. The Gaussian blur model is often used for describing

deblurring caused by atmospheric turbulence in remote sensing and aerial imaging. For detailed

introduction about these blurring models, see Goodman (1968) and Bates and McDonnell (1986).

After h is specified, f can be estimated based on the relationship that

F{Z}(u, v) = F{h}(u, v)F{f}(u, v) + F{ε}(u, v), for (u, v) ∈ R2, (1.3)

where F{f} denotes the Fourier transformation of f . By equation (1.3), many methods have been

proposed in the literature for estimating f , including some non-iterative methods, e.g., inverse

filtering, Wiener filtering, and constrained least squares filtering procedures (cf., e.g., Gonzalez

and Woods 1992, Chapter 5), and several iterative methods, e.g., Lucy-Richardson procedure,

Landweber procedure, Tikhonov-Miller procedure, maximum a posteriori (MAP) procedure, max-

imum entropy procedure, procedures based on EM algorithm, and so forth (cf., e.g., Skilling 1989,

Figueiredo and Nowak 2003).

In many applications, however, it is difficult to specify the psf h completely, based on our prior

knowledge about the image acquisition device. Image restoration when h is unknown is called the
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blind image restoration problem. In the literature, a number of procedures have been proposed

for blind image restoration. One type of such procedures assumes that h can be described by

a parametric model with one or more unknown parameters, and the parameters together with

the true image are estimated by some algorithms, most of which are iterative (e.g., Cannon 1976,

Katsaggelos and Lay 1990, Carasso 2001, Joshi and Chaudhuri 2005, Hall and Qiu 2007a). Another

type of procedures assumes that the true image comprises of an object with known finite support,

the background is uniformly black, gray, or white, and the psf h satisfies various conditions (e.g.,

Yang et al. 1994, Kundur and Hatzinakos 1998, Hall and Qiu 2007b). For instance, Kundur and

Hatzinakos (1998) assumes that h has its inverse, both h and its inverse have finite integrations

over the real plane, and both the true image f and the psf h are irreducible in the sense that each of

them can not be expressed as a convolution of two or more component images with finite support.

Based on the above introduction, we can see that it is important to estimate the psf h properly,

from observed images, for two major reasons. One is that it is essential for restoring the true

image from its blurred version. The second one is that it is helpful for understanding the blurring

mechanism of an imaging device, which could lead to possible quality improvement of the imaging

device.

In this paper, we propose a nonparametric estimator of the psf h. In our procedure, only some

mild conditions are imposed on h. More specifically, h is assumed to be circularly symmetric, or,

confined to one specific direction, and be a member of L2(D) in the sense that
∫ ∫

D
h2(x, y) dxdy <

∞, where D is a connected subset of R2 including the origin and with finite diameter. These

conditions on h are commonly used in the image restoration literature (cf., e.g., Rosenfeld and

Kak 1982, Chapters 6 and 7), and psf functions satisfying these conditions should include most

ones commonly used in applications, including the relative motion blur and Gaussian blur models

mentioned above and the circular-exponential blur model discussed by Carasso (2001).

In order to estimate h properly, we further assume that the true image has one or more regions

in which line edges are surrounded by uniform backgrounds. This condition is usually satisfied in the

image applications of handwritten text recognition (e.g., Plamondon and Srihari 2000, Arica and

Yarman-Vural 2001) and calibration of imaging devices (e.g., Koren 2004), because the handwritten

texts can be regarded as line edges, and imaging devices are often calibrated using test patterns

consisting of lines. In certain other image applications, this condition can also be roughly satisfied,

because it is often possible to take images of the scenes with line edges, using the image acquisition
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device under study, in order to study its blurring mechanism (cf., related discussion in Chapters 6

and 7 of Rosenfeld and Kak 1982).

The proposed procedure is substantially easier to implement than the iterative algorithms used

in most earlier nonparametric techniques. It is described in detail in next section. Some of its

statistical properties are discussed in Section 3. A simulation study is presented in Section 4. Two

image restoration examples are discussed in Section 5. Several remarks conclude the article in

Section 6. The proof of a theorem is provided in Appendix A.

2 Nonparametric estimation of the point spread function

This section is organized in three parts. In Section 2.1, we first formulate the problem in the case

that the true image f has only one line edge surrounded by a uniform background in a region.

Then, our procedure for estimating the point spread function (psf) h in such a case is described in

Section 2.2. In Section 2.3, some generalizations are discussed.

2.1 Image restoration when the true image has a single line edge

We start with a simple case when the true image f has only one line edge surrounded by a uniform

background in a region. Without loss of generality, we assume that this region is [0, 1]× [0, 1] ∈ Ω,

and f has the following expression in this region:

f(x, y) = A δ0.5(y), for (x, y) ∈ [0, 1] × [0, 1], (2.1)

where A > 0 is a constant, and δ0.5(y) is an impulse (or delta) function of y, which has an area of

unity in an infinitesimal neighborhood of y = 0.5 and which takes the value of 0 everywhere else.

In such a case, f has one line edge that is parallel to the x-axis at y = 0.5.

In the region [0, 1]× [0, 1], it is assumed that there are n2 observed image intensities generated

from the model

Zij = h ⊗ f(xi, yj) + εij, for i, j = 1, 2, . . . , n, (2.2)

where {(xi, yj) = (i/n, j/n), i, j = 1, 2, . . . , n} are equally spaced pixels in the region and {εij , i, j =

1, 2, . . . , n} are independent and identically distributed (i.i.d.) random errors with mean 0 and fi-
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nite variance σ2. Obviously, model (2.2) is a discrete version of model (1.1), constrained in the

region [0, 1] × [0, 1].

The psf h involved in the observed image is assumed to be a circularly symmetric, or, confined

to one specific direction, real function in L2(D), where D is a connected subset of R2 that includes

the origin and has a finite diameter. In most references, h is also assumed to be a 2-D density

function on D because it is believed that any blurring process does not change the image mass,

which is also adopted here. That is, we assume that h(x, y) ≥ 0, for (x, y) ∈ D, and

∫ ∫

D

h(x, y) dxdy = 1. (2.3)

Our goal is to estimate the psf h from observations {Zij , i, j = 1, 2, . . . , n}. Once h is estimated,

the true image f can be estimated accordingly in the entire design space Ω, using some existing

procedures, such as those mentioned in Section 1.

2.2 Estimation of the psf h

In many applications, h is defined in a circle D = {(x, y) :
√

x2 + y2 ≤ r} with radius r (cf.,

discussion about the Gaussian blur model in Section 1); in such cases, 2r denotes the extent of

blurring and this number is usually small. Next, we first discuss the case when h is a circularly

symmetric function in L2(D). In such cases, h can be expressed as

h(x, y) = ξ
[
(x2 + y2)/r2

]
,

where ξ ∈ L2([0, 1]). The function ξ can be written as a linear combination of a basis of L2([0, 1]).

Suppose that {bk(x), k = 0, 1, . . . ,∞} is a basis of L2([0, 1]) and that h(x, y) has the following

expression:

h(x, y) =
∞∑

k=0

ckbk

[
(x2 + y2)/r2

]
, for (x, y) ∈ D. (2.4)

Then, when the true image f has expression (2.1) and the psf h has property (2.3), it can be

checked that

h ⊗ f(x, y) = A

∞∑

k=0

ckb
∗

k(y − 0.5), (2.5)

where

b∗k(y − 0.5) = 2

∫ √
r2−(y−0.5)2

0
bk

[
(u2 + (y − 0.5)2)/r2

]
du,

6



which does not depend on x. Our goal is to estimate the unknown coefficients A and {ck, k =

0, 1, . . . ,∞} based on the observed image intensities {Zij , i, j = 0, 1, . . . , n} in the region [0, 1]×[0, 1]

(cf., model (2.2)).

It should be pointed out that, in deriving the above formula for b∗k(y − 0.5), we have used the

assumption that the design region [0, 1]× [0, 1] used in (2.1), which includes a line edge surrounded

by a uniform background, is a central part of a little larger region with the same property. More

specifically, we assume that there exists a region, which includes the same line edge surrounded

by a uniform background, with size at least [−r, 1 + r] × [−r, 1 + r]. In such cases, there is no

“boundary” problem in defining b∗k(y − 0.5). Otherwise, the quantity b∗k(y − 0.5) when x is in the

boundary regions [0, r] and [1 − r, 1] would be different from its value when x is in the interior

region (r, 1− r). Since r is usually small, the above mentioned assumption can be achieved in most

cases. Otherwise, the estimation procedure introduced below should be modified in the same way

as that when the constant A in (2.1) depends on x, which is discussed at the end of Section 2.3.

With a given sample size n2, it is unrealistic to estimate all the details of h from the data.

That is, some terms on the right-hand-side of (2.4) should be dropped from the estimation process.

Usually, the index k of the basis functions {bk(x), k = 0, 1, . . . ,∞} is related to the support of

bk(x), or the frequency that bk(x) switches between positive and negative values in a given interval.

When k is larger, the support of bk(x) would be smaller, or its frequency to switch between positive

and negative values in a given interval would be larger (cf., several specific sets of basis functions

discussed below). In such cases, it is natural to only include the first J terms in the estimation

process, where 0 ≤ J ≤ n is an integer, because regular estimators of the remaining terms often

correspond to the high-frequency part of the data and are mainly contributed by noise. That is,

we consider using

hJ(x, y) =
J−1∑

k=0

ckbk

[
(x2 + y2)/r2

]
, for (x, y) ∈ D. (2.6)

to approximate h. In (2.6), integer J works as a smoothing parameter, with smaller J implying

more smoothing and vice versa. In the literature, there are some other ways to drop terms for

function approximation. See, for instance, Qiu (2005, Section 2.6) for introduction about the

hard-thresholding and soft-thresholding schemes in the wavelet context.

Because functions b∗k(y−0.5) in equation (2.5) do not depend on x, parameter estimation from

the original data {Zij , i, j = 1, 2, . . . , n} is equivalent to parameter estimation from the averaged
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data {Z .j, j = 1, 2, . . . , n}, where Z .j = (1/n)
∑n

i=1 Zij , for j = 1, 2, . . . , n. Let

Z =
(
Z .1, Z .2, . . . , Z .n

)′
,

c = (c0, c1, . . . , cJ−1)
′ ,

b
∗(y − 0.5) =

(
b∗0(y − 0.5), b∗1(y − 0.5), . . . , b∗J−1(y − 0.5)

)′

and

B = (b∗(y1 − 0.5),b∗(y2 − 0.5), . . . ,b∗(yn − 0.5))′ .

Then, the relationship between the averaged data Z and the parameter vector c can be approxi-

mated by the following linear model:

Z = (AB)c + ε, (2.7)

where ε = (ε.1, ε.2, . . . , ε.n)′, and ε.j = (1/n)
∑n

i=1 εij . In the case when the inverse (B′
B)−1 exists,

the parameter vector c can be estimated by its least squares (LS) estimator

ĉA =
1

A

(
B

′
B

)−1
B

′
Z. (2.8)

In equation (2.8), the parameter A is often unknown and should be estimated from data.

Toward this end, the regularity condition (2.3) can be used. By this condition, we define

Â = b
′
(
B

′
B

)−1
B

′
Z, (2.9)

where

b =

(∫ ∫

D

b0[(x
2 + y2)/r2] dxdy,

∫ ∫

D

b1[(x
2 + y2)/r2] dxdy, . . . ,

∫ ∫

D

bJ−1[(x
2 + y2)/r2] dxdy

)′

.

By (2.8) and (2.9), the parameter vector c can be estimated by

ĉ =
(B′

B)−1
B

′
Z

b′ (B′B)−1
B′Z

. (2.10)

Finally, the psf h can be estimated by

ĥ(x, y) =

J−1∑

k=0

ĉkbk

[
(x2 + y2)/r2

]
, for (x, y) ∈ D. (2.11)

The estimator ĥ(x, y) defined in equation (2.11) has unit integration in D; but it may not be

nonnegative in D. If the nonnegativity of the estimator is desired, then it can be replaced by the

following modified version:

ĥM (x, y) =
ĥ(x, y) − minD ĥ(s, t)

∫ ∫
D

(
ĥ(u, v) − minD ĥ(s, t)

)
dudv

(2.12)
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In either the estimator ĥ(x, y) or its modified version ĥM (x, y), the parameter r, which equals

half of the blurring extent, and the smoothing parameter J should be chosen properly. In applica-

tions, r can be roughly determined from the extent of blurring of some sharp components in the

image, such as step edges, corners, line edges, and so on. Both r and J can also be determined

by some existing parameter selection procedures, such as the cross-validation (CV), generalized

cross-validation (GCV), Mallow’s Cp, plug-in procedures, and so forth (cf., e.g., Loader 1999). For

instance, they can be determined by the CV procedure as follows. Let Â−j and ĉ−j denote the

estimators of A and c, respectively, using the above estimation procedure (2.7)–(2.10), from the

observed data with the jth column {(xi, yj), i = 1, 2, . . . , n} excluded. Then, the CV score is

defined by

CV (r, J) =
n∑

j=1

{
Z .j − Â−j[b

∗(yj − 0.5)]′ĉ−j

}2
. (2.13)

The optimal r and J can be approximated by the minimizers of CV (r, J).

To use the proposed estimation procedure, we still need to choose the basis {bk(x), k =

0, 1, . . . ,∞} of L2([0, 1]), used in (2.4). One such basis commonly used in image analysis is the

cosine-series basis, by which (2.4) becomes

h(x, y) =
∞∑

k=0

ck cos
[
kπ(x2 + y2)/r2

]
, for (x, y) ∈ D. (2.14)

Obviously, expression (2.14) is the well-known inverse Fourier cosine transformation of h(x, y) (e.g.,

Hankerson el al. 1998). Other possible bases include the wavelet basis and various polynomial bases.

The polynomial bases can be used only when h is a continuous function.

Now, we briefly discuss the case when the psf h is confined to one specific direction θ and in

L2(D) as well. Obviously, the linear relative motion blur model discussed in Section 1 belongs to

this case. Without loss of generality, we assume that h is confined to the y-axis (i.e., θ = π/2).

Then, it can be expressed as

h(x, y) = δ0(x)η(y/r), for y ∈ [0, r],

where η ∈ L2([0, 1]). Similar to ξ, η can be expressed as a linear combination of a basis of L2([0, 1]).

It can be checked that the related parameters can be estimated by procedure (2.7)-(2.12), after

some minor modifications, as long as the direction in which h is constant is not perpendicular to

the line edge.
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2.3 Some generalizations

In the previous subsection, it is assumed that the true image f includes only one line edge which

is surrounded by a uniform background in a region and parallel to the x-axis. In this subsection,

we discuss several generalizations.

First, if the true image f includes only one line edge which forms an angle θ with the positive

x-axis, then the estimation procedure (2.7)–(2.12) can be performed in a same way except that the

averaged data Z should be computed within equally spaced bands parallel to the line edge. Or,

equivalently, the Cartesian coordinate system is rotated first such that the line edge is parallel to

the x-axis after the rotation, and then the procedure (2.7)–(2.12) is applied to the rotated data.

Second, if the true image includes several line edges, each of which is surrounded by a uniform

background in a region, then the psf h can be estimated using observations in all these regions as

follows. For simplicity, let us assume that there are two such line edges, and the linear models

corresponding to model (2.7) for describing averaged data in the two regions that contain the two

line edges are

Z
(j)

= (A(j)
B

(j))c + ε(j), for j = 1, 2.

For each j, we can obtain an estimator Â(j) of A(j), as before. Then the LS estimator of c can be

obtained from the combined linear model:

 Z

(1)

Z
(2)


 =


 Â(1)B(1)

Â(2)B(2)


 c +


 ε(1)

ε(2)


 .

It can be checked that the LS estimator of c is

ĉ =

(
Â(1)

2
(B(1))′B(1) + Â(2)

2
(B(2))′B(2)

)−1

 Â(1)Z

(1)

Â(2)Z
(2)


 . (2.15)

Using expressions (2.15) and (2.6), the estimator of the psf h can be defined similarly to the one

in equation (2.11), or, to its modified version in equation (2.12).

Third, if the true image f has a single “band” edge parallel to the x-axis and surrounded by a

uniform background in a region, i.e., f is defined by

f(x, y) =





A, if c1 ≤ y ≤ c2

0, otherwise,
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where A > 0 and 0 < c1 < c2 < 1 are constants, then the estimation procedure (2.7)–(2.12) can be

performed in a same way after functions b∗k(y − 0.5) in equation (2.5) are replaced by

b∗∗k (y) =

∫ 1

−1

(∫ c2

c1

bk(u
2 + (y − v)2) dv

)
du.

Other generalizations are also possible. For instance, if the line edges are actually curves, then

the above estimation procedure can be executed in a same way except that the data need to be

averaged along the curved line edges. Another case that may be of interest is when the constant

A in (2.1) depends on x. In such a case, height of the line edge changes with x; the procedure for

estimating the psf h should be applied to the original data, instead of the averaged data.

3 Statistical Properties

We give some theoretical properties of the estimators discussed in the previous section, in the

case when the true image f has expression (2.1) and the psf h is circularly symmetric. It can be

checked that they have similar properties when h is confined to one specific direction that is not

perpendicular to the line edge, and when f is in several more general cases discussed in Section 2.3.

Theorem 3.1 Suppose that the true psf h is circularly symmetric density function and defined

in a connected subset D of R2 which includes the origin and has finite diameter, that h has first-

order derivative at each point in D, and that
∫ ∫

D
(h′(u, v))2 dudv < ∞. The error terms in (2.2)

are assumed to be i.i.d. with mean 0 and finite variance σ2. Then, for estimator ĥ defined in

equation (2.11) using the cosine-series basis as in (2.14), we have

∫ ∫

D

[
ĥ(u, v) − h(u, v)

]2
dudv = O

(
J−2

)
+ o

(
Jn−2[log(J1/2n−1)]2

)
, a.s. (3.1)

and, for any (x, y) ∈ D,

lim
n→∞

1

σ
n,bh(x,y)

[
ĥ(x, y) − h(x, y)

]
D
= N(0, 1), (3.2)

where

σ2
n,bh(x,y)

=
σ2

nA2

[
b
′(x, y)(B′

B)−1
b(x, y)

]
,

b(x, y) = (b0(x, y), b1(x, y), . . . , bJ−1(x, y))′ ,
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and
D
= denotes equality in distribution. For estimator Â, we have

Â = A + O(J−1) + o
(
J1/2n−1 log(J1/2n−1)

)
, a.s. (3.3)

and

lim
n→∞

1

σ
n, bA

(
Â − A

)
D
= N(0, 1), (3.4)

where

σ2
n, bA

=
σ2

n

[
b
′(B′

B)−1
b
]
.

Theorem 3.1 establishes the strong consistency and asymptotic normality of estimators ĥ and

Â. It can be checked that, when J is chosen to be O(n2/3), the integrated squared error (ISE) of ĥ

converges to zero almost surely with the rate O(n−4/3[log(n)]2), and Â converges to A almost surely

with the rate O(n−2/3 log(n)). These rates are faster than the corresponding optimal convergence

rates in 1-D nonparametric regression (cf., Stone 1982), because our estimators are constructed

from row averages Z (cf., equations (2.8)–(2.10)), each component of which has variance σ2/n.

It should be pointed out that, in σ2
n,bh(x,y)

and σ2
n, bA

used in equations (3.2) and (3.4), there are

unknown parameters A and σ involved. In applications, they can be replaced by their strong

consistent estimators, and the corresponding results of asymptotic normality are still true, based

on Slusky’s theorem. An outline of the proof of Theorem 3.1 is given in Appendix A.

4 A Simulation Study

In this section, we present some simulation results regarding the numerical performance of the

proposed method. The test image used is the one defined by equation (2.1) with A = 1.0. Its

discrete version can be written as

f(x, y) =





n, if y ∈ [0.5 − 1/(2n), 0.5 + 1/(2n)]

0, otherwise,

where n2 is the size of the equally spaced observations {Zij , i, j = 1, 2, . . . , n} generated from

model (2.2) at the design points {(xi, yj) = (i/n, j/n), i, j = 1, 2, . . . , n}. The error terms in model

(2.2) are independent and identically distributed with distribution N(0, σ2). The following two psf
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functions are considered:

h1(x, y) =
2

πr2

[
1 − (x2 + y2)/r2

]
, h2(x, y) =

3

πr2

[
1 −

√
x2 + y2/r

]
, for x2 + y2 ≤ r2,

both of which are circularly symmetric functions. The true test image f , its blurred-and-noisy

version by psf h1 with r = 0.1 and σ = 0.5, and the two psf functions h1 and h2 are shown in

Figure 4.1. From the figure, it can be seen that h1 and h2 are quite different in their shapes: h1 is

quite smooth in the middle while h2 has a sharp angle in the middle.
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Figure 4.1: (a): Original test image. (b): A blurred-and-noisy version of the original image by psf
h1 with r = 0.1 and σ = 0.5. (c): True psf h1. (d): True psf h2.

Then, we let σ change among 0.1, 0.5, and 1.0; r change among 0.05, 0.1, and 0.2; and n change

between 100 and 200. For each combination of σ, r, and n, we search for the optimal values of r

and J used in procedure (2.7)–(2.12) by minimizing the Mean Integrated Squared Error (MISE)
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of ĥM , based on 100 replications. These optimal values of r and J along with the corresponding

MISE values of ĥM and Mean Squared Error (MSE) values of Â are presented in Table 4.1. The

optimal values of r and J are also approximated by the CV procedure (2.13) in each case. The

selected r and J values by CV are presented in Table 4.1 in the last line of each entry.

From the table, it can be seen that (i) the optimal MISE value of ĥM decreases with the value

of r, increases with the value of σ, and decreases with the value of n; (ii) MSE values of Â are

generally very small; (iii) the optimal values of r selected by MISE equal the true r values in most

cases; (iv) the optimal values of J selected by MISE increase with the values of r, decrease with

the values of σ, and increase with the values of n; and (v) the selected r and J values by CV are

generally close to the optimal values of r and J by MISE. The first result demonstrates that the

psf h can be estimated more accurately when the value of r, which represents the blurring extent,

is larger. This is reasonable because we have more information about blurring in such cases. The

fourth result tells us that the parameter J should be chosen larger when the blurring extent is

larger or when the noise level is lower or when the sample size is larger. That is because we can

estimate the psf more accurately in these cases by using more terms in function approximation (cf.

equations (2.6) and (2.11)). Other results mentioned above are intuitively reasonable.

Next, we demonstrate the proposed estimators of h and A (cf. equations (2.9) and (2.12)) in

the case when n = 100, σ = 0.5, and r = 0.1. In Figure 4.2(a), the dotted and dashed curves denote

the “typical” estimators of h1 of the proposed estimation procedure (2.12) using the optimal values

of r and J (i.e., r = 0.1 and J = 6) and their approximations by CV (i.e., r = 0.11 and J = 5),

respectively. Here, the “typical” estimator is defined by the one with median Integrated Squared

Error (ISE) among 100 replicated estimators of h1. Because psf h1 is circularly symmetric, all

results about h1 are shown only in the cross section of y = 0 and −1 ≤ x ≤ 0. In the plot, the

solid curve is the true psf h1 itself. It can be seen from the plot that the typical estimators perform

reasonably well, although the estimator with parameters selected by CV is a little worse. The

density curves of the estimators of A based on 100 replications are shown in Figure 4.2(b) by the

dotted and dashed curves, respectively, in the two cases when r and J take their optimal values

and when they are chosen by CV. Obviously, in both cases, the distribution of Â looks bell-shaped,

and the distribution variability is quite small. The corresponding results when h = h2 are shown in

Figures 4.2(c) and 4.2(d). Similar conclusions can be made, except that the upper-right part of the

cross section of h2, corresponding to the angular peak of h2 in 2-D setup, seems more challenging
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Table 4.1: For each combination of σ, r, and n, this table presents the optimal values of r and J
(in the third line of each entry), which minimize the MISE value of ĥM , the corresponding MISE
values of ĥM (in the first line) and MSE values of Â (in the second line), and the selected r and J
values by CV (in the fourth line).

h1 h2

n r σ = 0.1 σ = 0.5 σ = 1.0 σ = 0.1 σ = 0.5 σ = 1.0

8.2 ∗ 10−4 1.1 ∗ 10−3 2.0 ∗ 10−3 1.5 ∗ 10−3 1.5 ∗ 10−3 1.5 ∗ 10−3

0.05 1.1 ∗ 10−5 1.9 ∗ 10−5 4.1 ∗ 10−5 3.5 ∗ 10−4 3.5 ∗ 10−4 3.6 ∗ 10−4

0.05,4 0.05,4 0.05,4 0.06,4 0.06,4 0.06,4
0.07,4 0.07,4 0.07,4 0.06,3 0.06,3 0.06,3
3.2 ∗ 10−4 5.9 ∗ 10−4 7.7 ∗ 10−4 7.0 ∗ 10−4 8.3 ∗ 10−4 9.9 ∗ 10−4

100 0.10 7.3 ∗ 10−5 6.8 ∗ 10−6 2.3 ∗ 10−5 6.1 ∗ 10−6 1.1 ∗ 10−5 2.2 ∗ 10−5

0.09,6 0.10,6 0.10,4 0.11,6 0.11,6 0.10,4
0.11,7 0.11,5 0.11,3 0.11,5 0.11,5 0.11,5
1.5 ∗ 10−4 3.4 ∗ 10−4 6.9 ∗ 10−4 1.6 ∗ 10−4 4.9 ∗ 10−4 9.1 ∗ 10−4

0.20 5.0 ∗ 10−7 1.0 ∗ 10−5 4.0 ∗ 10−5 3.9 ∗ 10−7 9.7 ∗ 10−6 3.9 ∗ 10−5

0.20,8 0.20,6 0.20,6 0.20,10 0.20,8 0.20,6
0.22,7 0.21,5 0.21,4 0.21,11 0.21,9 0.21,7

3.8 ∗ 10−4 4.3 ∗ 10−4 5.2 ∗ 10−4 7.3 ∗ 10−4 7.4 ∗ 10−4 7.4 ∗ 10−4

0.05 1.1 ∗ 10−6 2.2 ∗ 10−6 5.4 ∗ 10−6 1.6 ∗ 10−6 2.3 ∗ 10−6 4.9 ∗ 10−6

0.05,6 0.05,6 0.05,6 0.05,6 0.05,6 0.05,6
0.06,6 0.06,6 0.06,5 0.04,6 0.05,4 0.05,4
5.3 ∗ 10−5 1.9 ∗ 10−4 2.9 ∗ 10−4 1.5 ∗ 10−4 2.2 ∗ 10−4 3.6 ∗ 10−4

200 0.10 1.0 ∗ 10−7 1.7 ∗ 10−6 6.4 ∗ 10−6 6.7 ∗ 10−8 1.6 ∗ 10−6 6.3 ∗ 10−6

0.10,12 0.10,8 0.10,8 0.10,10 0.10,10 0.10,8
0.11,10 0.11,7 0.11,8 0.10,10 0.10,8 0.10,8
5.4 ∗ 10−5 2.0 ∗ 10−4 4.0 ∗ 10−4 6.6 ∗ 10−5 2.6 ∗ 10−4 5.5 ∗ 10−4

0.20 1.3 ∗ 10−7 3.2 ∗ 10−6 1.3 ∗ 10−5 1.3 ∗ 10−7 3.2 ∗ 10−6 1.3 ∗ 10−5

0.20,18 0.20,10 0.20,6 0.20,18 0.20,10 0.20,8
0.21,15 0.21,11 0.21,5 0.20,18 0.21,11 0.21,7
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to estimate, which is true in general for most smoothing techniques not designed for preserving

angles and other singularities (see e.g., Härdle 1991, Chapters 5 and 6).

5 Two Image Restoration Examples

In the previous sections, we discussed how to estimate the psf h nonparametrically. After h is

estimated, the true image f can be restored from the observed-and-degraded image using various

image restoration procedures designed for cases when h is assumed known, which are introduced

in Section 1. In this section, we demonstrate the entire image restoration process by two examples.

One is related to handwritten text recognition, and the other one is about image restoration when

a test pattern is available.

5.1 An example related to handwritten text recognition

Machine recognition of handwriting has practical significance, as in reading postal addresses on

envelopes, amounts in bank checks, and so forth. Image restoration techniques, such as the one

proposed in this paper, can be used for preprocessing the scanned documents prior to recognizing

text (cf., Plamondon and Srihari 2000, Section 4.1). Assume that the observed image is the one

presented in Figure 5.1(a), which is generated by the convolution of the text image of the words “line

edge” and the psf h1, defined in Section 4, and additive, independent and identically distributed

(i.i.d.) noise with common distribution N(0, 0.252). The true text image is of size 400 × 400,

its design space is normalized to be [0, 1] × [0, 1], its text pixels have gray levels of 60, and its

background pixels have gray levels of 0. In the psf h1, the true radius r is fixed at 0.05.

We first apply the proposed procedure (2.7)–(2.12) for estimating the true psf h1. For this

purpose, a region consisting of a line edge and a uniform background should be chosen. Among

several choices, the one consisting of 60× 60 pixels with the letter “I” in the middle is selected. By

the CV procedure (2.13), the parameters (r, J) are chosen to be (0.053, 5) in the normalized psf

estimator ĥM (cf., equation (2.12)). The resulting ĥM in the cross section of y = 0 and −1 ≤ x ≤ 0

is shown in Figure 5.2 by the dotted curve. After h is estimated, the following Wiener filter is used

for restoring the true image:

f̂(x, y) =
1

(2π)2
R

{∫ ∫ F{ĥM}(s, t)
|F{ĥM}(s, t)|2 + α(s2 + t2)β/2

F{Z}(s, t) exp{i(sx + ty)} dsdt

}
, (5.1)
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Figure 4.2: (a): Solid, dotted, and dashed curves represent h1, its estimator with optimal values
of r and J , and the estimator with r and J chosen by CV, respectively, in the cross section of
y = 0 and −1 ≤ x ≤ 0. (b): Solid and dotted curves denote the density curves of Â based on 100
replications, when r and J take their optimal values and when they are chosen by CV, respectively.
(c) and (d): Corresponding results when h = h2. In plots (a) and (c), the presented estimator is
the one with median Integrated Squared Error (ISE) among 100 replications.
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(a) (b)

(c) (d)

Figure 5.1: (a): Observed blurred-and-noisy image. (b): Restored image by the Wiener filter using
the proposed estimator of the psf. (c): Restored image by the Wiener filter using the Gaussian psf.
(d): Restored image by Carasso’s (2001) blind image restoration procedure.
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where F{ĥM}(s, t) denotes the complex conjugate of F{ĥM}(s, t), R{C} denotes the real part of

the complex number C, and α, β > 0 are two parameters. The Wiener filter was proved to be

optimal in minimizing the MISE of the restored image when the true psf was assumed known and

when the noise was assumed Gaussian, which corresponds to β = 1 in equation (5.1) (cf., Gonzalez

and Woods 1992, Chapter 5). The restored image when α = 2 × 10−11 and β = 1 is shown in

Figure 5.1(b). The above α value is chosen for good visual impression. When α is chosen smaller,

the restored text would look sharper, but the background would be noisier, and vice versa.
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Figure 5.2: Solid curve denotes the true psf. Dotted, dashed and long-dashed curves denote esti-
mated psfs by the nonparametric procedure (2.7)–(2.12), Gaussian approximation, and Carasso’s
(2001) APEX method using the symmetric Lévy “stable” density family.

In practice, some people would assume that the true psf is Gaussian, which is reasonable in

some applications, including some remote sensing and aerial imaging applications. The restored

image using the Wiener filter (5.1) and the Gaussian psf with scale parameter r/2 = 0.025 is shown

in Figure 5.1(c), when α = 10−9 and β = 1. The Gaussian psf is presented in Figure 5.2 by the

dashed curve. Its scale parameter is chosen such that its blurring extent matches that of the true

psf. From Figure 5.1(c), it can be seen that the restored text is not sharp enough, compared to

that in Figure 5.1(b), and the restored background already varies a lot in such a case, especially

around the text, which implies that the restored image can not be improved much by changing the

value of α in (5.1).
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As mentioned in Section 1, there are a few blind image deblurring procedures in the literature,

which impose various assumptions on the true psf. We take a different approach in the proposed

procedure by avoiding restrictive assumptions on the psf so that it can be used in more applications.

However, because of the ill-posed nature of the image restoration problem, we require that the

observed image of the imaging device under study includes at least one line edge surrounded by a

uniform background in a region, which is not difficult to satisfy in some applications, as discussed

in Section 1. Due to their different natures, it may not be appropriate to compare the proposed

procedure with these existing blind image deblurring procedures. To further demonstrate this

point, next, we apply the blind image deblurring procedure suggested by Carasso (2001) to the

degraded image shown in Figure 5.1(a), to investigate the performance of this procedure when its

assumptions on the psf are not satisfied. By this approach, the true psf is assumed to be in the

symmetric Lévy “stable” density family whose Fourier transformation is defined by

F{h}(u, v) = exp
{
−ξ(u2 + v2)η

}
, for (u, v) ∈ R2,

where ξ > 0 and 0 < η ≤ 1 are two parameters. To determine the two parameters, Carasso

suggested using the so-called APEX method, which chooses ξ and η such that

n/2∑

u=−n/2

[
log (F{Z}(u, 0)) −

(
−ξ|u|2η − A

)]2

is minimized, where 2 ≤ A ≤ 6 is a constant. By this method, we choose ξ = 0.4, η = 0.2, and

A = 5. The corresponding psf is shown in Figure 5.2 by the long-dashed curve. Obviously, the

approximated psf from the symmetric Lévy “stable” density family is far away from the true psf.

After the psf h is specified, by Carasso’s procedure, the Fourier transformation of the true image

is estimated by

F̂{f}(u, v) =
F{h}(u, v)F{Z}(u, v)

|F{h}(u, v)|2 + (ǫ/M)2 + K−2|1 −F{h}s(u, v)|2 ,

where ǫ,M,K, and s are constants. By Carasso’s suggestions, we choose ǫ = 0, M = 1, and

s = 0.005. The restored image when K = 0.2 is shown in Figure 5.1(d), which gives the best visual

impression when K changes. We can see that it does not improve much, compared to the observed

image, which implies that Carasso’s procedure may not be appropriate to use in this example.
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5.2 Restoration of the bird image

The bird image shown in Figure 5.3(a) is a standard test image in the literature. The one used here

has 256× 256 pixels, and its image gray levels are in the range [0, 255]. Assume that there are two

observed bird images. The one shown in Figure 5.3(b) is a blurred image without pointwise noise,

which is the convolution of the original bird image and the psf h1 used in the previous subsection

with r = 0.05. The one shown in Figure 5.3(c) is a blurred-and-noisy image, obtained by adding

i.i.d. pointwise noise with distribution N(0, 52) to the blurred image. For each observed bird image,

we further assume that there is a corresponding observed test image having the same setup, except

that the true test image is the one shown in Figure 4.1(a).

To restore the true bird image from its blurred version shown in Figure 5.3(b), we can first

estimate the true psf from the corresponding observed test image, using the proposed procedure

(2.7)–(2.12), and then restore the true image using the Wiener filter (5.1), as discussed in the

previous subsection. In procedure (2.9)–(2.14), the two parameters (r, J) should be determined in

advance, which can be accomplished in two ways. In image processing practice, such parameters are

often determined by repeated experiments using different parameter values, and the ones giving best

visual impression can be selected. In this paper, we suggest choosing (r, J) by the CV procedure

(2.13). Of course, different people may obtain different results using the first approach. To make it

more objective, here, we replace it by the one which searches for the optimal parameter values by

minimizing MISE of the estimated psf, as we did in Table 4.1. Although the MISE approach requires

information about the true psf and thus can not be used in real applications, its results are the best

possible ones by the repeated experiments approach, and it is used here just for demonstrating the

repeated experiments approach.

By the MISE and CV procedures, the parameters (r, J) are chosen to be (0.05, 6) and (0.053, 6),

respectively, and their estimated psf’s are shown in Figure 5.3(f), along with the true psf. Using

these results, the restored images by the Wiener filter are shown in Figure 5.3(d) using the parameter

values chosen by MISE, and in Figure 5.3(e) using the parameter values chosen by CV. In the

Wiener filter, β is fixed at 1 and α is chosen to be 10−10 in both cases, which gives the best visual

impression, as we did in Figure 5.1. The corresponding results from the observed blurred-and-noisy

bird image are shown in Figures 5.3(g)–(i).

From Figure 5.3, it can be seen that (i) the MISE and CV approaches give similar results, as
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Figure 5.3: (a): True bird image. (b): Observed blurred image. (c): Observed blurred-and-
noisy image. (d): Restored image from plot (b), using parameter values chosen by MISE. (e):
Restored image from plot (b), using parameter values chosen by CV. (f): True psf, estimated psf
using parameters chosen by MISE, and estimated psf using parameters chosen by CV, from the
corresponding test image of plot (b). (g)–(i): Corresponding results to those in plots (d)–(f), from
the observed blurred-and-noisy image.

22



demonstrated by Table 4.1 for estimating the psf, (ii) the estimated psf by procedure (2.7)–(2.12)

is not sensitive to noise level (cf., plots (f) and (i)), and (iii) the restored image by the Wiener

procedure is quite sensitive to noise after the psf is determined. Based on our experience, the third

conclusion is also true for other image restoration procedures assuming known psf. Note that the

noise level in plot (c) is quite high. When the observed bird image has the same amount of blurring

as in plots (b)–(c) and its noise level is between that in plot (b) and that in plot (c), then the

restored images should perform between those in plots (d)–(e) and those in plots (g)–(h).

6 Concluding Remarks

We discuss a nonparametric procedure for estimating the psf for blind image restoration, when the

true image includes a portion with a line edge surrounded by a uniform background, or, when there

is an observed test image having one or more line edges. This procedure can be applied to many

applications, including handwritten text recognition and calibration of imaging devices. Numerical

results show that it is robust to noise. Together with some existing image restoration procedures

assuming known psf, it can restore a true image well from its observed but degraded version.

However, to use the current version of the proposed deblurring procedure, we need to identify a

region that includes a line edge surrounded by a uniform background manually in the handwritten

text example discussed in Section 5.1. In applications, it might be possible to make this identifi-

cation process automatic, by first detecting edges using certain edge detectors (cf., e.g., Qiu and

Yandell 1997, Qiu 2002, Sun and Qiu 2007) and then automatically figuring out a region with a

single detected edge segment. However, detected edge pixels by most existing edge detectors are

scattered in the whole design space and they may not form closed edge curves. Therefore, after

edge detection, we might need to link detected edge pixels using certain edge linking techniques

(cf., Section 6.6.1, Qiu 2005). We may also need to estimate true background intensities and then

correct the background so that the corrected background is roughly uniform. It requires much

future research to put all these pieces together and make the entire procedure convenient to use.

As discussed in Section 1, the deblurring problem is notoriously challenging. The current

deblurring procedure depends on the availability of a test image with one or more line edges

surrounded by a uniform background or a portion of the true image with these properties. In

certain applications, it might be difficult to obtain a test image or an observed image with such
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features. Also, in this paper, we assume that the blurring mechanism is homogeneous in the entire

image (i.e., the psf h in model (1.1) does not depend on spatial location). In certain applications,

this assumption may not be valid. Image deblurring in these more general cases requires much

future research as well.
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Appendix

A Outline of the Proof of Theorem 3.1

Because estimator Â is involved in the definition of estimator ĥ, we prove equations (3.3) and (3.4)

about estimator Â first. By the approximation theory of trigonometric polynomials (cf., e.g., Girosi

and Anzellotti 1992), we have

∫ 1

0
[ξJ(u) − ξ(u)]2 du = O(J−2),

where ξJ(u) =
∑J−1

k=0 ck cos(kπu), and ξ(u) is assumed to have square integrable first-order deriva-

tives in [0, 1]. By this result, we can draw the following conclusion:

∫ ∫

D

[hJ(u, v) − h(u, v)]2 dudv = O(J−2), (A.1)

as long as the pdf h has first-order derivatives in D and
∫ ∫

D
[h′(u, v)]2 dudv < ∞.

By equations (2.7) and (2.9), it can be checked that

Â = A(b′
c) + b

′
(
B

′
B

)−1
B

′ε. (A.2)

Since the psf h is a 2-D density function on D and hJ has the property of (A.1) (cf., equations (2.3)

and (2.4)), we have

b
′
c = 1 + O(J−1). (A.3)

Therefore, the first term on the right-hand-side of equation (A.2) is A + O(J−1). The second term

is a linear combination of i.i.d. random variables with mean 0 and variance σ2/n. By results in

Theorem 1 of Lai and Robbins (1977), we know that it is of order o(J1/2n−1 log(J1/2n−1)), a.s..
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So, equation (3.3) is obtained by this result and equations (A.2) and (A.3). Since Â is a linear

combination of the observed image intensities, we also have equation (3.4).

To prove equation (3.1), we first notice that
∫ ∫

D

[
ĥ(u, v) − h(u, v)

]2

dudv ≤ 2

∫ ∫

D

[
ĥ(u, v) − hJ(u, v)

]2

dudv + 2

∫ ∫

D

[hJ (u, v) − h(u, v)]
2

dudv.

(A.4)

By equation (A.1), the second term on the right-hand-side of (A.4) equals O(J−2). Regarding the

first term, it can be checked that, for any (x, y) ∈ D,

[
ĥ(x, y) − hJ(x, y)

]2
= b

′(x, y)(ĉ − c)(ĉ − c)′b(x, y). (A.5)

By equations (2.8)–(2.10), we have

(ĉ − c) = (ĉA − c)A/Â + c(A/Â − 1). (A.6)

From equations (2.7) and (2.8), we have ĉA = c+ 1
A (B′

B)−1
B

′ε. So, again, based on the results in

Theorem 1 of Lai and Robbins (1977), we have (ĉA − c) = o
(
n−1 log(n)

)
, a.s.. By combining this

result and equation (3.3), the first term on the right-hand-side of (A.6) is of order o
(
n−1 log(n)

)

almost surely, and the second term is of order O(J−1) + o(J1/2n−1 log(J1/2n−1)) almost surely.

Therefore, by this result and equations (A.4)-(A.6), we have equation (3.1). Equation (3.2) can be

obtained by the Slusky’s theorem based on the fact that (i) ĥ(x, y)Â/A is a linear combination of

the observations (cf., equations (2.9)–(2.11)), and (ii) Â/A = 1 + o(1), a.s..
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