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Abstract. The removal of blur from a signal, in the presence of noise, is readily

accomplished if the blur can be described in precise mathematical terms. However,

there is growing interest in problems where the extent of blur is known only ap-

proximately, for example in terms of a blur function which depends on unknown

parameters that must be computed from data. More challenging still is the case

where no parametric assumptions are made about the blur function. There has

been a limited amount of work in this setting, but it invariably relies on iterative

methods, sometimes under assumptions that are mathematically convenient but

physically unrealistic (for example, that the operator defined by the blur function

has an integrable inverse). In this paper we suggest a direct, non-iterative approach

to nonparametric, blind restoration of a signal. Our method is based on a new,

ridge-based method for deconvolution, and requires only mild restrictions on the

blur function. We show that the convergence rate of the method is close to optimal,

from some viewpoints, and demonstrate its practical performance by applying it to

real images.

0AMS 2000 subject classifications. Primary 62G07; secondary 62P30.
0Key words and phrases. Blind signal restoration, blur, convergence rate, deconvolution, Fourier

inversion, Fourier transform, ill-posed problem, image restoration, inverse problem, minimax opti-

mality, noise, point degradation, ridge, test pattern.
0Acknowledgment of support. 1Supported in part by an ARC grant. 2Supported in part by an

NSF grant and an NSA grant.

1



1 Introduction

Observed signals are usually not exactly the same as true signals, but are instead de-

graded. This can occur through the entire process of signal acquisition, for a variety

of reasons. For example, in aerial reconnaissance, astronomy and remote sensing,

signals are often adversely affected by atmospheric turbulence or aberrations of the

optical system. Signal degradations can be classified into several categories, among

which point degradation (or noise) and spatial degradation (or blur) are the most

common. Other types of degradation involve chromatic or temporal effects. For a

detailed account of the formation and nature of degradations the reader is referred to

books such as those by Andrews and Hunt (1977) and Bates and McDonnell (1986).

Related discussion is also given by Qiu (2005).

In image analysis the true signal is often observed, or scanned, on a two-

dimensional pixel grid, subject to both noise and blur. More generally, a signal

may be recorded in any number of dimensions. For example, Lidar imaging devices

record in d = 3 dimensions, and a great deal of signal analysis is conducted in the

case d = 1.

In these settings it can be considered that we observe

Y (j) = (φψ)(j) +N(j), (1.1)

where ψ denotes the true signal, N represents noise, φ is a linear operator applied

to ψ, and Y is the noisy signal. The latter is acquired on a d-variate square lattice,

and therefore j, in (1.1), is a member of the set ZZd of all d-vectors of integers. We

shall use the symbol φ to denote also the kernel of the operator φ; this function is

sometimes referred to as the blur function. Thus, (φψ)(j) =
∑

k φ(j − k)ψ(k), for

each j ∈ ZZd.
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In an image-analysis interpretation of (1.1), ψ denotes the true scene, Y is the

observed image, the function φ is called a point-spread function, ZZd is a mathemat-

ical representation of the pixel grid on the Charge Coupled Device, or CCD, and

of course, d = 2. In this setting, and also more generally, we expect φ to preserve

signal intensity, i.e.
∑

j φ(j) = 1. In particular, this implies that if ψ ≡ b for a

constant b, meaning that the true signal is of constant “brightness,” then φψ ≡ ψ.

Image restoration (when d = 2), or, more generally, signal restoration, is a

process for reconstructing a close approximation to the unobserved signal ψ from

its observed but degraded form, Y . Many procedures for image restoration assume

that φ is known. This is the case with, for example, the inverse filter, Wiener

filter, constrained least-squares filter, Lucy-Richardson procedure, Landweber pro-

cedure, Tikhonov-Miller procedure, maximum a posteriori (MAP) procedure, max-

imum entropy procedure, and techniques based on the EM algorithm. See, for

instance, Skilling (1989), Gonzalez and Woods (1992, Chapter 5), Carasso (1999)

and Figueiredo and Nowak (2003). In some settings this is reasonable, since φ can

be specified, at least approximately, using our knowledge of the signal acquisition

device. However, in other applications this information is not available, and so ap-

proximation (or estimation) of φ is a prerequisite for image restoration. This is the

context of the present paper.

Signal restoration when φ is unknown is referred to as blind signal restoration.

A number of procedures have been proposed for solving this problem. They can

be grouped into two categories. In the first, φ is described by a parametric model,

usually with just one, but occasionally two, parameters. See, for example, the work

of Cannon (1976), Katsaggelos and Lay (1990), Rajagopalan and Chaudhuri (1999),

Carasso (2001), and Joshi and Chaudhuri (2005). The other class of procedures

assumes that the true signal consists of an object with specific, known features —
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e.g. a shape with known support, against a uniform background — but involves only

weak, nonparametric assumptions about φ. See, for example, the contributions of

Yang et al. (1994) and Kundur and Hatzinakos (1998).

It is to the latter category that we contribute in this paper. We introduce a

method which, working from a known test signal and making only mild, nonpara-

metric assumptions about the blur function, recovers the latter without suffering

the drawbacks of earlier nonparametric techniques. In particular, the mechanism

leading to the observed signal is not precisely known because we lack information

about the blur function, rather than about the true signal.

Using our technique, the blur function does not need to have an integrable in-

verse, or reciprocal. The latter assumption will very seldom be satisfied in practice,

although it is made in recent, related literature. Moreover, our technique is sub-

stantially less complex than the iterative approaches which are invariably used in

nonparametric settings.

We introduce a new, ridge-based deconvolution algorithm. Unlike conventional

methods, this technique is well suited to inversion when the Fourier transformation

of the point-spread function vanishes at infinitely many points. Standard approaches

to dealing with this problem sometimes resort to “fencing off” those zeros, and then

dealing separately with each one. That can be particularly awkward, and is avoided

by our ridge-based method. In addition to having good numerical performance, the

ridge technique achieves, in some settings, theoretically optimal convergence rates,

and so is no less “sharp” than its more conventional competitors.

Our theoretical work is related to earlier contributions of Hall (1990), John-

stone and Silverman (1990), Donoho and Low (1992), Donoho (1994), Van Rooij et

al. (1999) and Ermakov (2003). These authors, in a variety settings, discuss consis-
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tency and convergence rates for inverse estimators computed from unknown signals

and from known blur functions.

The method is introduced in section 2. Some of its theoretical properties are

discussed in section 3. A numerical study in section 4 describes our method’s sta-

tistical features and its application to real images. Technical details are deferred to

section 5.

2 Models and estimators

2.1. Model for degraded, noisy signal. We assume model (1.1) throughout. The

noise, N , is taken to be independent and identically distributed at each lattice point

j, with variance σ2 > 0. We suppose that φ preserves signal intensity.

We might think of the pixel-based blur function φ as representing a discrete

approximation to an idealised, smooth blur function, g say, which operates in the

continuum. If the pixel width is considered to be n−1, where n ≥ 1 is an integer

which we shall permit to become arbitrarily large, then the relationship between φ

and g might be taken to be:

φ(j) = n−d f(j/n) for all j ∈ ZZd , and f(x) = sd g(x) for all x ∈ IRd ,

(2.1)

where we might take the function g to be fixed (i.e. not depending on n) and, if

φ preserves intensity (e.g. preserves the light energy striking the CCD in a typical

imaging device), the scaling factor sd satisfies

sd =

{

n−d
∑

j∈ZZd

g(j/n)

}−1

→ 1 (2.2)

as n → ∞. The limiting relation in (2.2) holds because
∫

g = 1, this being the
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continuum version of
∑

j φ(j) = 1. Thus, f is a normalised version of g, on the

pixel grid, and φ is a discretised version of f .

The suggestion that g be a fixed function is made here only to simplify our

ideas. In our subsequent theoretical work we shall, through analogous changes to φ,

permit the spread of g to alter with n, so that the difficulty of the imaging problem

can evolve as the amount of information changes.

We shall take f to be supported on the sphere of radius λn/n. It follows that g

is supported on the same set.

2.2. Model for test signal. In the case d = 2, test signals, or test patterns, are

frequently used to determine a point-spread function from data. Test patterns are

images that are known to significantly greater accuracy than that provided by the

image recording device under test. In fact, test patterns are generally known com-

pletely; there is no need to estimate parameters, and in this sense the term “para-

metric image model” would be misleading if it were applied to a test-pattern in a

narrow statistical sense. In practice, performance is often assessed visually; in this

paper we use mathematical closeness in the L2 metric in lieu of subjective assess-

ment.

Real test patterns are typically comprised of regular geometric shapes, such as

rectangles. We shall treat such a signal here, in the d-variate case, although to

simplify notation and discussion we shall assume that there is a single rectangular

prism, mj pixels wide along the jth axis for j = 1, . . . , d. If the sides of the prism

are parallel to the pixel axes, if the lower left- and upper right-hand corners of the

rectangle are at (a1, . . . , ad) and (b1, . . . , bd) respectively, and if the value of the

signal is 1 within the rectangular prism and 0 outside, then ψ(k1, . . . , kd) equals 1

if aj ≤ kj ≤ bj for 1 ≤ j ≤ d, and equals zero otherwise. It follows that, with
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t = (t1, . . . , td)
T and j = (j1, . . . , jd)

T, we have:

ψFt(t) =
b1
∑

j1=a1

. . .
bd
∑

jd=ad

eit
Tj = exp

{

1
2 i

d
∑

ℓ=1

(aℓ + bℓ) tℓ

} d
∏

ℓ=1

sin(mℓtℓ/2)

sin(tℓ/2)
, (2.3)

wheremℓ = bℓ−aℓ+1, and the superscript Ft denotes the discrete Fourier transform.

If, as in the discussion of (2.1) and (2.2) in section 2.1, we consider the lattice

ZZd to represent a rescaled pixel grid where neighbours are, in reality, distant n−1

rather than 1 apart along each axis, then it is reasonable to consider mℓ to be

asymptotic to cℓn, where in this instance we take cℓ > 0 to be fixed as n diverges.

In this way the rectangular m1 × . . .×md prism represents, as n diverges and scale

is suitably adjusted, an increasingly accurate approximation to a prism with edge

lengths c1, . . . , cd.

2.3. Discrete Fourier transforms. Assume that φ vanishes outside a known sphere

R = R(n) in ZZd, centred at the origin, O, and of radius λn, where n/λn is bounded;

and that ψ likewise is zero outside a known set S, which extends no further than

radius O(n) from O. Put T = R⊕ S = {j + k : j ∈ R, k ∈ S}. Then, φψ vanishes

outside T , and

φFt(t) =
∑

j∈ZZd

φ(j) eit
Tj =

∑

j∈R

φ(j) eit
Tj , ψFt(t) =

∑

j∈S

ψ(j) eit
Tj

and (φψ)Ft = φFt ψFt.

In a slight abuse of notation we denote by Y Ft and NFt the Fourier transforms

of Y and N restricted to T :

Y Ft(t) =
∑

j∈T

Y (j) eit
Tj , NFt(t) =

∑

j∈T

N(j) eit
Tj .

Therefore, a Fourier-transform version of (1.1) has the form:

Y Ft(t) = φFt(t)ψFt(t) +NFt(t) , t ∈ IRd . (2.4)
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Result (2.4) highlights the symmetry of the problem: In principle, identical

methods can be used to recover φ from Y , knowing ψ, and to recover ψ knowing φ.

However, a marked degree of asymmetry is often introduced through the typical

forms of φ and ψ. Again the problem of image analysis provides a convenient

example. There, when the point-spread function φ is known, and the problem is

that of estimating the true scene, then φ is generally smooth, and in particular φFt(t)

generally converges relatively quickly to zero as ‖t‖ increases. (Here, ‖ · ‖ denotes

the Euclidean metric on IRd.) On the other hand, when the true scene is known,

for example a test pattern, and the problem is one of estimating the point-spread

function, ψ is often unsmooth. In particular, as indicated in section 2.2, ψ contains

jump discontinuities, representing the sharp boundaries in a test pattern. In such

cases, ψFt(t) generally converges to zero relatively slowly. Of course, there are

exceptions to these generalities; for example, if φ denotes the point-spread function

corresponding to motion blur then it is unsmooth.

We shall concentrate on the problem of estimating φ from known ψ.

2.4. Estimation of φ from known ψ. Let ρ(t) denote a positive constant multiple of a

known, positive function of the real variable, t. We use ρ(t) as, in effect, a ridge when

regularising a Fourier transform. In particular, recognising that φFt = (φψ)Ft/ψFt

and therefore

φ(j) =
1

(2π)d

∫

A

(φψ)Ft(t)

ψFt(t)
e−ijTt dt , (2.5)

where A = [−π, π]d, we define an estimator φ̂ of φ by

φ̂(j) =
1

(2π)d

∫

A

ψFt(−t) |ψFt(t)|r Y Ft(t)

{|ψFt(t)| ∨ ρ(t)}r+2
e−ijTt dt . (2.6)

Here, r ≥ 0; choosing r > 0 removes potential numerical problems associated with

computing the integral in (2.6).

We may think of (2.6) as having been obtained from (2.5) by (a) multiplying
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the numerator and the denominator in the integrand of (2.5) by ψFt(−t) |ψFt(t)|r;

(b) replacing |ψFt(t)| by the maximum of that quantity and the ridge, in the quantity

|ψFt(t)|r+2 which step (a) produces in the denominator; and (c) replacing (φψ)Ft(t)

in the numerator by its unbiased approximation, Y Ft(t).

In some cases, considerations of symmetry in the process for manufacturing the

signal recording device imply that, to a first approximation, φ is radially symmetric.

For example, glass (as distinct from resin) lens elements are typically manufactured

using a polishing process which involves rolling a large sphere, with cylindrical glass

blanks attached, inside another sphere. However, errors in this process can introduce

asymmetric aberrations to such elements, in particular because the outer, grinding

sphere is worn, or the glass blanks are not correctly secured. Other causes of asym-

metry result from inaccuracies in the alignment of elements within the lens, or in

the cementing of lens elements together. Since the design of a lens is often highly

complex, there are many different ways in which asymmetric aberrations can arise,

and no standard parametric models for the blur functions that they might produce.

3 Theoretical properties

3.1. Mean-squared error criteria for choosing the ridge. We define the sum of

squared errors of φ̂(j) to be

SSE =
∑

j∈ZZd

|φ̂(j) − φ(j)|2 .

¿From this formula and the definition of φ̂(j), at (2.6), it follows that mean summed

squared error, or MSSE, admits the formula:

MSSE = E(SSE) = σ2 (#T )
1

(2π)d

∫

A

{

|ψFt|r+1

(|ψFt| ∨ ρ)r+2

}2
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+
1

(2π)d

∫

A
|φFt|2

{

1 −
|ψFt|r+2

(|ψFt| ∨ ρ)r+2

}2

. (3.1)

The first and second terms on the right-hand side represent the total contributions

to mean summed squared error from variance and squared bias, respectively. For

example, the first term on the far right-hand side equals

∑

j∈ZZd

E|φ̂(j) − Eφ̂(j)|2 =
1

(2π)d

∫

A

{

|ψFt|r+1

(|ψFt| ∨ ρ)r+2

}2

E|NFt|2 ,

and the claimed relationship follows from the fact that E|NFt|2 ≡ σ2 (#T ).

We suggested in section 2.1 that the lattice ZZd be interpreted as a rescaled

version of a pixel grid with edge length n−1. We claim that in this setting it is

appropriate to work with nd MSSE, rather than directly with MSSE. To appreciate

why, recall from (2.1) and (2.2) that nd φ(j) can be interpreted as a discrete approx-

imation, on a pixel grid, to a continuous blur function f , evaluated at j/n. In this

context, f̂(j/n) ≡ nd φ̂(j) can be viewed as an estimator of f(j/n), and extended

to IRd; and nd MSSE can be interpreted as a discrete approximation to the mean

integrated squared error of f̂ as an approximation to f .

3.2. Asymptotic properties of φFt and ψFt. Reflecting the rescaling discussed above,

define φFt
n (t) = φFt(t/n), ψFt

n (t) = n−d ψFt(t/n), ρn = n−d ρ, An = [−nπ, nπ]d and

τ = n−d (#T ). In this notation,

nd MSSE = n−d σ2 τ
1

(2π)d

∫

An

{

|ψFt
n |r+1

(|ψFt
n | ∨ ρn)r+2

}2

+
1

(2π)d

∫

An

|φFt
n |2

{

1 −
|ψFt

n |r+2

(|ψFt
n | ∨ ρn)r+2

}2

. (3.2)

Since nd MSSE can be represented so simply in terms of φFt
n and ψFt

n then it is of

interest to know properties of those functions.

We shall work with classes of compactly-supported blur functions φ for which

the associated, rescaled Fourier transform, φFt
n , decreases at least polynomially fast
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in the tails. In general it is awkward to prove that such a rate of decrease occurs

arbitrarily far out in the tails, but fortunately we need it only a distance o(n) from

the origin.

Performance is determined by three main parameters: n, the number of obser-

vations per linear unit of space; σ2
n, noise variance; and λn, blur radius. Arguably

the first two of these are the most intrinsic, although λn also plays a major role.

These considerations lead us to define the following class of sequences of blur

functions. Given a sequence Λ = {λn} of positive numbers, and p > 0:

Let F(Λ, p) denote a class of sequences of functions φ depending on n,

with the following properties for each given n: (a) φ vanishes outside a

d-variate sphere, centred at the origin, of radius λn; (b)
∑

j φ(j) = 1; (3.3)

and (c) for each positive sequence ǫn decreasing to zero as n → ∞,

(1+‖t‖)p |φFt
n (t)| is bounded uniformly in ‖t‖ ≤ nǫn and in φ ∈ F(Λ, p),

and |φFt
n (t)| = O{(nǫn)−d} uniformly in t ∈ An with ‖t‖ > nǫn and in φ.

Here and below, “φ ∈ F(Λ, p)” means that the sequence of blur functions for which

the function, at “time” n, is φ, is in F(Λ, p). Thus, φ depends on the pixel scale-

factor n, although to prevent ambiguity we indicate this in notation only for the

Fourier transform φFt
n of the rescaled version of φ, not for φ itself.

To illustrate, we introduce a function φ which satisfies the conditions in (3.3).

The function class F(Λ, p) could be taken to be a set of rescaled versions of this φ,

but of course it can be much larger.

Consider a compactly supported, continuum blur function, g(x) = A1
∏

ℓ (1 −

x2
ℓ)

p for supℓ |xℓ| ≤ 1. The constant A1 > 0 is chosen so that the function integrates

to 1 on [−1, 1]d, or equivalently, so that signal intensity is preserved. The associated
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characteristic function,

gFt(t) = A1

∫

x : supℓ |xℓ|≤1
eit

Tx
{ d
∏

ℓ=1

(1 − x2
ℓ )

p
}

dx ,

satisfies |gFt(t)| ≤ A2 (1 + ‖t‖)−p, for all t ∈ IRd, where A2 > 0 is a constant.

The discrete blur function, φ, analogous to g is

φ(j) = A2(n)n−d
d
∏

ℓ=1

(1 − n−2j2ℓ )p (3.4)

for supℓ |jℓ| ≤ n, where the bounded sequence A2(n) is chosen to preserve signal

intensity. In this case, λn = O(n); that is, φ is supported within a sphere of radius

n of the origin. For each sequence ǫn ↓ 0 there exists a constant A3 > 0 such that

the corresponding φFt
n satisfies |φFt

n (t)| ≤ A3 (1 + ‖t‖)−p for all ‖t‖ ≤ nǫn, and also

|φFt
n (t)| ≤ A3 (nǫn)−d.

The signal model introduced at (2.3) admits a concise asymptotic description.

Let us, in (2.3), take cℓ = mℓ/n; then,

ψFt
n (t) = eθ

T
n t

d
∏

ℓ=1

sin(cℓtℓ/2)

n sin(tℓ/2n)
, (3.5)

where θn ∈ IRd. If cℓ is either fixed or converges to a finite, nonzero number as

n→ ∞, then ψFt
n (t) is asymptotic to ψFt

lim(t) =
∏

ℓ {2 t
−1
ℓ sin(cℓtℓ/2)}. It follows that,

for each sequence ǫn ↓ 0, |ψFt
n (t) − ψFt

lim(t)|/|ψFt
lim(t)| → 0 uniformly in ‖t‖ ≤ nǫn,

and |ψFt
n (t)| = O{(nǫn)−d} uniformly in t ∈ An for which ‖t‖ > nǫn.

3.3. Upper bound to rate of convergence of MSSE. Our main result is the following.

Define F(Λ, p) as at (3.3). The formula for the threshold, ρn(t), given there can

be changed without appreciably altering the results. For example, the theorem

continues to hold if, in the expression for ρn(t), we replace
∏

ℓ (|tℓ| ∨ 1) by simply 1,

strengthen the condition p > 1
2 (d + q) to p > d + 1

2q, and weaken the assumption

q > 3d to q > 2d.
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Theorem 3.1. Assume that n/λn is bounded as n → ∞, and that noise variance,

σ2 = σ2
n, satisfies n−d λd

n σ
2
n → 0 as n → ∞. Let hn denote a positive sequence

decreasing to zero, put ρn(t) = hn {
∏

ℓ (|tℓ| ∨ 1)}−1 ‖t‖q, take r ≥ 0 in the definition

of φ̂(j) at (2.6), and assume that p > 1
2(d+ q) and q > 3d. Then, as n→ ∞,

sup
φ∈F(Λ,p)

nd MSSE = O
{

(n−d λd
n σ

2
n h

−1
n + hn) (log n)d−1

}

. (3.6)

Remark 3.1: Optimising choice of hn. The theorem implies that a mean-square

convergence rate of essentially (λd
n σ

2
n/n

d)1/2, uniformly over φ ∈ F(Λ, p), can be

achieved by taking hn ≍ (λd
n σ

2
n/n

d)1/2:

sup
φ∈F(Λ,p)

nd MSSE = O
{

(λd
n σ

2
n/nd)1/2 (log n)d−1

}

. (3.7)

The notation an ≍ bn, for positive an and bn, means that an/bn is bounded away

from zero and infinity as n→ ∞.

Remark 3.2: Smoothness of φ. The convergence rate in (3.7) does not depend on the

smoothness of φ, represented by p in the function class F(Λ, p), provided p exceeds

1
2(d + q). It is of interest to consider what this means in terms of the number of

derivatives enjoyed by the blur functions. Let us take q = 3d+, i.e. just a little

larger than 3d. Then, the condition p > 1
2(d + q) reduces to p > 2d. If F(Λ, p) is

sufficiently large, for example if it contains a scale-changed version of the φ defined

at (3.4), then the assumption that all the blur functions in F(Λ, p) have s square-

integrable derivatives is equivalent to asking that p > s + 1
2d. In this setting the

smoothness condition imposed in the theorem reduces to the restriction that all the

functions in the class have d bounded derivatives. In the important special case of

image analysis, d = 2 and just two derivatives are required.

Remark 3.3: Smoothness of ψ. If the test signal, ψ, is a relatively smooth function

then the mean-square accuracy of even an optimal approximation to φ can be inferior
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to the rate in (3.7). For example, taking λn = n, σ2
n = n−1 and d = 1 for simplicity,

the rate in (3.7) is n−1/2. However, assuming that |ψFt
n | decreases like (1 + ‖t‖)−s

as ‖t‖ diverges, the minimax-optimal rate of convergence of mean squared error in

estimation of φ can be shown to equal n−2p/(2p+2s+1). (See Fan (1991) for related

results in density deconvolution problems.) This is inferior to the rate n−1/2 unless

p > s + 1
2 . Therefore, if the test signal is very smooth, the blur function must be

even smoother if the accuracy of the estimator of the blur function is not to be

degraded relative to that for a rough test signal.

3.4. Lower bound to rate of convergence of MSSE. Let f denote a fixed, spherically

symmetric, compactly supported probability density on IRd, for which

sup
t∈IRd

(1 + ‖t‖)p |fFt(t)| <∞ , (3.8)

where p > 0. Let ξ be a d-vector, and put δn = λ−1
n ,

χθ(x) = c1,θ δ
d
n f(δnx) {1 + θ cos (ξTx)} , (3.9)

where θ = 0 or 1 and c1,θ denotes a constant. (Here, and below, we suppress the

dependence of quantities such as χθ and c1,θ on n.) Note that

δd
n

∫

f(δnx) cos (ξTx) eit
Tx dx = 1

2

{

fFt
(ξ + t

δn

)

+ fFt
(ξ − t

δn

)}

.

Therefore, if we define c−1
1,θ = 1 + θ fFt(ξ/δn) then χθ is a probability density.

Let the blur function φθ denote the conventional discrete approximation to χθ:

φθ(j) = c2,θ n
−d χθ(j/n) , j ∈ ZZ , (3.10)

where the constant c2,θ is chosen so that intensity is preserved, i.e.
∑

j φθ(j) = 1.

Under the conditions given in the theorem below, this standardisation entails c2,θ →

1 as n → ∞. Let MSSEnθ denote the version of MSSE for a general estimator of
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φ (not necessarily the estimator at (2.6)), when the true φ is φθ and the scale

parameter equals n.

Theorem 3.2. Assume δn ≍ (σ2
n/n

d)1/(3d), that C1 n
−C2 ≤ δ2d

n ≤ C3 n
−C4, where

C1, . . . , C4 > 0 and d(1− p−1) ≤ C4 ≤ C2, and that p ≥ max(3
2d,

3
4C2 +1). Suppose

too that the noise variables N(j) are independent and identically distributed as

Normal N(0, σ2
n). Then, for a choice of ξ in (3.9) that depends only on c1, . . . , cd in

the definition of the test signal ψ (see (3.5)),

lim inf
n→∞

(nd/λd
n σ

2
n)1/2 sup

θ=0,1
nd MSSEnθ > 0 . (3.11)

In view of (3.8), the sequence of functions φθ, indexed by n, is F(Λ, p) for

θ = 0, 1, provided the constant in the uniform bound on (1 + ‖t‖p) |φFt
n (t)| in (3.3)

is chosen sufficiently large. In this case, (3.11) implies that

lim inf
n→∞

(nd/σ2
n)1/2 sup

φ∈F({δn},p)
nd MSSEnθ > 0 . (3.12)

Assuming the relation λn ≍ (nd/σ2
n)1/(3d) between noise variance and support of the

blur function, and with the exception of the logarithmic factor in (3.7), (3.12) is a

converse of (3.7). Within these contraints, the estimator φ̂ at (2.6) recovers φ from

the test-pattern data at the optimal rate.

In the case σ2
n = n−1, treated in Remark 3.3, Theorem 3.2 shows that the

convergence rate achieved is optimal if λn ≍ n(d+1)/(3d). This is a more realistic

assumption than λn ≍ n, imposed in Remark 3.3, since it permits the number of

pixels that represent the width of the blur function to be an order of magnitude less

than the number per linear unit of space.
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4 Numerical results

4.1. Square-block test pattern. Here we summarise the results of a simulation study

when d = 2, in cases where the true image, represented by the function ψ, is a

simple square block with intensity 1, against a white background with intensity 0.

See panel (a) of Figure 4.1. We take the true continuum blurring function to be

g(x1, x2) =
1

(0.7388λ)2
{1 − (x1/λ)2}{1 − (x2/λ)2} (4.1)

for sup(|x1|, |x2|) ≤ λ, and g(x1, x2) = 0 otherwise, as suggested in section 3.2 with

p = 5. Note that g is not circularly symmetric; that is, g(x1, x2) is not a function of

x2
1 + x2

2 alone. (The great majority of parametric models for point-spread functions

are circularly symmetric.) We denote the discretised version of g by φ.

See Figure 4.1(d) for a perspective plot of φ when n = 128 and λ = 0.2.

Figure 4.1(b) shows the result of blurring ψ using φ. If we add independent and

identically distributed N(0, σ2) noise to the blurred image at each pixel, then we

obtain, when σ = 0.1, the result shown in Figure 4.1(c).

We evaluated the performance of the estimator φ̂, defined at (2.6), when n =

128, λ = 0.2, and σ = 0.05, 0.1 and 0.2. For the estimator φ̂ we choose ρn(t) =

hn‖t‖
5, which, along with g in (4.1), satisfies the conditions given in section 3.2.

There are two parameters, r and hn, involved in the estimator φ̂. We found that, in

most cases (e.g. n = 128 or 256, σ ∈ [0, 1]), results were improved when r increased

in the range [0, 50], and they did not change much when r was chosen larger than 50.

However, when r was chosen too large (e.g., larger than 60), numerical underflow

sometimes occurred in the computations, since the denominator in (2.6) was very

small in such cases. To demonstrate this, we consider four r values: 1, 10, 50 and 55.

For each combination of σ and r, we searched for the optimal value of hn in the

16
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Figure 4.1: Graphs of ψ, φ, φψ, and Y . Panel (a) shows the true image, ψ. Panel
(b) shows its blurred version, φψ. The function φ itself is depicted in panel (d).
Panel (c) shows the blurred image plus noise; the latter was N(0, 0.12) on each
pixel. Digitisation was on a 128 × 128 grid.

range [0, 10−3], with step-length 10−5. In this analysis we employed MSSE (mean

summed squared error) to define optimality, as in section 3, and used as our data

the results of 101 simulations. Values of MSSE, the standard error of SSE, and the

optimal value of hn are presented in Table 4.1.

¿From that table it can be seen that: (a) In all cases considered, MSSE values

are stable when r is chosen larger than 50; (b) MSSE increases with σ, but the effect

of σ is quite small; (c) hn should be chosen smaller when r is larger or σ is smaller.

17



r σ = 0.05 σ = 0.1 σ = 0.2

1 1.9744, 0.0607 2.0987, 0.0750 2.3457, 0.0887
1.0 × 10−4 1.1 × 10−4 1.2 × 10−4

10 1.2046, 0.0779 1.3708, 0.0474 1.4961, 0.0954
2.0 × 10−5 3.1 × 10−5 3.2 × 10−5

50 0.6397, 0.0324 0.6644, 0.0531 0.7533, 0.0874
1.7 × 10−5 1.7 × 10−5 1.7 × 10−5

55 0.6397, 0.0324 0.6643, 0.0531 0.7532, 0.0873
1.7 × 10−5 1.7 × 10−5 1.7 × 10−5

Table 4.1: Mean summed squared error. Tabulated are values of MSSE (the first
number in each entry), and se of SSE (the second number) of the estimator φ̂ defined
at (2.6), based on 101 simulations. The optimal value of hn is presented in the second
line in each entry. The noise distribution is N(0, σ2).

We found that, for the smaller sample sizes treated in our numerical work, the

estimator performed well except that it under-estimated the peak of φ a little. This

is a common aberration of nonparametric curve and surface estimators, which tend

to be biased down in peaks and up on troughs. The tendency can be largely removed

by making a simple change of scale:

φ̄(x1, x2) = φ̂(x1/s, x2/s) , (4.2)

where s > 0 is a tuning parameter.

In practice, all tuning parameters, including s, would be chosen to give the best

visual impression. This approach is common in image analysis, and avoids difficulties

that arise when using mathematical criteria that are based on L2 performance but

do not approximate visual perception particularly well. See Marron and Tsybakov

(1995) for discussion.

Figure 4.2(a) shows the estimator φ̄ that has median value of MSSE, out of 101

simulations, when σ = 0.1, r = 50, hn = 1.7× 10−5 and s = 0.92. Its profiles in the

cross-sections of x2 = 0 and x1 = 0 are shown in Figures 4.2(b) and 4.2(c), respec-

tively, by the dotted curves. In these two plots, the solid curves denote the profiles

18



of the true point-spread function φ, the short- and long-dashed curves denote the

profiles of the the estimator φ̂ having median value of MSSE, out of 101 simulations,

when r = 50, and σ = 0.05 and 0.2, respectively.
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Figure 4.2: Graphs of φ̄. Panel (a) shows a plot of φ̄ when σ = 0.1, r = 50,
hn = 1.7× 10−5, and s = 0.92. Panels (b) and (c) show profiles in the cross sections
of x2 = 0 and x1 = 0, respectively, of φ (solid), φ̄ when σ = 0.05 (dotted), φ̄
when σ = 0.1 (short-dashed), and φ̄ when σ = 0.2 (long-dashed). In each case, the
estimator φ̄ has median value of MSSE, out of 101 simulations.

4.2. Application to cameraman image. To illustrate how our methodology affects

the restored image in the entire image restoration process, we used the popular

cameraman image as an example. The original image is shown in Figure 4.3(a); it

is of size 256 × 256 pixels, with grey levels in the range [0, 255]. A blurred version

of this image, using the point-spread function g at (4.1) with λ = 0.05 (i.e. with a

25 × 25 pixel blurring window) is shown in Figure 4.3(b). Figure 4.3(c) depicts the

image that is obtained after adding independent and identically distributed N(0, 52)

noise to the image in Figure 4.3(b).

We pretended that these images were made by the same image aquisition device

as that for the test image shown in Figure 4.1. Then the point-spread function, φ,

was estimated by (2.6) and (4.2) from the degraded test image, using the same level
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(a) (b) (c)
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Figure 4.3: Cameraman example. Panels (a)–(c) show the original, the blurred, and
the blurred-and-noisy cameraman images, respectively. Panels (d) and (e) show
images restored from (c) by the inverse filter and the Wiener filter, respectively.
Panel (f) shows the restored image, obtained by the Wiener filter, when a Gaussian
point-spread function with standard deviation λ/2 was used in deblurring.

of blurring and noise as for the degraded cameraman images. We fixed r at 50, as

before.

There are several existing procedures for restoring ψ from Y , if φ is known

or estimated. We chose two non-iterative procedures: the inverse filter with a hard

threshold, and the Wiener filter. The restored image computed by the first approach

is given by

ψ̂1(x) =
1

(2π)2
ℜ

{
∫ ∫

Y Ft(t)

φ̂Ft(t)
I(|φ̂Ft(t)| > γ) exp (itTx) dt

}

,

where φ̂ denotes the estimated point-spread function, and γ > 0 is the threshold.
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The restored image obtained by the second approach is defined by

ψ̂2(x) =
1

(2π)2
ℜ

{
∫ ∫

φ̂Ft
∗ (t)

|φ̂Ft(t)|2 + α ‖t‖β
Y Ft(t) exp (itTx) dt

}

,

where φ̂Ft
∗ denotes the complex conjugate of φ̂Ft, and α, β > 0 are two parameters.

The inverse filter is basically the least-squares procedure; use of the threshold alle-

viates noise amplification. The Wiener filter is derived with a view to minimising

MSSE of the restored image under the assumption that noise is Gaussian. These two

approaches are used commonly in the literature. See Gonzalez and Woods (1992,

Chapter 5) for detailed discussion.

The restored image, obtained by inverse filtering from the blurred and noisy

cameraman image, is shown in Figure 4.3(d). The corresponding results for Wiener

filtering are given in Figure 4.3(e). In each case the tuning parameters, α, β, hn =

10−5 and s = 0.89, were selected to give a good visual impression.

Next, instead of estimating the point-spread function as suggested at (2.6),

we assumed that the Wiener filter used a Gaussian point-spread function with its

standard deviation equal to λ/2. (This produces virtually the best results in the

Gaussian case. Note that radius of the Gaussian point-spread function is effectively

twice its standard deviation, and that the radius of the correct point-spread function

equals λ.) The corresponding result is shown in Figure 4.3(f). It can be seen that

this mistaken guess at the point-spread function affects the results considerably.

5 Proofs

5.1. Proof of Theorem 3.1. Define β1(t) =
∏

ℓ |t−1
ℓ sin(cℓtℓ/2)|, with cℓ as in (3.5);

put

un1 =

∫

An

[

|ψFt
n (t)|r+1

{|ψFt
n (t)| ∨ ρn(t)}r+2

]2

dt ,
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vn1 =

∫

An

|φFt
n (t)|2

[

1 −
|ψFt

n (t)|r+2

{|ψFt
n (t)| ∨ ρn(t)}r+2

]2

dt ;

let γ denote a general, positive function of t = (t1, . . . , td) that depends on the

tj’s only through their absolute values; and let un2(γ) and vn2(γ) have the same

respective definitions as un1 and vn1, but with |ψFt
n (t)| and ρn(t) replaced by β1(t)

and ρn(t) γ(t), respectively. Noting that the denominator contribution to ψFt
n (t) at

(3.5) satisfies

A
d
∏

ℓ=1

|tℓ| ≤
d
∏

ℓ=1

|n sin(tℓ/2n)| ≤ 1
2

d
∏

ℓ=1

|tℓ| ,

uniformly in t ∈ An, where A ∈ (0, 1
2) is an absolute constant; and with w denoting

either u or v; we have:

wn1 ≤ sup
γ

′ wn2(γ) , (5.1)

uniformly in φ ∈ F(Λ, p), where supγ
′ denotes the supremum over choices of γ

satisfying B−1
1 ≤ γ ≤ B1.

Let α(t) = (1 + ‖t‖)−p, β2(t) =
∏

ℓ |t−1
ℓ sin(tℓ/2)|,

un3(γ) =

∫

An

[

β2(t)
r+1

{β2(t) ∨ ρn(t)γ(t)}r+2

]2

dt , (5.2)

vn3(ǫ, γ) =

∫

‖t‖≤nǫ
|α(t)|2

[

1 −
β2(t)

r+2

{β2(t) ∨ ρn(t)γ(t)}r+2

]2

dt , (5.3)

where 0 < ǫ < π. If we change variable in the integrals defining un2 and vn2, from

t = (t1, . . . , td)
T to s = (s1, . . . , sd)

T, with sℓ = cℓ tℓ where cℓ is as in (3.5); and if

we observe that, in the definition of un2(γ), the method for bounding the integral

over a rectangle
∏

ℓ [n c1ℓ, n c2ℓ], where −∞ < c1ℓ < 0 < c2ℓ < ∞, is the same as

that for the integral over An; then it can be deduced from (3.2), (5.1), the fact

that #T = O(λd
n), and the definition of F(Λ, p) that, for each positive sequence ǫn

decreasing to zero, and for B1, B2 > 0 sufficiently large,

nd MSSE ≤ B2 sup
γ

′ {n−d λd
n σ

2
n un3(γ) + vn3(ǫn, γ)} +O(n−d λd

n σ
2
n ǫ

−2d
n ) , (5.4)
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uniformly in φ ∈ F(Λ, p).

Define

Id(ǫ) =

∫

Dd

β(s)z I{β(s) ≤ ǫ} ds ,

where ǫ > 0, z ≥ 0, Dd = [0, 1]d and β(s) =
∏

1≤ℓ≤d |sℓ|. The result below describes

the size of Id(ǫ).

Lemma 5.1. As ǫ ↓ 0, Id(ǫ) = O(ǫz+1 | log ǫ|d−1).

Proof of lemma. Observe that

Id(ǫ) =

∫

Dd−1

( d
∏

ℓ=2

sℓ

)z

I

( d
∏

ℓ=2

sℓ ≤ ǫ

)

ds2 . . . dsd

∫ 1

0
sz
1 ds1

+

∫

Dd−1

( d
∏

ℓ=2

sℓ

)z

I

( d
∏

ℓ=2

sℓ > ǫ

)

ds2 . . . dsd

∫ ǫ/s2...sd

0
sz
1 ds1

= Id−1(ǫ) +
ǫz+1

z + 1
Jd−1(ǫ) , (5.5)

where

Jd(ǫ) =

∫

Dd

I

( d
∏

ℓ=1

sℓ > ǫ

)

ds1 . . . dsd

s1 . . . sd

=

∫

Dd−1

log
(s2 . . . sd

ǫ

)

I

( d
∏

ℓ=2

sℓ > ǫ

)

ds2 . . . dsd

s2 . . . sd
≤ | log ǫ|Jd−1(ǫ) .

The latter inequality, and an argument by induction, imply that Jd(ǫ) ≤ | log ǫ|d.

This bound and (5.5) establish that Id(ǫ) ≤ Id−1(ǫ) + (z + 1)−1 ǫz+1 | log ǫ|d−1. It

is readily proved that I1(ǫ) = (z + 1)−1 ǫz+1, and so it follows inductively that

Id(ǫ) = O(ǫz+1 | log ǫ|d−1) as ǫ ↓ 0, completing the proof of the lemma.

Next we give a bound for vn3(ǫn, γ), with vn3(ǫ, γ) defined as at (5.3). If j =

(j1, . . . , jd), where each component is an integer, let the d-variate cube Cj denote

the set of t = (t1, . . . , td) for which each tℓ − jℓπ ∈ [−1
2π,

1
2π). Taking ǫ = ǫn at

(5.3), we may bound the integral there by the sum, vn4(ǫn, γ) say, over vectors j for
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which ‖j‖ ≤ 2nǫn, of the integrals

Kj ≡

∫

Cj

|α(t)|2
[

1 −
β2(t)

r+2

{β2(t) ∨ ρn(t)γ(t)}r+2

]2

dt .

In turn, vn4(ǫn, γ) = vn5(ǫn, γ) + vn6(ǫn, γ), where vn5(ǫn, γ) equals the sum of Kj

over the set Kn of indices j for which each |jℓ| ≥ 1 and ‖j‖ ≤ 2nǫn. Below, we shall

establish an order-of-magnitude bound for supγ
′ vn5(ǫn, γ), uniformly in φ ∈ F(Λ, p).

Similar methods may be use to derive the same bound for supγ
′ vn6(ǫn, γ).

Define sℓ = 1
2 (tℓ − jℓπ), C = [−1

4π,
1
4π]d, D = Dd = [0, 1]d and β(s) =

∏

ℓ |sℓ|,

the latter for s = (s1, . . . , sd) ∈ C. Since ρn(t) = hn (
∏

ℓ |tℓ|)
−1 ‖t‖q then, for

each j ∈ Kn and t ∈ Cj, β2(t) ∨ ρn(t)γ(t) = θj(t) {β(s) ∨ hn‖j‖
q}, where θj(t) is

bounded away from zero and infinity uniformly in such j and t. Therefore, defining

δn(u) = hn u
q for u > 0, and assuming that ǫn → 0 so slowly that nǫn → ∞, we

have:

sup
γ

′ vn5(ǫn, γ) = O

(

∑

j∈Kn

(1 + ‖j‖)−2p
∫

C

[

1 −
β(s)r+2

{β(s) ∨ (hn ‖j‖q)}r+2

]2

ds

)

= O

(

∫ 2nǫn

1
(1 + u)d−1−2p du

∫

D

[

1 −
β(s)r+2

{β(s) ∨ δn(u)}r+2

]2

ds

)

,(5.6)

uniformly in φ ∈ F(Λ, p). With δ = δn(u) we have, uniformly in 1 ≤ u ≤ 2nǫn,

∫

D

[

1 −
β(s)r+2

{β(s) ∨ δ}r+2

]2

ds =

∫

D
[1 − {β(s)/δ}r+2]2 I{β(s) ≤ δ} ds

≤

∫

D
I{β(s) ≤ δ} ds ≤ const. δ (1 + | log δ|)d−1 ,(5.7)

where the last inequality is a consequence of Lemma 5.1.

¿From (5.6) and (5.7) it follows that, provided p > 1
2(d+ q),

sup
γ

′ vn5(ǫn, γ) = O

{

hn (log n)d−1
∫ 2nǫn

1
(1 + u)d+q−1−2p du

}

= O{hn (log n)d−1} ,

uniformly in φ ∈ F(Λ, p). An identical bound applies to supγ
′ vn6(ǫn, γ), and there-
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fore to supγ
′ vn4(ǫn, γ) and so to supγ

′ vn3(ǫn, γ):

sup
γ

′ vn3(ǫn, γ) = O{hn (log n)d−1} . (5.8)

A similar argument shows that, with un3(γ) as at (5.2), Ln denoting the set of

j for which each |jℓ| ≥ 1 and ‖j‖ ≤ nπ, and 〈j〉 = (
∏

1≤ℓ≤d |jℓ|)
2, we have:

sup
γ

′ un3(γ) = O

[

∑

j∈Ln

〈j〉

∫

D

{

β(s)r+1

δn(j)r+2

}2

I{β(s) ≤ δn(j)} ds

]

= O

[

∑

j∈Ln

〈j〉 δn(j)−2(r+2)
∫

D
β(s)2(r+1) I{β(s) ≤ δn(j)} ds

]

= O

{

∑

j∈Ln

〈j〉 δn(j)−1 (log n)d−1
}

= O

{

h−1
n (log n)d−1

∫

Bn

( d
∏

ℓ=1

xj

)2 (

1 +
d
∑

j=1

x3
j

)−q/3

dx

}

,

where Bn denotes the set of x ∈ IRd for which each xℓ ≥ 0 and ‖x‖ ≤ n, and the

second-last relation follows from Lemma 5.1. Changing variable from xj to yj = x3
j

in the last-written integral, we see that the integral is uniformly bounded provided

that q > 3d. In this case,

sup
γ

′ un3(γ) = O{h−1
n (log n)d−1} . (5.9)

Combining (5.4), (5.8) and (5.9) we deduce that

nd MSSE = O
{

(n−d λd
n σ

2
n h

−1
n + hn) (log n)d−1 + n−d λd

n σ
2
n ǫ

−2d
n

}

. (5.10)

Since ǫn here can be taken to equal any sequence that converges to zero more slowly

than n−1 then the theorem follows from (5.10).

5.2. Proof of Theorem 3.2. Let σ2
n denote noise variance, let N(0,1) be a random

variable having the N(0, 1) distribution, and define

rn = σ−2
n

∑

j∈ZZd

{(φ0ψ)(j) − (φ1ψ)(j)}2 .
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Consider the problem of deciding between θ = 0 and θ = 1 on the basis of the data

Y (j), defined at (1.1), for j ∈ T . This is a classification problem, for which the

likelihood-ratio rule consists of deciding in favour of θ = 0 if

∑

j∈ZZd

{Y (j) − (φ0ψ)(j)}2 ≤
∑

j∈ZZd

{Y (j) − (φ1ψ)(j)}2 ,

and deciding in favour of θ = 1 otherwise. From this property it can be proved that

the probability that the likelihood-ratio rule decides for θ = 1 when θ = 0,

or for θ = 0 when θ = 1, equals πn ≡ P (2N(0,1) > r
1/2
n ). (5.11)

Define χFt
nθ(t) = n−d ∑

j χθ(j/n) eit
Tj/n. Using Parseval’s identity and employ-

ing the argument leading to (3.2), it can be shown that

(2π)d rn =
nd

σ2
n

I1 , (5.12)

where I1 =
∫

An
|φFt

n0 − φFt
n1|

2 |ψFt
n |2, φFt

nθ(t) = φFt
θ (t/n) and φFt

θ (t) =
∑

j φθ(j) e
itTj ,

with φθ defined at (3.10). Using the Euler-Maclaurin summation formula it can be

proved that

sup
t∈An

∣

∣

∣χFt
nθ(t) − χFt

θ (t)
∣

∣

∣ = O(n1−p) . (5.13)

Since χFt
θ (0) = 1 and the definition of c2,θ is equivalent to c2,θ χ

Ft
nθ(0) = 1, then

(5.13) implies that c2,θ = 1 + O(n1−p). Therefore, noting that φFt
nθ(t) = c2,θ χ

Ft
nθ(t),

we see that (5.13) implies that

sup
t∈An

∣

∣

∣φFt
nθ(t) − χFt

θ (t)
∣

∣

∣ = O(n1−p) .

This result, and the fact that
∫

An
|ψFt

n |2 = O(1), imply that

|I
1/2
1 − I

1/2
2 | = O(n1−p) , (5.14)

where I2 =
∫

An
|χFt

0 − χFt
1 |2 |ψFt

n |2.
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Observe that I2 = 1
4 c

2
1,1 I3 and |I

1/2
3 − I

1/2
4 | = O(b21), where

I3 =

∫

An

∣

∣

∣

∣

b1 f
Ft(t/δn) + fFt

(ξ + t

δn

)

+ fFt
(ξ − t

δn

)

∣

∣

∣

∣

2

|ψFt
n (t)|2 dt ,

I4 =

∫

An

∣

∣

∣

∣

fFt
(ξ + t

δn

)

+ fFt
(ξ − t

δn

)

∣

∣

∣

∣

2

|ψFt
n (t)|2 dt

and b1 = 2 (1 − c−1
1,1). For the choice δn ≍ (σ2

n/n
d)1/(3d) that we shall ultimately

make,

c1,1 = {1 + fFt(ξ/δn)}−1 = 1 +O(δp
n) = 1 +O(n−pC4/2d) = 1 +O(n(1−p)/2) ,

where we have used the fact that C4 ≥ d(1−p−1). Therefore, |I
1/2
3 −I

1/2
4 | = O(n1−p),

and so by (5.14),

|I
1/2
1 − 1

2 c1,1 I
1/2
4 | = O(n1−p) . (5.15)

We shall assume that each cℓ in (3.5) equals 1; the contrary case can be treated

by changing variable in each coordinate. Then,

I4 =

∫

An

∣

∣

∣

∣

fFt
(ξ + t

δn

)

+ fFt
(ξ − t

δn

)

∣

∣

∣

∣

2 ∣
∣

∣

∣

d
∏

ℓ=1

sin(tℓ/2)

n sin(tℓ/2n)

∣

∣

∣

∣

2

dt

≤ const.

∫

An

{

∣

∣

∣fFt
(ξ + t

δn

)∣

∣

∣

2
+
∣

∣

∣fFt
(ξ − t

δn

)∣

∣

∣

2
} ∣

∣

∣

∣

d
∏

ℓ=1

sin(tℓ/2)

tℓ

∣

∣

∣

∣

2

dt

≡ const. I5 , (5.16)

say. Take ξ = (2π, . . . , 2π)T. Then I5 can be decomposed into a sum of two integrals,

of which the first is

I6 =

∫

An

∣

∣

∣fFt
(ξ + t

δn

)∣

∣

∣

2
∣

∣

∣

∣

d
∏

ℓ=1

sin(tℓ/2)

tℓ

∣

∣

∣

∣

2

dt

and the second we denote by I7. We shall show how to bound I6; I7 can be treated

similarly.

Let An1 be the set of points in t = (t1, . . . , td)
T ∈ An for which |tℓ − 2π| > π

for some ℓ, and put An2 = An \ An1. The contribution to I6 from integrating over

27



An1 equals O(δ2p
n ). To bound the contribution, say I8, to I6 from integrating over

An2, note that on the latter set,
∏

ℓ tℓ is bounded above zero. Therefore, changing

variable from t to s where t = δns− ξ, we obtain:

I8 ≤ const.

∫

An2

∣

∣

∣fFt
(ξ + t

δn

)
∣

∣

∣

2
∣

∣

∣

∣

d
∏

ℓ=1

sin(tℓ/2)

∣

∣

∣

∣

2

dt

≤ const. δd
n

∫

IRd

∣

∣

∣

∣

fFt(s)
d
∏

ℓ=1

sin(δnsℓ/2)

∣

∣

∣

∣

2

ds

≤ const. δ3d
n

∫

IRd

∣

∣

∣

∣

fFt(s)
d
∏

ℓ=1

sℓ

∣

∣

∣

∣

2

ds = O(δ3d
n ) ,

the identity holding because p > 3d/2. Therefore, I6 = O(δ3d
n ), and an identical

bound can be derived for I7, implying that I5 = O(δ3d
n ), and hence, by (5.16), that

I4 = O(δ3d
n ). Therefore, in view of (5.15), I1 = O(δ3d

n + n2−2p). Since p ≥ 3
4C2 + 1

then, for the choice δn ≍ (σ2
n/n

d)1/(3d), and noting that δ2d
n ≥ C1 n

−C2 , we have

n2−2p = O(δ3p
n ), and thus, I1 = O(δ3d

n ). Hence, by (5.12),

rn = O(nd σ−2
n δ3d

n ) . (5.17)

Define

s2n = nd
∑

j∈ZZd

{φ0(j) − φ1(j)}
2 , I9 =

∫

An

∣

∣

∣

∣

fFt
(ξ + t

δn

)

+ fFt
(ξ − t

δn

)

∣

∣

∣

∣

2

dt .

Arguments similar to those leading to (5.15) imply that, for a constant C > 0,

∣

∣

∣sn − {1 + o(1)}C I
1/2
9

∣

∣

∣ = O(n1−p) .

¿From this property and for the choice δn ≍ (σ2
n/n

d)1/(3d); noting that I9 ≍ δd
n, and

also that p > 1
4C2 + 1 (which entails n1−p = o(δd

n)); it can be shown that

s2n ≍ δd
n . (5.18)

Write Pθ and Eθ for probability measure and expectation, respectively, when

the true blur function is φθ. Let πn be as in (5.11), and let η > 0. Let ηj > 0 denote
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a positive quantity which depends on η but always satisfies 0 < ηj < 1. Result

(5.17) implies that if

nd σ−2
n δ3d

n ≤ η (5.19)

then 1
2 ≤ πn ≤ 1

2 (1 + η1). Hence, by (5.11) and the Neyman-Pearson lemma, if θ̂n

is any data-determined rule for deciding between θ = 0 and θ = 1,

lim inf
n→∞

{P0(θ̂n = 1) + P1(θ̂n = 0)} ≥ 1 − η2 . (5.20)

For the given the estimator φ̂, define θ̂n = 0 if

∑

j∈ZZd

|φ̂(j) − φ0(j)|
2 ≤

∑

j∈ZZd

|φ̂(j) − φ1(j)|
2 ,

and put θ̂n = 1 otherwise. Then,

SSEnθ =
∑

j∈ZZd

|φ̂(j) − φθ(j)|
2 ≥ 1

4 I(θ̂n 6= θ)n−d s2n ,

where the inequality follows from the triangle inequality. Therefore,

sup
θ=0,1

nd MSSEnθ = sup
θ=0,1

ndEθ(SSEnθ)

≥ 1
4 s

2
n sup

θ=0,1
Pθ(θ̂n 6= θ) ≥ 1

8 s
2
n {P0(θ̂n = 1) + P1(θ̂n = 0)} .

This result and (5.20) imply that there exists B1 > 0 such that

lim inf
n→∞

s−2
n sup

θ=0,1
nd MSSEnθ ≥ B1 . (5.21)

If we choose δn ≍ (σ2
n/n

d)1/(3d), and such that δn ≤ (ησ2
n/n

d)1/(3d), then (5.19)

holds and, using (5.18) to get the first inequality, s−2
n ≤ B2 δ

−d
n ≤ B3 (σ2

n/n
d)−1/3.

It follows from this result and (5.21) that

lim inf
n→∞

(nd/σ2
n)1/3 sup

θ=0,1
nd MSSEnθ ≥ B1B

−1
3 ,

which implies (3.11).

29



REFERENCES

ANDREWS, H.C. AND HUNT, B.R. (1977). Digital Image Restoration. Prentice-
Hall, Englewood Cliffs.

BATES, R.H.T. AND MCDONNELL, M.J. (1986). Image Restoration and Recon-
struction. Clarendon Press, Oxford.

BROWN, L.D., CAI, T.T., LOW, M.G. AND ZHANG, C.H. (2002). Asymptotic
equivalence theory for nonparametric regression with random design. Ann.
Statist. 30, 688–707.

BROWN, L.D. AND LOW, M.G. (1996). Asymptotic equivalence of nonparametric
regression and white noise. Ann. Statist. 24, 2384–2398.

CANNON, M. (1976). Blind deconvolution of spatially invariant image blurs with
phase. IEEE Trans. Acoust., Speech, Signal Processing 24, 58–63.

CARASSO, A.S. (1999). Linear and nonlinear image deblurring – a documented
study. SIAM J. Numer. Anal. 36, 1659–1689.

CARASSO, A.S. (2001). Direct blind deconvolution. SIAM J. Appl. Math. 61, 1980–
2007.

DONOHO, D.L. (1994). Statistical estimation and optimal recovery. Ann. Statist.
22, 238–270.

DONOHO, D.L. AND LOW, M.G. (1992). Renormalization exponents and optimal
pointwise rates of convergence. Ann. Statist. 20, 944–970.

ERMAKOV, M. (2003). Asymptotically minimax and Bayes estimation in a decon-
volution problem. Inverse Problems 19, 1339–1359.

FAN, J. (1991). On the optimal rates of convergence for nonparametric deconvolu-
tion problems. Ann. Statist. 19, 1257–1272.

FIGUEIREDO, M.A.T. AND NOVAK, R.D. (2003). An EM algorithm for wavelet-
based image restoration. IEEE Trans. Image Processing 12, 906–916.

GONZALEZ, R.C. AND WOODS, R.E. (1992). Digital Image Processing. Addison-
Wesley, New York.

HALL, P. (1990). Optimal convergence rates in signal recovery. Ann. Probab. 18,
887–900.

JOHNSTONE, I.M. AND SILVERMAN, B.W. (1990). Speed of estimation in pos-
itron emission tomography and related inverse problems. Ann. Statist. 18,
251–280.

JOSHI, M.V. AND CHAUDHURI, S. (2005). Joint blind restoration and surface
recovery in photometric stereo. J. Optical Soc. Amer. Ser. A 22, 1066–

30



1076.

KATSAGGELOS, A.K. AND LAY, K.-T. (1990). Image identification and image
restoration based on the expectation-maximization algorithm. Optical Eng.
29, 436–445.

KUNDUR, D. AND HATZINAKOS, D. (1998). A novel blind deconvolution scheme
for image restoration using recursive filtering. IEEE Trans. Sig. Process.
46, 375–390.

MARRON, J.S. AND TSYBAKOV, A.B. (1995). Visual error criteria for qualitative
smoothing. J. Amer. Statist. Assoc. 90, 499–507.

PETROV, V.V. (1975). Sums of Independent Random Variables. Springer, Berlin.

QIU, P. (2005). Image Processing and Jump Regression Analysis. Wiley, New York.

RAJAGOPALAN, A.N. AND CHAUDHURI, S. (1999). MRF model-based identifi-
cation of shift-variant point spread function for a class of imaging systems.
Sig. Process. 76, 285–299.

SKILLING, J. (1989). Maximum Entropy and Bayesian Methods. Kluwer Academic,
Norwell, MA.

VAN ROOIJ, A.C.M., RUYMGAART, F.H. AND VAN ZWET, W.R. (1999). As-
ymptotic efficiency of inverse estimators. Theory Probab. Appl. 44, 722–
738.

YANG, Y., GALATSANOS, N.P. AND STARK, H. (1994). Projection-based blind
deconvolution. J. Optical Soc. Amer. Ser. A 11, 2401–2409.

31


