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Intensity Based Image Registration By
Nonparametric Local Smoothing

Chen Xing and Peihua Qiu

Abstract—Image registration is used widely in applications for mapping one image to another. Existing image registration methods
are either feature-based or intensity-based. Feature-based methods first extract relevant image features, and then find a geometrical
transformation that best matches the two corresponding sets of features extracted from the two images. Because identification and
extraction of image features is often a challenging and time-consuming process, intensity-based image registration, by which the
mapping transformation is estimated directly from the observed image intensities of the two images, has received much attention
recently. In the literature, most existing intensity-based image registration methods estimate the mapping transformation globally by
solving a minimization/maximization problem defined by the two entire images to register. To this end, it needs to be assumed that
the mapping transformation has a certain type of parametric form or it is a continuous bivariate function satisfying certain regularity
conditions. In this paper, we propose a novel intensity-based image registration method using nonparametric local smoothing. By
this method, the mapping transformation at a given pixel is estimated locally in a neighborhood, after certain image features are
accommodated in the estimation. Due to the flexibility of local smoothing, this method does not require any parametric form for the
mapping transformation. It even allows the transformation to be a discontinuous function. Numerical examples show that it is effective
in various applications.

Index Terms—Degeneration, discontinuity, edge detection, local smoothing, mapping, nonparametric transformation, weighted least
squares estimation.

✦

1 INTRODUCTION

IMAGE registration aims to geometrically match up
two or more images of the same scene, taken at

different times, from different viewpoints, or by different
sensors, for structure/target localization, difference de-
tection, and many other purposes [40]. It is widely used
in medical imaging [16], remote sensing [18], finger print
or face recognition [19], image compression [8], video
enhancement [14], and so forth. In medical imaging, for
instance, a common application of this technique is to
integrate useful information from different sources (e.g.,
CT, PET, SPECT, X-ray, ultrasound, and MRI images [20],
[22]), or to register images obtained at different times
[33]. It has become an important tool for improving the
quality of certain image-based technologies [21].

Mathematically, the image registration problem can
be described as follows. Let ZR(x, y) and ZM (x, y) be
a reference image and an image to register with, re-
spectively. Because ZM (x, y) is usually a geometrically
altered version of ZR(x, y), it is often called a moved
image in the literature. Then, the major goal of im-
age registration is to find a geometrical transformation
T(x, y) = (T1(x, y), T2(x, y)) such that ZM (T(x, y)) is as
close to ZR(x, y) as possible. Thus, the image registration
problem can be formulated as the following maximiza-
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tion problem:

Topt = argmax
T∈T

S(ZR, ZM (T)), (1)

where Topt denotes the optimal transformation for
matching ZR(x, y) and ZM (x, y) among all possible
transformations in a specific transformation space T , and
S is a selected metric for measuring similarity between
the two images. In (1), if a dissimilarity metric is used in
place of the similarity metric S, then the maximization
problem becomes a minimization problem. See [30] for a
discussion about image registration in MRI applications,
and for a description about various existing similar-
ity/dissimilarity metrics.

In the literature, there are mainly two types of image
registration methods. The first type selects a number of
corresponding features in the two images, respectively,
and then finds a geometrical transformation to best
match the two sets of features [1], [6]. To this end,
landmarks or control points are often the preferred fea-
tures and they can be selected manually or automatically
by a computer [39]. Other commonly used features
include edge lines or curves, which are often detected
by gradient-based methods, and regions, centroids or
templates, which are usually determined by ways of
thresholding and segmentation [34]. For comprehensive
surveys, see [5], [40]. In some real applications, how-
ever, there are some limitations within these feature-
based methods. First, feature selection is often a time-
consuming and challenging process with much arbitrari-
ness involved. Second, it is often difficult to determine
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the number of needed features. The more features we
select, the higher accuracy we could possibly achieve
for estimating the geometrical transformation. But at the
same time more effort is required. Several methods have
been proposed to select a subset of detected features
without sacrificing much of the image registration qual-
ity. See, for instance, [11], [17].

Rather than selecting features for image registration,
the second type of methods tries to search for a geomet-
rical transformation from a specific transformation space
such that ZR and ZM best match each other, in terms of
a similarity/dissimilarity metric defined directly by the
observed image intensities, as described in (1). This type
of intensity-based image registration (IBIR) procedures
is flexible to use, and has become popular in various
applications. Most existing IBIR procedures estimate the
geometrical transformation T globally by solving a min-
imization/maximization problem, such as (1), with the
two entire images ZR and ZM involved. To this end,
we need to assume that T follows a parametric model
or it is a continuous bivariate function satisfying certain
regularity conditions [21]. A widely used 2-D parametric
transformation is defined by

{
T1(x, y) = α(x cos∆φ+ y sin∆φ) + ∆x
T2(x, y) = α(−x sin∆φ+ y cos∆φ) + ∆y,

(2)

where (∆x,∆y,∆φ) are three motion parameters and α

is a scaling parameter. Model (2) describes rigid-body
motions (i.e., distance between any two points on an
object is unchanged during the motion) when α = 1.
It has been commonly used in applications [7] for var-
ious reasons, including the ease of implementation and
computation, and its feature preservation property (e.g.,
a line maps to a line). Recently, much research progress
has been made to generalize model (2). For instance, free-
form deformation (DDF) techniques are getting popular
in the image registration community, due to their rela-
tively simple computation and other salient properties
[37], [36]. DDF methods approximate the transforma-
tion T using B-splines with knots chosen properly be-
forehand. Diffeomorphic image registration also attracts
much attention recently, by which the transformation
T is determined by solving a differential equation [4],
[2]. Other recent methods include those using Fourier
transformations [23], [15], and information-theoretical
tools [32], [25], among many others. Klein et al. [16]
made a comprehensive evaluation of 14 commonly used
IBIR algorithms and evaluation criteria using various test
images.

In the literature, there are a number of registration
methods that try to overcome certain limitations of
both the feature-based and the intensity-based methods.
See, for instance, [38], [24]. There are also some related
research areas. As an example, optical flow techniques
are for processing image sequences [13], [3]. Some ideas
there might be helpful for image registration, although
the two research problems have some substantial differ-
ences.

Global estimation methods are efficient when the as-
sumed parametric models or regularity conditions of
T are valid. But, validity of such models or regularity
conditions should be justified properly in applications,
which would be challenging and is currently lacking. In
this paper, we try to tackle the IBIR problem using non-
parametric local smoothing. Namely, estimation of T at a
given pixel depends only on nearby image intensities of
the two images, instead of on all image intensities of the
two images. This local estimation nature makes it possible
to not impose restrictive assumptions on T. Under this
local smoothing framework, a novel IBIR method is
proposed, by which the mapping transformation T at
a given pixel is estimated locally in a neighborhood,
after certain image features are accommodated in the
estimation. This method does not require any parametric
form for T. It even allows T to be a discontinuous
function.

The rest part of the article is organized as follows. In
Section 2, our proposed IBIR procedure is described in
detail. Various numerical experiments and comparisons
with some existing methods are presented in Section 3.
Certain concluding remarks are given in Section 4.

2 PROPOSED METHOD

Our proposed method is described in three parts. After
a statistical model for describing the IBIR problem is
introduced in Section 2.1, a scheme for classifying pixels
is defined in Section 2.2. Then, the proposed IBIR proce-
dure is described in Section 2.3.

2.1 Statistical Model

Description (1) of the image registration problem is
commonly used in the medical imaging and computer
sciences communities. A statistically more precise de-
scription of the problem might be as follows. Let R

and M be two images to register. Their true image
intensity functions are denoted as R(x, y) and M(x, y).
It is assumed that they have the following relationship:

M(T1(x, y), T2(x, y)) = R(x, y), for (x, y) ∈ Ω, (3)

where Ω is the design space of the image R, and
T(x, y) = (T1(x, y), T2(x, y)) is an unknown geometrical
transformation to estimate. IBIR methods try to estimate
T(x, y) from observed image intensities of the two im-
ages defined below.

ZM (xi, yj) = M(xi, yj) + εM (xi, yj),

ZR(xi, yj) = R(xi, yj) + εR(xi, yj),

for i, j = 1, 2, . . . , n, (4)

where {(xi, yj)} are pixel locations, and {εM (xi, yj)} and
{εR(xi, yj)} are i.i.d. random errors in the two images
with mean 0 and unknown variances σ2

M and σ2
R, respec-

tively. Nonparametric intensity-based image registration
(NIBIR) tries to estimate T(x, y) from the observed image
intensities, without imposing any parametric form on
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T(x, y). In (4), we assume that the two observed images
contain pointwise noise only, for simplicity. In practice,
they may also contain spatial blur and other degrada-
tions [12], [28]. A numerical example in Section 3 shows
that our proposed method also works well when spatial
blur is present. At a given point (x, y) ∈ Ω, we can write

(
T1(x, y)
T2(x, y)

)
=

(
x

y

)
+

(
b(x, y)
c(x, y)

)
,

where b(x, y) = T1(x, y) − x and c(x, y) = T2(x, y) −
y. Therefore, estimation of T(x, y) is equivalent to
estimation of (b(x, y), c(x, y)). After the estimators of
(b(x, y), c(x, y)), denoted as (̂b(x, y), ĉ(x, y)), are obtained,
the estimator of T(x, y) can be written as

T̂(x, y) = (x, y) + (̂b(x, y), ĉ(x, y)). (5)

2.2 Local Degenerate Pixels

Ideally, if both b(x, y) and c(x, y) are small and M has
the first-order partial derivatives at (x, y), then by the
Taylor’s expansion, we have

M(T1(x, y), T2(x, y)) =M(x, y) +M ′
x(x, y)b(x, y) +

M ′
y(x, y)c(x, y) + o (‖T(x, y)− (x, y)‖) , (6)

where ‖ · ‖ is the Euclidean norm. By (3) and (6),
R(x, y) =M(T1(x, y), T2(x, y)) can be well approximated
by M(x, y) + M ′

x(x, y)b(x, y) +M ′
y(x, y)c(x, y) in such

cases. Therefore, (b(x, y), c(x, y)) can be chosen such that
the approximation error

R(x, y)−
[
M(x, y) +M ′

x(x, y)b(x, y) +M ′
y(x, y)c(x, y)

]

is as small as possible. In reality, however, R(x, y),
M(x, y), M ′

x(x, y), and M ′
y(x, y) are all unobservable.

What observed are image intensities {ZM (xi, yj)} and
{ZR(xi, yj)} defined in (4), which contain random noise.
To smooth out noise while estimate (b(x, y), c(x, y)), we
adopt the idea of local linear kernel (LLK) estimation
in statistical nonparametric regression [9] as follows.
For the time being, let us assume that M ′

x(x, y) and

M ′
y(x, y) have been estimated by M̂ ′

x(x, y), and M̂ ′
y(x, y)

beforehand. Consider a circular neighborhood of (x, y)
with radius hn, denoted as O(x, y;hn). Then, b(x, y) and
c(x, y) can be estimated by the solution of the following
minimization problem:

min
b(x,y),c(x,y)

n∑

i,j=1

[ZM (xi, yj)− ZR(xi, yj)+

M̂ ′
x(xi, yj)b(x, y) + M̂ ′

y(xi, yj)c(x, y)
]2
Khn

, (7)

where Khn
= K(xi−x

hn
,
yj−y
hn

), and K is a bivariate density
kernel function with unit circular support. The mini-
mization problem (7) searches for estimators of b(x, y)
and c(x, y) such that the weighted sum of squares of
the approximation error reaches the minimum, and the
weights are determined by the kernel function K. Usu-
ally, K(u, v) is chosen to be a decreasing function of

√
u2 + v2. Therefore, if a pixel (xi, yj) ∈ O(x, y;hn) is

farther away from the given pixel (x, y), then the corre-
sponding approximation error at (xi, yj) would receive
a less weight, which is intuitively reasonable, because
the observed image intensity at (xi, yj) generally pro-
vides less information about (b(x, y), c(x, y)), compared
to observed image intensities at pixels closer to (x, y).
In the statistical literature (cf., Section 2.3 in [27]), there
exists much discussion about selection of the kernel
function K. Commonly used kernel functions include
the Epanechnikov kernel function and the truncated
Gaussian kernel function that is used in Section 3. It is
not difficult to check that problem (7) has the following
solution

(
b̂(x, y)
ĉ(x, y)

)
=

(
K22, −K12

−K12, K11

)(
K∗

1

K∗
2

)

K11K22 −K2
12

, (8)

where

K11 =

n∑

i,j=1

[
M̂ ′

x(xi, yj)
]2
Khn

,

K22 =

n∑

i,j=1

[
M̂ ′

y(xi, yj)
]2
Khn

,

K12 =

n∑

i,j=1

M̂ ′
x(xi, yj)M̂

′
y(xi, yj)Khn

,

K∗
1 =

n∑

i,j=1

[ZR(xi, yj)− ZM (xi, yj)] M̂
′
x(xi, yj)Khn

,

K∗
2 =

n∑

i,j=1

[ZR(xi, yj)− ZM (xi, yj)] M̂
′
y(xi, yj)Khn

.

In practice, we still need to define the estimators

M̂ ′
x(x, y) and M̂ ′

y(x, y). To this end, we suggest using the
conventional LLK estimators of M ′

x(x, y) and M ′
y(x, y),

defined by

M̂ ′
x(x, y) =

∑n
i,j=1(xi − x)ZM (xi, yj)Khn∑n

i,j=1(xi − x)2Khn

,

M̂ ′
y(x, y) =

∑n
i,j=1(yj − y)ZM (xi, yj)Khn∑n

i,j=1(yj − y)2Khn

.

From the above description, we know that formula (8)
is obtained in the ideal situation when

(i) ‖T(x, y)−(x, y)‖ is small such that the first-order ap-
proximation to M(T1(x, y), T2(x, y)) by (6) is valid,

(ii) M has the first-order partial derivatives at (x, y),
and

(iii) the denominator on the right-hand-side of (8) is not
zero.

The above conditions (i) and (ii) imply that the estimator
defined by (5) and (8) may not estimate T(x, y) well
at places where the transformation is relatively large
or where M is not smooth (e.g., edge locations of M ).
Condition (iii) implies that the estimator is not well



4

defined at places where the following equation holds:

K11K22 −K2
12 = 0. (9)

Mathematically, it can be proved that: (i) M̂ ′
x(x, y) and

M̂ ′
y(x, y) would converge to M ′

x(x, y) and M ′
y(x, y), re-

spectively, in regions where M has continuous first-
order derivatives, when n gets larger and larger, and

(ii) if M̂ ′
x(x, y) and M̂ ′

y(x, y) are replaced by M ′
x(x, y)

and M ′
y(x, y) in (9), then M satisfies equation (9) in

the neighborhood O(x, y;hn) if and only if there is a
continuously differentiable univariate function ψ and a
constant ρ such that

M(x′, y′) = ψ(ρx′ + y′), for any (x′, y′) ∈ O(x, y;hn).
(10)

Intuitively, if M satisfies (10) in O(x, y;hn), then its
intensity levels are the same on the line segment ρx′ +
y′ = ρ0 in O(x, y;hn), for any appropriate constant ρ0
such that the line segment is contained in O(x, y;hn).
In such cases, the bivariate function M is degenerate
locally in O(x, y;hn), and it is impossible to uniquely
determine T(x, y) because any small move along the line
direction would not change the value of M(x′, y′) for
any (x′, y′) ∈ O(x, y;hn). In this paper, a pixel (x, y) ∈ Ω
is called a local degenerate pixel of M if M has partial
derivatives at (x, y) and there exists a neighborhood
O(x, y;hn) such that equation (10) holds. Other pixels
at which M has partial derivatives are called local non-
degenerate pixels. Similarly, we can define local degenerate
pixels and local non-degenerate pixels for the reference
image R. Therefore, around local degenerate pixels, the
image registration problem is actually not well defined
in the sense that the geometrical transformation T(x, y)
can not be uniquely determined.

2.3 Proposed Image Registration Procedure

From the description in Section 2.2, it can be seen that
the geometrical transformation T(x, y) can be properly
estimated only around local non-degenerate pixels or
places where the image intensity function of the ref-
erence image R is not smooth. Based on that result,
we propose an IBIR procedure consisting of four major
steps, as described below.

Step 1 Detect edge pixels for the observed reference
image ZR using an edge detector. see Chapter 6 in [27]
for a discussion about existing edge detectors.

Step 2 At a given pixel (x, y) in R, consider its circular
neighborhood with radius r1, denoted as O(x, y; r1).
If the number of detected edge pixels in O(x, y; r1) is
smaller than [nr1], where [s] denotes the integer part of
s, then (x, y) is regarded as a continuity pixel of R. In
such a case, if the denominator on the right-hand-side of
equation (8) (after M is replaced by R) is larger than or
equal to a pre-specified threshold value un, then (x, y) is
regarded as a local non-degenerate pixel of R; otherwise,
it is regarded as a local degenerate pixel.

Step 3 Let D be the set of all local non-degenerate
pixels of R or pixels whose circular neighborhoods with

radius r1 contain at least [nr1] detected edge pixels.
Then, for any (x, y) ∈ D, T̂(x, y) is computed by the
following algorithm. For any pixel (x′, y′) ∈ O(x, y; r1)
of the moved image, consider its circular neighborhood
O(x′, y′; r2), where r2 is a radius that could be different
from r1. Compute the mean squared difference (MSD)

MSD((x′, y′); (x, y)) =
1

Ñ

∑

(x′+s,y′+t)∈O(x′,y′;r2)

[ZM (x′ + s, y′ + t)− ZR(x+ s, y + t)]
2
,

where Ñ is the number of pixels in O(x′, y′; r2). Then,
T̂(x, y) is defined to be the minimizer of

min
(x′,y′)∈O(x,y;r1)

MSD((x′, y′); (x, y)).

See Figure 1 for a demonstration.
Step 4 If (x, y) is a local degenerate point of R, then

T̂(x, y) is defined as follows. First, find a pixel in D that
is closest to (x, y), which is denoted as (x(1), y(1)). Then,
define

T̂1(x, y) = (x, y) + (̂b(x(1), y(1)), ĉ(x(1), y(1))).

Define T̂(x, y) = T̂1(x, y) if

MSD(T̂1(x, y); (x, y)) ≤MSD((x, y); (x, y));

otherwise, define T̂(x, y) = (x, y).
Note that the above IBIR procedure can only properly

handle interior pixels in Ω whose Euclidean distances
from the border of Ω are at least r1+ r2. For a boundary
pixel of Ω whose Euclidean distance from the border
of Ω is smaller than r1 + r2, we define the geometrical
transformation at that pixel to be the same as that at the
interior pixel who is closest to the boundary pixel.

At the end of this section, we make several remarks
about the above image registration procedure. First, at
local non-degenerate pixels of R, instead of using formu-
las (5) and (8), we use the searching algorithm described
in Step 3 for computing T̂(x, y). That is because formula
(8) is valid only when ‖T(x, y) − (x, y)‖ is small. From
our numerical studies, the estimator by the searching
algorithm would perform better than the one by (5)
and (8) for most realistic T(x, y) functions. Second, from
the discussion in Section 2.2, it seems that, to define
T(x, y) properly, (x, y) should be a non-degenerate pixel
of M , instead of R. Again, this discussion is based on
the assumption that ‖T(x, y) − (x, y)‖ is small so that
the Taylor’s expansion is valid. In practice, it is more
reasonable to require (x, y) to be a non-degenerate pixel
of R. Third, in step 3, MSD is used as the matching
criterion. Actually, other criteria, including the cross-
correlation and entropy of image difference (cf., their
definitions in Section 3), can also be considered here.
Fourth, computation involved in the searching algorithm
described in Step 3 is actually not very extensive because
pixels in D represent only about 10% of all pixels for a
typical image.



5

(a)

(b)

Fig. 1: A demonstration of Step 3 of the proposed image
registration algorithm.

3 NUMERICAL STUDY

We have performed numerical studies with more than 20
different pairs of test images. Here, four representative
ones are presented to evaluate the numerical perfor-
mance of the proposed IBIR procedure. The evalua-
tion is made in comparison with the following two
state-of-the-art IBIR methods: the directly manipulated
free-form deformation (DMFFD) method [37] and the
symmetric diffeomorphic image normalization (SyN)
method [2]. Results of both methods depend on the
similarity metric that they use. As suggested in the
related papers, three similarity metrics, including MSD,
cross-correlation (CC), and mutual information (MI),
are used respectively in the DMFFD method, and two
similarity metrics, including CC and the pure cross
correlation (PCC), are used respectively in the SyN
method. Therefore, there are total five existing proce-
dures considered here, which are denoted as DMFFD-
MSD, DMFFD-CC, DMFFD-MI, SyN-CC, and SyN-PCC.
These existing procedures are implemented using the
release 1.9 of the software package ANTS that is avail-
able at http://www.picsl.upenn.edu/ANTS/. Our proposed
nonparametric IBIR procedure is denoted as NEW.

To evaluate the numerical performance of all six pro-
cedures, we use three popular measures, including the

root residual mean squares (RRMS), the cross correlation
(CC), and the entropy of image difference (EID). RRMS is
the conventional and most widely used measure. When
evaluating an estimator T̂ of the geometrical transfor-
mation T, it is defined to be

RRMS =





1

n2

n∑

i,j=1

[
ZR(xi, yj)− ZM (T̂(xi, yj))

]2




1/2

.

Basically, RRMS is the Euclidean distance between
{ZR(xi, yj)} and {ZM (T̂(xi, yj))}. Therefore, if its value
is smaller, then the registration is regarded better.
The CC measure is defined to be the Pearson’s
sample correlation coefficient of the bivariate data
{(ZR(xi, yj), ZM (T̂(xi, yj)))}. Intuitively, if the estimator

T̂ is good, then ZM (T̂(x, y)) would be close to ZR(x, y).
Consequently, the CC measure would be close to its
maximum value 1. So, by this measure, the registration
is better if the CC value is larger, although this measure
cannot reflect possible scale difference between ZR(x, y)

and ZM (T̂(x, y)). The EID measure becomes popular
recently [20], [26], [10]. It is defined by

EID = −
∑

d∈D

p(d) log p(d),

where

D = {ZR(xi, yj)− ZM (T̂(xi, yj)), i, j = 1, 2, . . . , n}.

So, EID is basically the negative entropy of D. Intuitively,
if T̂ is a good estimator of T, then the randomness in
the elements of D should be large. Consequently, EID
should be small because the entropy

∑
d∈D p(d) log p(d)

is a good measure of the randomness of D. Therefore, by
this measure, the registration is better if the EID value
is smaller.

In procedure NEW, the kernel function K(u, v) is
chosen to be the truncated bivariate Gaussian density
function with support {(u, v) : u2 + v2 ≤ 1}. For edge
detection, we use the directional derivative along the
estimated gradient at a given pixel as an edge detection
criterion, and the given pixel is flagged as an edge pixel
if the absolute value of the directional derivative exceeds
a threshold value. This edge detector is similar to the
ones in [29] and [31], and performs reasonably well.
We also tried several other edge detectors, including
Sobel, LoG, and the recent one in [35], and found that
the registration results of the procedure NEW do not
change much with different edge detectors. For all six
procedures considered, we try all possible values of their
procedure parameters and use the ones resulting in the
smallest RRMS values.

In the first example shown in Figure 2, the reference
image in plot (a) contains mainly a railway and a ball,
and the upper half of the reference image is moved to
the right in the moved image shown in plot (b). To
better demonstrate the move, one specific spot at the
railway that looks like a joint and another dark spot
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on the ground that is below the railway have been
highlighted. It can be seen that both highlighted spots
do not change in the two images. Therefore, in this
example, the true geometrical transformation T takes
non-zero values in the upper half of the reference image
only, and it is thus a discontinuous transformation. The
detected edge points and local non-degenerate points
of the reference image, detected by our algorithm, are
presented in Figure 3, which seem to capture the major
image structure well. The restored reference image of

(a)

(b)

Fig. 2: (a) A reference image containing a railway and
a ball. (b) A corresponding moved image. The two
specific spots highlighted in image (a) by the white boxes
correspond to those highlighted in image (b).

a given procedure is defined to be ZM (T̂(x, y)). Figure
4(a)-(f) show the restored reference images of the six
registration procedures, respectively. From the plots, it
can be seen that our proposed procedure NEW restores
the original position of the ball well. As a comparison,
all the five competing procedures seem to move the
entire moved image, including the ball, the railway,
and the background, to the left, which is evidenced by

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

xf

yf

Fig. 3: Detected edge pixels and local non-degenerate
pixels of the reference image in the railway-ball example.

(a) (b) (c)

(d) (e) (f)

Fig. 4: (a)-(f) Restored reference images by procedures
NEW, DMFFD-MSD, DMFFD-CC, DMFFD-MI, SyN-CC,
and SyN-PCC, respectively, in the railway-ball example.

the positions of the two spots that are highlighted in
Figure 2. Consequently, the original position of the ball
is restored properly by them. But, the bottom half of the
image is improperly moved as well. Our explanation of
these results is that all five competing procedures cannot
handle cases when T(x, y) is discontinuous, while our
proposed procedure has the flexibility to allow T(x, y) to
be discontinuous, due to the fact that it defines T̂(x, y)
locally. To further investigate this, the residual images
of the six procedures are presented in Figure 5(a)-(f).
For a given procedure, the residual image is defined
to be ZM (T̂(x, y)) − ZR(x, y). From the plots, it can be
seen that the residual image of the procedure NEW is
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TABLE 1: Performance measures of the six procedures in the railway-ball example.

NEW DMFFD-MSD DMFFD-CC DMFFD-MI SyN-CC SyN-PCC

RRMS 10.929 12.760 12.917 13.238 11.945 12.650

CC 0.745 0.641 0.629 0.605 0.699 0.660

EID 2.911 3.101 2.737 3.243 2.845 3.045

almost empty, while the residual images of the other five
procedures all show part of the railway clearly, which is
consistent with the images shown in Figure 4. The per-
formance measures of the six procedures are presented
in Table 1. From the table, it can be seen that procedure
NEW is better than all five competing procedures in
terms of RRMS and CC. It is better than procedures
DMFFD-MSD, DMFFD-MI and SyN-PCC in terms of
EID. When reading the table, readers are reminded that
the performance of a denoising procedure is better if the
RRMS or EID value is smaller or the CC value is larger.

(a) (b) (c)

(d) (e) (f)

Fig. 5: (a)-(f) Residual images of procedures NEW,
DMFFD-MSD, DMFFD-CC, DMFFD-MI, SyN-CC, and
SyN-PCC, respectively, in the railway-ball example.

(a) (b)

Fig. 6: (a) A reference image containing a bird. (b) A
corresponding moved image.

The second example involves a pair of test images
shown in Figure 6. The reference image shown in plot

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7: (a)-(f) Restored reference images by procedures
NEW, DMFFD-MSD, DMFFD-CC, DMFFD-MI, SyN-CC,
and SyN-PCC, respectively, in the bird example. (g)-(l)
Corresponding residual images of the procedures.

(a) contains a bird, and it is twisted in the middle by a
continuous transformation resulting in the moved image
shown in plot (b). So, in this example, the geometrical
transformation T is a continuous transformation that
takes non-zero values in the middle part of the moved
image only.

Figure 7(a)-(f) show the restored images of the six
procedures. The corresponding residual images of the six
procedures are presented in Figure 7(g)-(l), respectively.
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TABLE 2: Performance measures of the six procedures in the bird example.

NEW DMFFD-MSD DMFFD-CC DMFFD-MI SyN-CC SyN-PCC

RRMS 7.434 9.333 12.914 18.507 10.401 12.430

CC 0.987 0.980 0.960 0.920 0.975 0.963

EID 1.829 1.801 2.342 2.373 1.680 1.655

From the plots, it seems that procedures NEW, DMFFD-
MSD and SyN-CC properly move the bird back to its
original position in the reference image. The other three
procedures cannot restore part of the altered portion of
the bird well (cf., plots (i), (j) and (l)). If we check the
plots carefully, then we will find that the five competing
procedures do not do well in certain border regions
(cf., the left border of plot (b)). The border regions of
the reference image are actually unchanged by the true
transformation T in this example. But, some of them are
moved by the five competing procedures. By comparing
plots (a) and (b), we can also find that the boundary
curve of the bird (cf., the left part) is rougher in plot (a),
compared to the curve in plot (b). That is the side effect
to use a local smoothing method, such as the proposed
procedure NEW. Generally speaking, a local smoothing
method is more flexible than a global smoothing method,
in the sense that it can accommodate discontinuities and
other singularities in the transformation T(x, y), etc.; but,
at the same time, the boundary curves of image objects
in its restored image would not be as smooth as those
in the restored image of the global smoothing method.
The RRMS, CC, and EID values of the six procedures
are given in Table 2. From the table, we can see that
the RRMS value of the procedure NEW is smaller than
the corresponding values of the other five procedures
in quite large margins in this example. Its CC value is
the largest among the CC values of the six procedures.
Its EID values are smaller than those of the procedures
DMFFD-CC and DMFFD-MI, but larger than those of the
procedures DMFFD-MSD, SyN-CC and SyN-PCC.

The next example considers a pair of satellite sensor
images taken at the San Francisco bay area. The first one
was taken in 1990 and the second one was taken in 1999.
By comparing the two images, we can investigate the
changes at the San Francisco bay area during the 9-year
period. The two images are shown in Figure 8(a)-(b),
and they can be downloaded from http://webmodis.iis.u-
tokyo.ac.jp/Landsat/. To highlight the difference between
the two images, two boxes of different sizes are used in
each image to label two specific regions that changed
quite a lot during the 9-year period. For instance, in the
region labeled by the larger box, there are many more
dark pixels in the 1999-image, compared to the 1990-
image, which may imply environmental worsening in
that region over the 9-year period.

Figure 9(a)-(f) show the restored images of the six
registration procedures, and Figure 9(g)-(l) show their
residual images in the satellite image example. Perfor-
mance measures of the related procedures are presented

(a) (b)

Fig. 8: (a) A reference satellite image taken in 1990 at
the San Francisco bay area. (b) A corresponding satellite
image taken in 1999 in the same area. The two dark
boxes in each image highlight two specific regions that
changed quite a lot during the 9-year period.

in Table 3. From both the residual images and Table 3, it
can be seen that our proposed procedure NEW is com-
patible with its peers in this example. By comparing the
residual images (e.g., comparing plot (g) with plot (k)),
we can see that the five competing procedures do not
perform well at the upper boundary region, which might
be one major reason why their performance measures in
Table 3 are worse than those of the procedure NEW.

Next we consider a pair of MRI brain images shown
in Figure 10(a)-(b). The reference image is downloaded
from http://overcode.yak.net/15/. The only difference be-
tween the two images is that the dark region around the
central part of the reference image is moved upward and
rotated in the moved image. Therefore, in this example,
the geometrical transformation T is discontinuous, it
takes non-zero values in a small portion of the reference
image only.

The restored MRI images and the corresponding resid-
ual images of the six procedures are shown in Figure
11(a)-(f) and Figure 11(g)-(l), respectively. From the pre-
sented images, we can see that only procedures NEW
and SyN-CC register the moved portions of the images
well. The moved dark region can be clearly seen in the
residual images of procedures DMFFD-MSD, DMFFD-
CC, DMFFD-MI, and SyN-PCC, it can be vaguely seen
in the residual image of the procedure SyN-CC, and the
residual image of the proposed procedure NEW contain
the least information about the brain. The RRMS, CC and
EID values of the six procedures are presented in Table 4.
We can see that procedure NEW has significantly smaller
RRMS and EID values than the other five procedures,
and its CC value is the largest among all procedures. This
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 9: (a)-(f) Restored reference images of procedures NEW, DMFFD-MSD, DMFFD-CC, DMFFD-MI, SyN-CC, and
SyN-PCC, respectively, in the satellite image example. (g)-(l) Corresponding residual images of the same procedures.

TABLE 3: Performance measures of the six procedures in the satellite image example.

NEW DMFFD-MSD DMFFD-CC DMFFD-MI SyN-CC SyN-PCC

RRMS 18.782 26.560 20.206 24.980 20.162 21.099

CC 0.951 0.896 0.941 0.908 0.942 0.937

EID 4.143 4.434 4.192 4.196 4.242 4.310

TABLE 4: Performance measures of the six procedures in the MRI example.

NEW DMFFD-MSD DMFFD-CC DMFFD-MI SyN-CC SyN-PCC

RRMS 2.976 9.585 9.459 9.367 4.059 8.838

CC 0.999 0.985 0.986 0.986 0.997 0.987

EID 0.120 0.773 0.484 0.785 0.652 0.460

table also shows that the RRMS and EID values of the
procedures SyN-CC and SyN-PCC are quite different,
but their CC values are quite close. That can be explained
by the fact that CC (or PCC) is used in SyN-CC and SyN-
PCC as the similarity metric, causing their CC values
close to each other. But, other performance metrics could
be different.

In practice, observed images are often blurred [12],
[28]. To investigate the performance of the related image
registration procedures for matching blurred images,
next we consider the pair of blurred images shown in
Figure 12(a)-(b), which are blurred versions of the ones
shown in Figure 10(a)-(b). In this example, the image
intensity functions would be smoother than the ones
in the previous example. The restored images and the
corresponding residual images of the six procedures
are shown in Figure 13, from which it can be seen
that the performance of the five competing procedures
seems improved in this example, especially for pro-
cedures DMFFD-CC and SyN-CC, compared to their
performance in the previous example. The RRMS, CC
and EID values of the six procedures are presented in

Table 5. From the table, we can see that procedure NEW
still performs the best in this example in terms of all
three measures.

In all the numerical examples considered above, ex-
cept the railway-ball example, each image has 128× 128
pixels. The two images in the railway-ball example have
256 × 256 pixels each. It takes about 10 seconds for
the proposed procedure NEW to register two 128× 128
images on a PC of Intel(R) 2.40GHz Core(TM)2 Duo CPU
with 2982 MByte memory. Its computational complexity
is O(n6r21r

2
2), where r1 and r2 are two radii used (cf.,

Figure 1).

4 CONCLUSIONS

In this paper, we propose an intensity-based image reg-
istration method which allows the geometrical transfor-
mation T(x, y) = (T1(x, y), T2(x, y)) to be nonparametric.
From the numerical examples shown in Section 3, we can
see that this method allows T(x, y) to be discontinuous
in the design space. We also defined local degenerate
pixels, around which T(x, y) cannot be properly defined,
which is the ill-posed nature of the IBIR problem. In
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TABLE 5: Performance measures of the six procedures in the blurred MRI example.

NEW DMFFD-MSD DMFFD-CC DMFFD-MI SyN-CC SyN-PCC

RRMS 1.814 8.789 2.953 8.015 2.021 7.976

CC 0.999 0.986 0.998 0.989 0.999 0.989

EID 0.164 0.629 0.599 0.429 0.357 0.468

(a)

(b)

Fig. 10: (a) A reference MRI image. (b) A corresponding
moved image. The only difference between the two
images is that the dark region around the central part
of the reference image is moved upward and rotated in
the moved image.

the literature, most people do not discuss this ill-posed
nature explicitly. Instead, the transformation T(x, y) is
estimated globally in the entire design space, after the
ill-posed nature is overcome by imposing a paramet-
ric form or other regularization conditions on T(x, y)
[21]. Comparing our proposed local smoothing method
with those existing regularization-based global smooth-
ing methods, numerical results in Section 3 show that

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 11: (a)-(f) Restored reference images of procedures
NEW, DMFFD-MSD, DMFFD-CC, DMFFD-MI, SyN-CC,
and SyN-PCC, respectively, in the MRI example. (g)-(l)
Corresponding residual images of the same procedures.

our method preserves certain local features of T(x, y)
(e.g., discontinuities) better, while the image objects in
the restored images of some global smoothing methods
might look smoother (cf., related discussion about Figure
7 in Section 3).

In the proposed method, there are still some issues that
need to be addressed in our future research. For instance,
in the proposed method, there are several parameters, in-
cluding hn, un, r1, and r2. Appropriate selection of these
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(a)

(b)

Fig. 12: (a) A reference MRI image. (b) A corresponding
moved image. They are blurred versions of the ones
shown in Figure 10.

parameters based on observed images is an important
topic, which has not been properly addressed yet. To
this end, cross-validation, generalized cross-validation,
bootstrap and other parameter selection methods dis-
cussed in the statistical literature (e.g., Sections 2.4 and
2.5 in [27]) might be helpful. In our numerical study, we
have used the 2-D truncated Gaussian density function
as the kernel used by the local smoothing procedure (7).
It requires much future research to study whether other
kernel functions would generate a better image registra-
tion. The magnitude of T(x, y) is also an important factor
that affects the performance of all registration procedures
considered in section 3. Based on our numerical experi-
ence, the proposed procedure NEW would perform well
when max(x,y)∈Ω ‖T(x, y) − (x, y)‖ ≤ 0.25, if the design
space of an entire image is considered to be [0, 1]× [0, 1].
When the magnitude of T(x, y) is large, maybe we

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 13: (a)-(f) Restored reference images of procedures
NEW, DMFFD-MSD, DMFFD-CC, DMFFD-MI, SyN-CC,
and SyN-PCC, respectively, in the blurred MRI exam-
ple. (g)-(l) Corresponding residual images of the same
procedures.

should find a global parametric transformation first to
account for global trend of the geometrical transfor-
mation and then apply the local registration procedure
suggested here to accommodate certain local features of
the transformation, which will be further investigated in
our future research.
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