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Abstract

Image registration (IR) aims to geometrically match one image to another. It is extensively

used in many imaging applications. Among many existing IR methods, one widely used group of

methods are feature-based. By a feature-based method, a number of relevant image features are

first extracted from the two images, respectively, and then a geometric matching transformation

is found to best match the two sets of features. However, proper identification and extraction

of image features turns out to be a challenging task. Generally speaking, a good image feature

extraction method should have the following two properties: (i) the identified image features

should provide us proper information to approximate the geometric matching transformation

accurately, and (ii) they should be easy to identify by a computer algorithm so that the entire

feature extraction procedure is computer automatic. In this paper, a new type of image features

is studied, which has the two properties described above. Together with the widely used thin

plate spline (TPS) geometric transformation model, it is shown that our feature-based IR method

works effectively in various cases.
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1 Introduction

Image registration (IR) is a process of geometrically matching up two images of a same scene. It

has become an important tool for improving the quality of certain image-based technologies [19],

and is widely used in various applications, including medical imaging [13], remote sensing [15], face

or finger print recognition [16], image compression [8], image matching [3], and so forth. mathe-

matically, the image registration problem can be described as follows. Assume that ZR(x, y) and

ZM (x, y) are two images to register, ZR(x, y) is a reference image, and ZM (x, y) is a geometrically

altered version of ZR(x, y) and is often called a moved image. Then, the major purpose of image

registration is to find a geometric transformation T(x, y) = (T1(x, y), T2(x, y)) such that ZM (x, y)

and ZR(T(x, y)) are as close as possible, which is often accomplished by solving the following

maximization problem:

max
T∈T

S(ZM , ZR(T)),

where S is a metric to measure the similarity between ZM (x, y) and ZR(T(x, y)), and T is a given

transformation family. See [24] and [37] for a more detailed description of the image registration

problem.

To find the geometric transformation T, many existing methods focus on matching up some

major features in the two images, instead of the two entire images. These methods are called feature

based methods in this paper. By a feature based method, a number of relevant image features are

first extracted from the two images, respectively, and then the geometric transformation T is found

to best match the two sets of features [33], [37]. More specifically, a feature based method usually

consists of the following three steps:
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Step 1 (Feature Extraction) Different features are identified and extracted manually or automati-

cally by a computer algorithm from the two images, respectively. The extracted features can

be represented by some descriptor vectors, consisting of coordinates, intensities, gradients,

and so forth.

Step 2 (Feature Matching) The two sets of extracted features are matched up by a matching

algorithm based on a similarity measure.

Step 3 (Transformation Estimation) Based on the matching results obtained in Step 2, an es-

timator of T(x, y), denoted as T̂(x, y), is obtained by a function estimation/interpolation

procedure, such as the thin plate spline (TPS) function interpolation procedure.

While all the above three steps are important and challenging, the first step (i.e., feature

identification and extraction) is a critical one, because the final registration results depend directly

on what features being extracted and how the features being extracted. In the literature, there

are two types of features discussed: non-point features and point features. Non-point features

include curves, edges, line segments, and regions, which are usually determined by thresholding

and segmentation [30],[21], whereas point features are just sets of individual points. Examples of

point features include landmark points, control points, centroid points, corner points, and so forth.

Note that most features described above are not specifically defined for image registration. For

instance, most edge features are defined for edge detection, image segmentation, and some other

image processing purposes. For this reason, they may not be appropriate for image registration.

Besides feature based IR methods, there are some IR methods based directly on the observed

image intensities of the two images ZR(x, y) and ZM (x, y). See, e.g., [6], [32], [2], [1], [36], and

[26] for related discussion. There are also a number of IR methods that try to overcome certain

limitations of both the feature-based and the intensity-based methods. See, e.g., [35], [20].
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Recently, Xing and Qiu [36] find that the image registration problem is ill-posed in the sense

that the transformation T cannot be properly defined in certain regions, including the regions

where the image intensity function is straight or where the image intensity function has a step

edge but it is flat on both sides of the edge curve. Such pixels are called degenerate pixels in

that paper. Based on that concept, Xing and Qiu proposed an intensity based IR method, which

tried to estimate the transformation T based directly on the observed image intensities around

all detected non-degenerate pixels. From that paper, it seems that when we try to handle the

image registration problem, we should focus on all non-degenerate pixels where T is well defined.

Because such non-degenerate pixels contain all useful information about the transformation T,

they are ideal feature points for image registration. In this paper, we try to further study the

properties of the non-degenerate pixels as feature points for image registration. To this end, we

consider different feature-based image registration procedures, using the non-degenerate pixels and

some other feature points proposed in the literature as their feature points, respectively. To make

the comparison of their performance as fair as possible, in all these procedures except the one

mentioned below, the feature matching (i.e., Step 2 of a feature-based method described above)

is accomplished by searching all the detected feature points in the two images, using the mean

squared difference (MSD) dissimilarity metric. For estimation of the transformation T (i.e., Step

3 of a feature-based method), we use the popular thin plate spline (TPS) model, which was first

introduced by Duchon [7] for function estimation and was applied to medical image processing by

many authors, including Bookstein [4]. The TPS model is commonly used in function interpolation

[34], and it can be used for describing various elastic deformations well.

The rest part of the article is organized as follows. In section 2, our feature based image

registration procedure is described in detail. Various numerical examples are presented in Section

3. Some concluding remarks are given in Section 4.
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2 Proposed Method

In this section, our proposed feature based IR method is described in three parts. Non-degenerate

pixels are introduced in Section 2.1. The TPS model for estimating the transformation T is

discussed in Section 2.2. The whole IR procedure is described in Section 2.3.

2.1 Non-Degenerate Pixels

Let R(x, y) and M(x, y) be the true image intensity functions of the reference and moved images,

respectively. It is assumed that there is a geometric transformation T(x, y) = (T1(x, y), T2(x, y))

such that

R(T1(x, y), T2(x, y)) =M(x, y), for (x, y) ∈ ΩM ,

where ΩM is the design space of the moved image. For simplicity, we further assume that ΩM =

[0, 1] × [0, 1]. The major goal of image registration is to estimate T(x, y) from observed image

intensities of the two images defined by

ZM (xi, yj) = M(xi, yj) + εM (xi, yj),

ZR(xi, yj) = R(xi, yj) + εR(xi, yj),

for i, j = 1, 2, . . . , n,

where {(xi, yj)} are pixel locations, and {εM (xi, yj)} and {εR(xi, yj)} are i.i.d. random errors in

the two images with mean 0 and variances σ2M and σ2R, respectively. To this end, we write

T(x, y) = (x, y) + (b(x, y), c(x, y)),

where b(x, y) = T1(x, y)− x and c(x, y) = T2(x, y)− y. Then, estimation of T(x, y) is equivalent to

estimation of (b(x, y), c(x, y)).
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In cases when both b(x, y) and c(x, y) are small and R has the first-order partial derivatives

around (x, y), by the Taylor’s expansion, we have

R(T(x, y)) ≈ R(x, y) +R′
x(x, y)b(x, y) +R′

y(x, y)c(x, y),

where “≈” denotes equality after the high-order terms have been ignored on the right-hand side.

Therefore, we can choose (b(x, y), c(x, y)) to minimize the residual

M(x, y)−
[
R(x, y) +R′

x(x, y)b(x, y) +R′
y(x, y)c(x, y)

]
,

where we have used the relationship R(T(x, y)) = M(x, y). However, M(x, y) and R(x, y) are

unobservable, and what we observed are the image intensities {ZM (xi, yj)} and {ZR(xi, yj)} which

have random noise involved. To smooth out random noise while estimating (b(x, y), c(x, y)), we

can replace R′
x(x, y) and R

′
y(x, y) by their local linear kernel (LLK) estimators commonly used in

statistical nonparametric regression [9], which are defined by

R̂′
x(x, y) =

∑n
i,j=1(xi − x)ZR(xi, yj)Khn

(x, y)
∑n

i,j=1(xi − x)2Khn
(x, y)

R̂′
y(x, y) =

∑n
i,j=1(yj − y)ZR(xi, yj)Khn

(x, y)
∑n

i,j=1(yj − y)2Khn
(x, y)

,

where Khn
(x, y) = K(xi−x

hn
,
yj−y
hn

), K is a bivariate density kernel function with a unit circular

support, and hn is a bandwidth parameter. Then, consider the following weighted least square

problem:

min
b(x,y),c(x,y)

n∑

i,j=1

{ZM (xi, yj)− [ZR(xi, yj)+

R̂′
x(xi, yj)b(x, y) + R̂′

y(xi, yj)c(x, y)
]}2

Khn
(x, y). (1)

Intuitively, by (1), (b(x, y), c(x, y)) are estimated by minimizing the weighted residual mean squares

in a circular neighborhood of (x, y) with radius hn, denoted as O(x, y;hn), and the weights are

6



controlled by the kernel function. The solution of (1) is easy to derive to be




b̂(x, y)

ĉ(x, y)


 =




K22(x, y), −K12(x, y)

−K12(x, y), K11(x, y)







K∗
1 (x, y)

K∗
2 (x, y)




K11(x, y)K22(x, y)−K2
12(x, y)

, (2)

where, for s, t = 1, 2,

Kst(x, y) =
n∑

i,j=1

[
R̂′

x(xi, yj)
]s [

R̂′
y(xi, yj)

]t
Khn

(x, y)

and

K∗
1 (x, y) =

n∑

i,j=1

[ZM (xi, yj)− ZR(xi, yj)] R̂
′
x(xi, yj)Khn

(x, y),

K∗
2 (x, y) =

n∑

i,j=1

[ZM (xi, yj)− ZR(xi, yj)] R̂
′
y(xi, yj)Khn

(x, y).

It is obvious that the estimators in (2) are not well defined when

K11(x, y)K22(x, y)−K2
12(x, y) = 0. (3)

Qiu and Xing [25] have proven that, if there is a continuously differentiable univariate function ψ

and a constant ρ such that

R(x′, y′) = ψ(ρx′ + y′), for any (x′, y′) ∈ O(x, y;hn), (4)

then (3) is asymptotically true. Intuitively, if R satisfies the condition (4), then it is actually a

degenerate univariate function, in the sense that its value is a constant along the line segment

ρx′ + y′ = ρ0 within the neighborhood where ρ0 is a given number. For that reason, Qiu and Xing

call all pixels that satisfy the condition (3) the degenerate pixels of the image R, and all other pixels

the non-degenerate pixels of R. The degenerate pixels and non-degenerate pixels of the image M

can be defined similarly. From this discussion, it can be seen that the geometric transformation

T(x, y) is not well defined around a degenerate pixel. In that sense, the image registration problem

is ill-posed.
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2.2 The Thin Plate Spline Model

The thin plate spline (TPS) model is a basic function interpolation approach that has been

studied extensively in the numerical mathematics literature [7], [4]. It has been applied to the

area of curve matching and transformation [22]. For image registration, assume that we have

successfully matched two sets of feature points in the two images R(x, y) and M(x, y). More

specifically, assume that we have m feature points in the reference image M(x, y), denoted as

(u1, v1), (u2, v2), . . . , (um, vm). For each feature point (uj , vj) in M(x, y), it is matched to the fea-

ture point T̂(uj , vj) in R(x, y), for j = 1, 2, . . . ,m. Namely, for j = 1, 2, . . . ,m, we have

T̂(uj , vj) = (uj , vj) + (̂b(uj , vj), ĉ(uj , vj)). (5)

The above expression defines T̂(x, y), or equivalently (̂b(x, y), ĉ(x, y)), at the m feature points only.

The major purpose of the TPS modeling is to do function interpolation, so that (̂b(x, y), ĉ(x, y)) is

defined in the entire design space ΩM after function interpolation. By this approach, we assume

that (̂b(x, y), ĉ(x, y)) go through the two sets of feature points in the two images (i.e., the expression

(5) holds), and both b̂(x, y) and ĉ(x, y) are smooth. The smoothness of b̂(x, y) is measured by the

so-called bending energy, defined by

I
b̂
=

∫ ∫

ΩR



(
∂2b̂

∂x2

)2

+ 2

(
∂2b̂

∂x∂y

)2

+

(
∂2b̂

∂y2

)2

 dxdy.

The interpolated function b̂(x, y) defined in the entire design space ΩM is then obtained by minimiz-

ing the above bending energy under the constraint of (5). Similarly, we can obtain the interpolated

function ĉ(x, y) defined in the whole space ΩM by minimizing its bending energy Iĉ. This process

to obtain the TPS model explains the reason why it has its current name. Namely, the surface in

the TPS model acts like a thin metal plate compressed by the bending energy to go through the

m given points.
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By some algebraic manipulations, the interpolated geometric transformation (̂b(x, y), ĉ(x, y)) by

the TPS approach has the following expression:

b̂(x, y) = a11 + a12x+ a13y +

m∑

j=1

ω1jU (‖(uj , vj)− (x, y)‖) ,

ĉ(x, y) = a21 + a22x+ a23y +

m∑

j=1

ω2jU (‖(uj , vj)− (x, y)‖) , (6)

where U(x) = x2 log x, for x 6= 0, and U(0) = 0 is a basis function, ‖ · ‖ is the Euclidean norm, and

a11, a12, a13, ω1j , a21, a22, a23, ω2j , for j = 1, 2, . . . ,m, are coefficients. Let

K =




U11 U12 · · · U1m

...
...

. . .
...

Um1 Um2 · · · Umm



, w =




ω11 ω21

...
...

ω1m ω2m




P =




1 u1 v1

...
...

...

1 um vm



, a =




a11 a21

a12 a22

a13 a23



,

v =




b̂(u1, v1) ĉ(u1, v1)

...
...

b̂(um, vm) ĉ(um, vm)



,

where Uj1j2 = U (‖(uj1 , vj1)− (uj2 , vj2)‖), for j1, j2 = 1, 2, . . . ,m. Then, from (5) and (6), we have

the following equation for the coefficient matrices w and a:

Kw +Pa = v.

To make sure that both I
b̂
and Iĉ are finite, w should also satisfy the condition

PTw = 0
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Therefore, w and a can be determined from the equation system




K P

PT 0







w

a


 =




v

0


 . (7)

In the literature, there is also some research which uses a regularization parameter to control the

smoothness of the estimated functions (̂b(x, y), ĉ(x, y)) [27]. This can be achieved by considering

the following minimization problems:

min
b(x,y)

m∑

j=1

{
T̂1(uj , vj)− [uj + b(uj , vj)]

}2
+ λIb,

min
c(x,y)

m∑

j=1

{
T̂2(uj , vj)− [vj + c(uj , vj)]

}2
+ λIc,

where T̂(uj , vj) = (T̂1(uj , vj), T̂2(uj , vj)), and λ > 0 is a regularization parameter that controls the

trade-off between the interpolation condition and the smoothness. When λ is 0, the above problem

becomes the one with exact interpolation, whereas when λ approaches ∞, it reduces to a least

square model for fitting straight planes. To accomplish the above regularized TPS, we can simply

replace K by K+ λI in (7), where I is an identity matrix [34], [10].

2.3 Proposed Feature Based Image Registration Procedure

Our proposed feature based IR procedure consists of three steps, described in detail below.

Step 1 (Non-Degenerate Feature Points Extraction) The non-degenerate feature points

in the images R(x, y) and M(x, y) are extracted using the expression (3) as follows. Let un > 0 be

a threshold value. Then, the point set

DR = {(x, y) : (x, y) ∈ ΩR,

K11(x, y)K22(x, y)−K2
12(x, y) ≥ un}
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denotes all extracted non-degenerate feature points in the image R(x, y). Similarly, the point set

DM = {(x, y) : (x, y) ∈ ΩM ,

K11(x, y)K22(x, y)−K2
12(x, y) ≥ un}

denotes all extracted non-degenerate feature points in the image M(x, y). Note that, in the above

expressions, K11(x, y),K22(x, y), and K12(x, y) are computed from the observed image intensities

of the two images, respectively, in the two different cases.

Step 2 (Feature Points Matching) In this paper, we match the feature points using the mean

squared difference (MSD) metric that is commonly used in the IR literature. Let |DR| denote the

number of detected feature points in R, and |DM | denote the number of detected feature points in

M. The following discussion is under the condition that |DR| ≥ |DM |. In cases when |DR| < |DM |,

the roles of R(x, y) and M(x, y) should be switched. For any extracted feature point (x, y) ∈ DM ,

its matched feature point in DR, denoted as T̂(x, y), is defined by the minimizer of

min
(x′,y′)∈DR,‖(x′,y′)−(x,y)‖≤r0

MSD
(
(x, y); (x′, y′); dn

)
, (8)

where

MSD
(
(x, y), (x′, y′); dn

)
=

1

Ñ

∑
√
s2+t2≤dn

[
ZM (x+ s, y + t)− ZR(x

′ + s, y′ + t)
]2
,

dn > 0 and r0 > 0 are two radius parameters, and Ñ is the total number of pixels in the circular

neighborhood O(x, y; dn). From the above expression, MSD((x, y); (x′, y′); dn) is just the MSD

measure of the observed image intensities of the two images in the neighborhoods O(x, y; dn) and

O(x′, y′; dn), respectively. In (8), for the given feature point (x, y) in DM , we search all the feature

points in DR whose Euclidean distances from (x, y) are smaller than or equal to r0 such that the

MSD measure is minimized. Statistically, the probability for (8) to have more than one minimizer
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is 0 under some regularity conditions (e.g., the noise involved in the related images has a continuous

distribution such as the normal distribution). But, for completeness of our algorithm, in cases when

there are several minimizers in (8), we choose the one closest to (x, y) as its final matched feature

point in DR. Careful selection of the final matched feature point, however, is unimportant in such

cases because the event for (8) to have multiple minimizers is rare and this issue would hardly affect

the overall performance of the proposed procedure. If there are no points in DR that are within

r0 from (x, y), then (8) has no solution. In such cases, remove (x, y) from DM . After T̂(x, y) is

defined, we further define b̂(x, y) = T̂1(x, y)− x and ĉ(x, y) = T̂2(x, y)− y.

Step 3 (Interpolation by the TPS Model) From step 2, we obtain a sequence of matched

feature points {(uj , vj), j = 1, 2, . . . ,m} in image M and {T̂(uj , vj), j = 1, 2, . . . ,m} in image R.

Then, by the TPS interpolation procedure (6) and (7), we can obtain the geometric transformation

T̂(x, y) defined in the entire design space ΩM .

In the proposed feature based IR procedure described above, there are some parameters to

choose. Data-driven selection of these parameters is an on-going research project. Here, we provide

some practical guidelines based on our numerical experience. In Step 1 of the procedure, there are

two parameters hn and un involved. The parameter hn is the bandwidth used in the weighted least

square problem (1). We recommend choosing it from the values {0.015, 0.02, 0.025}. The parameter

un is the threshold value used when defining the extracted non-degenerate feature points. If un

is chosen larger, then less non-degenerate feature points will be extracted from the two related

images. Proper determination of the number of feature points for best image registration is still an

open research problem [11]. Based on our experience, the image registration would be reasonably

good if un is chosen such that |DR|/|ΩR| ∈ [0.1, 0.15], where |A| denotes the number of pixels in the

pointset A. In Step 2 of the procedure, there are two radius parameters r0 and dn involved. Based

on our experience, r0 can be chosen in the interval [0.05, 0.25], and dn can be chosen min{r0, sn},
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where sn is a number in [0.01, 0.1].

3 Numerical Study

We have tried many different numerical examples to evaluate the performance of our proposed

feature based image registration procedure, denoted as NEW hereafter. In this section, we present

three of them. The results from other examples are similar to those of the examples presented

here. In all the examples, for comparison purposes, besides the feature points described in Section

2.1, we also consider four other types of features that are commonly used in various applications.

The first is the edge pixels detected by the Canny’s edge detector [5], the second is the corner

points detected by the FAST (Features from Accelerated Segment Test) algorithm [28], [29], the

third type of feature points is those identified by the Harris’ corner detector [12], [31], and the

last type is those extracted by the SIFT (Scale-Invariant Feature Transform) algorithm [17], [18].

The Canny’s edge detector has been commonly used in various imaging applications since 1986.

The FAST algorithm is a corner detector that examines the so-called Bresenham circle of a given

radius around a candidate pixel. If at least k contiguous pixels have their intensities all above

or below the intensity at the candidate pixel by a given amount specified by a threshold value,

then the candidate pixel is classified as a corner pixel. Various numerical experiments show that a

reasonable choice of k is 9 [29]. The software package of the FAST algorithm can be downloaded

from http://svr-www.eng.cam.ac.uk/ er258/work/fast.html. The Harris’ corner detector is another

popular algorithm for identifying corners, which uses eigenvalues of the structure tensor matrix for

determining the candidate corner pixels, described briefly below. Let (xi, yj) be a given pixel on

an image I, and Wij be a window of (xi, yj). Then, the “auto-correlation function” of the image I
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at (xi, yj) is defined by

AC(xi, yj) =
∑

(xi,yj)∈Wij

[I(xi, yj)− I(xi +∆x, yj +∆y)]

≈
∑

(xi,yj)∈Wij

{
I(xi, yj)−

[
I(xi, yj) + I ′x(xi, yj)∆x+ I ′y(xi, yj)∆y

]}

= (∆x,∆y)H(xi, yj)(∆x,∆y)
′

where (∆x,∆y) is a shift, “≈” in the second line implies that some higher-order terms have been

ignored when I(xi +∆x, yj +∆y) is replaced by its first-order Taylor’s expansion, the image I is

usually filtered by a Gaussian filter beforehand, and

H(xi, yj) =




∑
(xi,yj)∈Wij

(I ′x(xi, yj))
2 ,

∑
(xi,yj)∈Wij

I ′x(xi, yj)I
′
y(xi, yj)

∑
(xi,yj)∈Wij

I ′x(xi, yj)I
′
y(xi, yj),

∑
(xi,yj)∈Wij

(
I ′y(xi, yj)

)2




is a 2 × 2 matrix describing the local structure of I around the pixel (xi, yj). The pixel (xi, yj)

is identified as a corner if both eigenvalues of H(xi, yj) are large. From this brief description,

it can be seen that the “auto-correlation function” defined above and the weighted least square

problem (1) are completely different, although both of them have the Taylor’s expansion involved.

The former is for measuring the local structure of a single image around a given pixel while the

latter is for measuring the difference between two images around a given pixel after one image

is geometrically adjusted. A matlab code of the Harris’ corner detector can be downloaded from

http://www.csse.uwa.edu.au/ pk/research/matlabfns/. The feature points extracted by the SIFT

algorithm have become popular in recent years for various purposes, including object recognition.

They have a nice property that they are invariant to scale and affine transformations. The software

of the SIFT algorithm can be downloaded from http://www.cs.ubc.ca/ lowe/keypoints/.

With different types of feature points, the feature based image registration is proceeded as

described in Section 2.3, except that, for the extracted SIFT features, because each of them has

a set of descriptors associated, the Euclidean distance (instead of the MSD) of the associated
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descriptors is used in Step 2 of the registration procedure for feature points matching. The image

registration procedure with the five different types of features is labeled as NEW, Canny, FAST,

Harris, and SIFT, respectively. To numerically evaluate a given set of image registration results,

we use the root residual mean square (RRMS) and the cross correlation (CC) measures, both of

which are popular in the IR literature. The RRMS measure is defined by

RRMS =





1

n2

n∑

i,j=1

[
ZM (xi, yj)− ZR(T̂(xi, yj))

]2




1/2

,

where T̂ denotes the estimated geometric transformation by a given image registration proce-

dure. It is obvious that RRMS is proportional to the Euclidean distance between {ZM (xi, yj)} and

{ZR(T̂(xi, yj))}. Thus, the smaller its value, the better. The CC measure is defined to be the Pear-

sons sample correlation coefficient of the bivariate data {(ZM (xi, yj), ZR(T (xi, yj)))}. Intuitively, if

T̂(x, y) is a good estimator of T(x, y), then ZR(T̂(x, y)) would be close to ZM (x, y). Consequently,

the CC value should be large. Therefore, by this measure, the larger its value, the better.

In all the examples described below, each image has 128×128 pixels with the image intensities in

the range [0, 255]. In the proposed procedure NEW, a 2-D density kernel function K is used in (1).

In all examples, K is chosen to be the truncated bivariate Gaussian density function with support

{(u, v) : u2+v2 ≤ 1}. This kernel function is commonly used in the computer science literature (cf.,

Qiu 2005, Section 7.4). In the statistical literature, people traditionally use the Epanecknikov kernel

function (cf., Qiu 2005, Section 2.3). Our experience is that our proposed procedure NEW performs

similarly using either of them. In Step 2 of the image registration procedure described in Section

2.3, there are two parameters dn and r0 (cf., expression (8)). They are chosen to be 0.05 and 0.15,

respectively, in all examples for the four methods NEW, Canny, FAST, and Harris, because they

give reasonably good results in all cases considered. In the TPS interpolation procedure used in

Step 3 of the image registration procedure described in Section 2.3, there is a smoothing parameter

λ > 0 involved. We have tried many different values of λ in our numerical study, and find that
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λ = 8.0 would give reasonably good results in all cases considered. So, this value is used in all

examples for all five methods.

In the first example, the reference image is a texture image that is downloaded from

http://www.freeseamlesstextures.com/texture gallery/index.htm

and shown in Fig 1(a). This image is then moved to the right by 0.05 and moved upward by 0.06,

where its design space is normalized to be ΩR = [0, 1]× [0, 1]. The resulting moved image is shown

in Fig 1(b).

[Figure 1 about here.]

Then, we apply the five methods NEW, Canny, FAST, Harris, and SIFT to the observed images.

Each method has a number of parameters involved. More specifically, the method NEW has two

parameters hn and un used in detecting feature points. The method Canny has three parameters

involved: a scale parameter used in the Gaussian density function for image preprocessing and two

threshold values. The method FAST has two parameters: a threshold value and a boolean param-

eter to control the implementation of a nonmaximal suppression. The Harris’ corner detector has

three parameters: a scale parameter in the Gaussian filter, a radius parameter in the non-maximal

suppression algorithm, and a threshold value for determining the corner candidates. The SIFT

algorithm is accomplished by a binary executable file provided by its author, with no parameters to

adjust. In order to make the comparison of the five types of features meaningful, we try to choose

the parameters of different registration methods properly such that the numbers of matched pairs

of the detected feature points in the two images are about the same among the five methods. In our

numerical study, we try to set the number of matched pairs of the detected feature points at a low,

a medium, and a high level. However, the method SIFT can only give a single number of matched

pairs of the detected feature points in each example because it has no parameters to adjust, and

that number is usually small. Among the remaining four methods, the method FAST has the least
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flexibility in generating different numbers of matched pairs of the detected feature points. So, we

set the specific number of matched pairs determined by SIFT as the first level, and determine the

other two levels by FAST. Then, the numbers of matched pairs of the other three methods are

adjusted to be as close to these three levels as possible. In the texture image example, the three

levels of the number of matched pairs of the detected feature points are determined by SIFT to be

106, and by FAST to be 38 and 295. The closest numbers of the matched pairs by NEW are 38,

106, and 296, those by Canny are 38, 106, and 296, those by Harris are 38, 106, and 296, and those

by FAST are 38, 107, and 296.

The extracted feature points by the five methods are shown in the five rows of Fig 2, respectively.

In each of the first four rows, the extracted feature points in the reference and moved images are

shown in three pairs, with the numbers of matched pairs of the detected feature points increase

from the left to the right. For instance, in the first row, plots (a) and (b) show the 38 matched

pairs of the detected feature points in the reference and moved images, respectively, obtained by

the method New, plots (c) and (d) show the 106 matched pairs of the detected feature points by the

same method, and plots (e) and (f) show the 296 matched pairs of the detected feature points by

this method. Because the texture reference image does not contain any objects with clear outlines,

the detected feature points by all five methods do not display clear patterns either. However, if

we look at the plots in this figure carefully, we would find that the detected feature points by the

methods NEW and Canny can still reveal certain structures of the reference and moved images,

while the detected feature points by the other three methods are mostly random.

[Figure 2 about here.]

The restored moved images ZR(T̂(x, y)), obtained after applying the estimated transformation

T̂(x, y) onto the reference image ZR, are presented in Fig 3, along with the residual images defined as

ZR(T̂(x, y))−ZM (x, y). From the images shown in this figure, it can be seen that the method NEW
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indeed performs better than the other four methods at all three levels of the number of matched

pairs of detected feature points, because it has less non-zero residuals. Numerical performance

measures RRMS and CC of the five methods are presented in Table 1, along with a summary of

their detected feature points in the reference and moved images. From the table, it can be seen

that the proposed method NEW has the smallest RRMS values and the largest CC values in all

cases, consistent with the residual images in Fig 3.

[Figure 3 about here.]

[Table 1 about here.]

In the second example, the reference image is a real fingerprint image that is downloaded from

http://www.foxnews.com/story/0,2933,290215,00.html and shown in Fig 4 (a). This image is then

twisted arbitrarily using the photoshop software package, and the resulting moved image is shown

in Fig 4 (b). This example tries to simulate a real application in which a fingerprint image is altered

by a nonparametric geometrical transformation arbitrarily.

[Figure 4 about here.]

[Figure 5 about here.]

In this example, all procedure parameters are chosen in the same way as that in the previous

example. The three levels of the number of matched pairs of detected feature points is determined

first by the SIFT method to be 41, and then by the FAST method to be 185 and 394. The closest

numbers of the matched pairs by the method NEW are 41, 185, and 395, the closest numbers of

the matched pairs by the method Canny are 41, 187, and 396, the closest numbers by the method

Harris are 41, 186, and 395, and the closest numbers by the method FAST are 42, 185, and 394.

The detected feature points by the five methods are shown in Fig 5, and the individual images in
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the figure are organized in the same way as those in Fig 2. In this example, the main structure

of the fingerprint cannot be described well by step edges; thus, feature points extracted by the

method Canny (cf., the images in the 2nd row of Fig 5) cannot provide much useful information

for image registration either. From the images, it seems that the detected features by the methods

FAST, Harris, and SIFT are mostly random and do not provide much useful information for image

registration. These results are consistent with the results of the numerical measures RRMS and

CC that are presented in Table 2. From the table, it can be seen that the method NEW performs

uniformly better than its peers in all cases considered. The matched feature points are presented in

Fig 6, where the feature points in the reference image are indicated by the red color and those in the

moved image are indicated by the green color. The restored moved images and the corresponding

residual images are shown in Fig 7, from which it can be seen that the residual images of the

proposed method NEW contain the least pixels with non-zero intensities in all cases considered.

[Figure 6 about here.]

[Figure 7 about here.]

[Table 2 about here.]

In the last example, both the reference and moved images are real rock images obtained from

a series of motion pictures that can be downloaded from

http://vasc.ri.cmu.edu//idb/html/motion/marked rocks/index.html.

The two images are shown in Fig 8. If we observe the two images carefully, then we can notice that

the moved image is taken after the camera is moved to the the right a little bit.

[Figure 8 about here.]

As in the previous two examples, the three levels of the number of matched pair of detected

feature points are first determined by the method SIFT to be 43, and then by the method FAST

19



to be 107 and 229. The closest numbers of the matched pairs by the method NEW are 43, 106,

and 221, the closest numbers of the matched pairs by the method Canny are 43, 106, and 221,

the closest numbers by the method Harris are 43, 106, and 221, and the closest numbers by the

method FAST are 42, 107, and 229. The detected feature points by the five methods are shown

in Fig 9, which is organized in the same way as that in Fig 2. From the images in the figure, it

can be seen that, when the number of matched pairs increases, the detected feature points by the

methods New, Canny, and FAST concentrate at some specific positions in the two images, while

the detected feature points by the method Harris are scattered in the entire images. The matched

feature points are presented in Fig 10, organized in the same way as that of Fig 6. The restored

moved images and the corresponding residual images are shown in Fig 11, from which it can be

seen that our method NEW performs the best in all cases considered. The results of the numerical

measures RRMS and CC are presented in Table 3 which confirms that the method New indeed

performs the best in this example.

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

[Table 3 about here.]

4 Concluding Remarks

In this paper, we have proposed an image registration procedure based on the detected non-

degenerate feature points. From their definition, the non-degenerate feature points are relevant

for characterizing the geometrical transformation T(x, y) that is involved in the image registration
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problem. Therefore, they should be good feature points for image registration. Our numerical

examples presented in the previous section have confirmed this intuition.

There are still some issues in our proposed method that should be addressed in the future

research. For instance, in each of the presented numerical examples, we set three levels for the

number of matched pairs of the extracted feature points. In real applications, however, it is often a

challenging task to determine how many feature points to use. Intuitively, the more feature points

extracted, the more information for approximating the geometrical transformation T(x, y). Conse-

quently, the feature-based image registration can be better achieved, although more computation

is involved in such cases. However, our numerical examples demonstrate that large numbers of ex-

tracted feature points cannot always guarantee a better image registration (cf., Tables 1-3). Based

on our numerical experience, the best numbers of extracted feature points in the reference and

moved images depend on the complexity of the transformation T(x, y) and on the image structure

as well. If T(x, y) is simple (e.g., a linear motion transformation), then a small number of extracted

feature points in each image might be good enough; but, that would not be sufficient if T(x, y) has

a more complex structure. Some existing research in the literature is dedicated to selection of a

subset of extracted feature points for image registration without sacrificing the quality [11], [14].

In our opinion, proper determination of the numbers of extracted feature points from the observed

image intensities is still an open problem, and requires much future research. In our proposed

feature-based image registration procedure, there are a number of parameters involved (e.g., dn

and r0 in (8)). Data-driven parameter selection is not discussed in this paper, although some em-

pirical guidelines were given at the end of section 2. It might be possible to choose these parameters

by using the cross-validation (CV), generalized cross-validation (GCV), and other parameter selec-

tion procedures that are discussed extensively in the statistical literature [23]. Adaptation of such

parameter selection procedures to the image registration problem requires much future research as
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well.
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Figure 1: Reference image (plot (a)) and moved image (plot (b)) in the texture image example.
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Figure 2: Detected feature points in the reference image (1st, 3rd, and 5th columns) and the moved
image (2nd, 4th, and 6th columns) by the five methods NEW (1st row), Canny (2nd row), FAST
(3rd row), Harris (4th row), and SIFT (5th row) in the texture image example. In each of the first
four rows, results are presented in three pairs of plots, in which the numbers of matched pairs of
detected feature points increase from the left to the right.
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Figure 3: Restored moved images ZR(T̂(x, y)) and the corresponding residual images ZR(T̂(x, y))−
ZM (x, y) in the texture image example. The five rows are for the methods NEW, Canny, FAST,
Harris, and SIFT, respectively. The pair of plots (a) and (b) corresponds to the pair of Fig 2(a)-(b),
and the other pairs correspond to the other plots in Fig 2 in a similar way.
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Figure 4: (a) A reference fingerprint image. (b) A moved image.
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Figure 5: Detected feature points in the reference image (1st, 3rd, and 5th columns) and the moved
image (2nd, 4th, and 6th columns) by the five methods NEW (1st row), Canny (2nd row), FAST
(3rd row), Harris (4th row), and SIFT (5th row) in the fingerprint example. In each of the first
four rows, results are presented in three pairs of plots, in which the numbers of matched pairs of
detected feature points increase from the left to the right.
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Figure 6: Matched feature points in the fingerprint example obtained from the results shown in Fig
5. Results in the five rows are for methods NEW, Canny, FAST, Harris and SIFT, respectively.
Results in plot (a) are from the feature points shown in Fig 5(a)-(b), in which red points denote
the feature points in the reference image and green points denote their matched feature points in
the moved image. Results in other plots are organized in the same way.
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Figure 7: Restored moved images ZR(T̂(x, y)) and the corresponding residual images ZR(T̂(x, y))−
ZM (x, y) in the fingerprint example. The five rows are for the methods NEW, Canny, FAST, Harris,
and SIFT, respectively. The pair of plots (a) and (b) corresponds to the case of Fig 5(a)-(b), and
the other pairs correspond to the related results in Fig 5 similarly.
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Figure 8: (a) A reference rock image. (b) A moved image.
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Figure 9: Detected feature points in reference image (1st, 3rd, and 5th columns) and the moved
image (2nd, 4th, and 6th columns) by the five methods NEW (1st row), Canny (2nd row), FAST
(3rd row), Harris (4th row), and SIFT (5th row) in the rock image example. In each of the first
four rows, results are presented in three pairs of plots, in which the numbers of matched pairs of
detected feature points increase from the left to the right.
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Figure 10: Matched feature points in the rock image example obtained from the results shown in
Fig 9. Results in the five rows are for methods NEW, Canny, FAST, Harris and SIFT, respectively.
Results in plot (a) are from the feature points shown in Fig 9(a)-(b), in which red points denote
the feature points in the reference image and green points denote their matched feature points in
the moved image. Results in other plots are organized in the same way.
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Figure 11: Restored moved images ZR(T̂(x, y)) and the corresponding residual images
ZR(T̂(x, y)) − ZM (x, y) in the rock image example. The five rows are for the methods NEW,
Canny, FAST, Harris, and SIFT, respectively. The pair of plots (a) and (b) corresponds to the case
of Fig 9(a)-(b), and the other pairs correspond to the related results in Fig 9 similarly.
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Table 1: Numerical performance measures RRMS and CC of the five methods NEW, Canny,
FAST, Harris, and SIFT, along with a summary of their detected feature points, in the texture
image example.

Method # of Feature # of Feature # of Matched RRMS CC

Points in ZR Points in ZM Feature Points Value Value

New 45 45 38 17.436060 0.921180

128 127 106 26.966148 0.811951

347 360 296 32.472932 0.727368

Canny 54 51 38 25.077406 0.836841

144 140 106 34.823847 0.684244

383 383 296 33.553160 0.709173

FAST 50 49 38 23.621764 0.855085

132 129 107 27.044096 0.810149

362 365 295 34.758800 0.685656

Harris 59 57 38 23.281763 0.859266

150 155 106 28.940011 0.782706

412 429 296 34.179141 0.696844

SIFT 133 141 106 48.563976 0.386922
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Table 2: Numerical performance measures RRMS and CC of the five methods NEW, Canny, FAST,
Harris, and SIFT, along with a summary of their detected feature points, in the fingerprint example.

Method # of Feature # of Feature # of Matched RRMS CC

Points in ZR Points in ZM Feature Points Value Value

New 224 41 41 50.981442 0.709939

664 185 185 43.128353 0.793319

1168 397 395 42.554701 0.798680

Canny 48 50 41 61.978028 0.572733

227 234 187 53.123332 0.685827

490 482 396 55.892717 0.653374

FAST 90 44 42 61.337823 0.577478

299 211 185 63.961907 0.542112

576 517 394 65.375967 0.521666

Harris 60 44 41 68.415590 0.475635

243 243 186 60.888339 0.583962

498 502 395 61.957272 0.576090

SIFT 59 61 41 59.477569 0.601160
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Table 3: Numerical performance measures RRMS and CC of the five methods NEW, Canny, FAST,
Harris, and SIFT, along with a summary of their detected feature points, in the rock image example.

Method # of Feature # of Feature # of Matched RRMS CC

Points in ZR Points in ZM Feature Points Value Value

New 59 56 43 14.429331 0.957693

158 132 106 12.795238 0.966670

409 314 221 12.788663 0.967155

Canny 140 144 43 27.821090 0.838532

238 249 106 28.215268 0.837185

427 435 221 17.845393 0.933753

FAST 98 72 42 18.594821 0.928695

206 152 107 17.186702 0.939592

419 334 229 17.178284 0.939301

Harris 89 72 43 17.097757 0.940096

229 199 106 16.443445 0.944312

478 447 221 16.089799 0.946788

SIFT 110 103 43 17.144078 0.939319
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