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Abstract

Magnetic resonance imaging (MRI) is a popular radiology technique that is used for visualizing detailed

internal structure of the body. Observed MRI images are generated by the inverse Fourier transformation

from received frequency signals of a MR scanner system. Previous research has demonstrated that random

noise involved in the observed MRI images can be described adequately by the so-called Rician noise model.

Under that model, the observed image intensity at a given pixel is a non-linear function of the true image

intensity and of two independent zero-mean random variables with a same normal distribution. Because of

such a complicated noise structure in the observed MRI images, denoised images by conventional denoising

methods are usually biased, and the bias could reduce image contrast and affect negatively subsequent

image analysis. Therefore, it is important to address the bias issue properly. To this end, several bias

correction procedures have been proposed in the literature. In this paper, we study the Rician noise model

and the corresponding bias-correction problem systematically, and propose a new and more effective bias-

correction formula based on the regression analysis and Monte Carlo simulation. Numerical studies show

that our proposed method works well in various applications.

Index Terms: Bias correction, function approximation, image denoising, magnetic resonance

imaging, medical imaging, Rician noise.
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1 Introduction

Magnetic resonance imaging (MRI) is a technique that is used mainly for assessing pathological or

other physiological conditions in living tissues, by visualizing the inside of living organisms [1]. In

simple terms, its methodological basis lies in: (i) different tissues have different compositions and

physical properties (e.g., water molecule densities) from which the tissue type at a given position

can be determined, and (ii) these differences can be described by various image contrasts using the

MRI technique.

When a part of a body (e.g., a patient’s head) is placed in a uniform magnetic field of a given

direction, say, the z direction, the hydrogen nuclei of water in that part of the body align themselves

in parallel or anti-parallel with the field, creating a net magnetization, and rotate with the Larmor

frequency. The basis of MRI lies in manipulating the local magnetic field such that the local

resonant frequency would differ at different locations, which is achieved by applying additional,

small, linear magnetic field gradients. In a MR scanner system, three orthogonally positioned

gradient coils could produce such magnetic fields that vary linearly along their respective axes

(e.g., x, y, and z axes), and these small fields are added to the main magnetic field. Turning on

the coils in any particular combination would produce a field gradient along any desired direction.

After applying radio frequency (RF) pulses transmitted by a separate RF coil, emitted radiation

is absorbed by nuclei. Consequently, the net magnetization is tipped away from the main z axis;

the nuclei continue their rotation, and as the excited nuclei relax back to the initial lower-energy

alignment along the main field, RF signals are re-emitted and received by a RF receiver coil.

Along the z direction, assume that a particular perpendicular slice of the body part at z = z0 is to

be imaged. Then, a RF pulse with a frequency corresponding to that slice position could excite the

nuclei in that plane. Considering only the proton density and spin relaxation, the received signal
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can be expressed by

S(kx, ky) ∝
∫ ∫

Ωz0

m(x, y) exp[i2π(kxx+ kyy)]dxdy, (1)

where Ωz0 denotes the 2-dimensional (2-D) region of the slice, m(x, y) is the density of hydrogen

protons at (x, y), kx and ky are the frequency change rates along the x and y directions of the local

magnetic fields. Note that some constant multipliers have been ignored on the right-hand-side of

(1) for simplicity. That is the reason why the “∝” symbol is used in the expression. From (1), it

can be seen that S(kx, ky) is proportional to a Fourier transformation of m(x, y). Therefore, if we

have signals S(kx, ky) in the frequency domain, for all kx, ky = 1, 2, . . . , n, then m(x, y) can be

determined in the spatial domain at n × n regularly spaced pixels by the discrete inverse Fourier

transformation [2, Chapter 7], as demonstrated in Figure 1.

(a) (b)

Figure 1: (a) Signals in frequency domain. (b) Corresponding spatial image obtained by the dis-

crete inverse Fourier transformation of the signals shown in plot (a).

Note that equation (1) is only a theoretical model for describing the acquisition of MRI im-

ages. In practice, random noise is often involved in the received signal S(kx, ky) in the frequency

domain, due to various reasons, including hardware imperfection, signal dropouts caused by field

inhomogeneity, and so forth. In the literature, there is a considerable amount of existing research

to describe the noise pattern in observed MRI images in the spatial domain (e.g., [3–4]). Most ex-

isting research shows that the noise pattern in observed MRI images can be described adequately
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by the following Rician noise model (e.g., [5–6]):

Z(x, y) =

√
[m(x, y) +N1(x, y)]2 +N2

2 (x, y), (2)

where Z(x, y) denotes the observed image intensity at the pixel (x, y), m(x, y) is the true image

intensity, and N1(x, y) and N2(x, y) are two independent random variables with the normal dis-

tribution N(0, σ2) where σ is often unknown. One explanation of the Rician noise model (1) is

that, when Z(x, y) is reconstructed from the frequency signal S(kx, ky) using the inverse Fourier

transformation, the real part of the complex output of the transformation is m(x, y) +N1(x, y), the

imaginary part is just the pure noise N2(x, y) that does not contain any information about m(x, y),

and Z(x, y) is defined as the magnitude of the complex output of the inverse Fourier transformation

(cf., [7]). This Rician noise model has been validated by some researchers using certain observed

MR data (e.g., [8]).

From (2), we can see that the Rician noise involved in the observed image Z(x, y) does not

have the traditional zero-mean and additive structure. Instead, its noise level depends on the true

image intensity m(x, y), and it contaminates m(x, y) nonlinearly. Because of the non-additivity

and nonlinearity of the Rician noise, many conventional image denoising techniques, including

the total variance minimization (e.g., [9]), anisotropic diffusion (e.g., [10]), non-local means (e.g.,

[11]), jump surface estimation (e.g., [12–13]), and so forth, would result in biased estimates of

the true image intensity function m(x, y), if they are applied directly to an observed MRI image

with the Rician noise. A direct consequence is that the image contrast of these biased estimates

would be lower than that of the true image (cf., [7]), because the magnitude of bias depends on

the observed image intensities and the bias would be larger at places where the observed image

intensities are smaller, which is unfavorable to subsequent image analysis.

In the literature, there are two types of existing methodologies to handle the image denoising
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problem with the Rician noise. One is to estimate the true image intensity function m(x, y) di-

rectly from model (2), by exploring the functional relationship between m(x, y) and Z(x, y) (cf.,

[14–15]). For instance, Sijbers and den Dekker [16] suggested a denoising method based on the

maximum likelihood estimation (MLE) of the true image m(x, y) in model (2). However, the

MLE is not easy to obtain due to the nonlinearity of the model ([6]). Furthermore, this type of

direct methods does not explicitly address the edge-preserving properties of the related estimators

of m(x, y); thus, edges in the true image are not guaranteed to be preserved by them ([2], [6]). An

alternative type of methods takes the following two-step approach (e.g., [3]). First, a conventional

edge-preserving image denoising method is applied to an observed image with the Rician noise.

Then, a bias-reduction procedure is used for post-processing the denoised image obtained in the

first step to further improve the denoised image. By such a two-step approach, because edges are

usually preserved in the first step and the bias-reduction in the second step is often accomplished

by a continuous non-decreasing transformation (cf, the expression (8) below and the related dis-

cussion), edges are also preserved in the final estimator of the true image m(x, y). Further, many

conventional edge-preserving image denoising methods have been included in certain software

packages. Therefore, the latter type of methods is convenient to use. For these reasons, the current

paper focuses on the two-step approach to reduce bias of the denoised images by conventional

image denoising methods in cases when the Rician noise is present.

In the literature, there are a number of existing bias-reduction methods for handling the Rician

noise. For instance, Aja-Fernández et al. [17], Coupe et al. [18], Rajan et al. [19], and some

others, recently proposed several different methods to estimate the noise level in an MRI image for

reducing the bias caused by the Rician noise. Gudbjartsson and Patz [3] suggested the following

bias-correction formula:

m̂1(x, y) =
√
|m̃2(x, y)− σ2|, (3)
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where m̃(x, y) denoted the denoised image by a conventional image denoising procedure (e.g.,

the non-local means method by Coupe et al. [20]), and m̂1(x, y) was the bias-corrected estimate

of m(x, y). The formula (3) was derived mainly using the normal distribution approximation to

the Rician noise distribution. This distribution approximation may not be accurate in practice.

Consequently, the accuracy of the formula (3) is in question as well. Wiest-Daessle et al. [21]

noticed that E(Z2(x, y)) = m2(x, y) + 2σ2, based on which they proposed the following bias-

correction formula:

m̂2(x, y) =
√
m̃2(x, y)− 2σ2I

(
m̃(x, y) ≥

√
2σ
)
, (4)

where I(a) was an indicator function taking the value of 1 if “a=True” and 0 otherwise. We have

two reservations about the formula (4). First, in real applications, the cases when m̃(x, y) >
√

2σ

can happen even in some pixels of the background region. By the formula (4), m̂2(x, y) is defined

to be some positive number in all such cases, whereas it should be defined as 0. Second, the

mathematical background of this formula is that E(Z2(x, y)) = m2(x, y) + 2σ2. However, it is

clear that we do not have the equality m(x, y) =
√

[E(Z(x, y))]2 − 2σ2 in cases when m2(x, y) =

E(Z2(x, y))− 2σ2. Therefore, this formula has room to be further improved.

In this paper, we propose a novel bias-correction method using the regression analysis and

Monte Carlo simulation. From (2), it can be noticed that most conventional image denoising

methods actually estimate E(Z(x, y)), instead of m(x, y), because they are mainly based on data

averaging for removing noise. The resulting bias is mainly contributed by E(Z(x, y)) −m(x, y)

which is a function of m(x, y). This function might be analytically complicated; but, it can be

estimated accurately using the regression analysis and Monte Carlo simulation. Therefore, based

on this idea, an accurate bias correction is possible.

The rest part of the article is organized as follows. The detail of our proposed method is de-
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scribed in Section 2. Some numerical results are presented in Section 3. Several remarks conclude

the article in Section 4.

2 Proposed Bias-Correction Method

In this section, we describe our proposed bias-correction method in details. First, the observed

image intensity Z(x, y) at a given pixel (x, y) can always be decomposed into two parts: its mean

E(Z(x, y)) and the deviation from the mean Z(x, y)− E(Z(x, y)). In cases when the true image

is contaminated by the Rician noise, Z(x, y) follows the model (2). In such cases, it can be written

as

Z(x, y) = f(m(x, y)) + εm(x, y), (5)

where f(m(x, y)) = E(Z(x, y)) is the non-random mean part, and εm(x, y) = Z(x, y)−E(Z(x, y))

is the zero-mean random part. It should be pointed out that, although it is not explicit in notation,

f(m(x, y)) and εm(x, y) may depend on the noise level σ and the true image intensity m(x, y).

As discussed in Section 1, the denoised image m̃(x, y) by a conventional image denoising

procedure from the observed image Z(x, y) is usually an asymptotically unbiased estimator of

f(m(x, y)) (cf., [2]), which would have an asymptotic bias of f(m(x, y))−m(x, y) for estimating

the true image m(x, y). If the function f has an inverse g = f−1 and g can be properly specified,

then a reasonable bias-corrected estimate of m(x, y) is

m̂(x, y) = g(m̃(x, y)). (6)

From models (2), we have

Z(x, y)

σ
=

√[
m(x, y)

σ
+
N1(x, y)

σ

]2

+

[
N2(x, y)

σ

]2

,
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where N1(x, y)/σ and N2(x, y)/σ are two random variables having the distribution N(0, 1). Let

f1(m(x, y)/σ) be the mean of the term on the right-hand side of the above expression, and εm,1(x, y)

be the deviation of this term from its mean. Then, we have

Z(x, y) = σf1

(
m(x, y)

σ

)
+ σεm,1(x, y).

Clearly, f1(m(x, y)/σ) depends on m(x, y)/σ only. Since t = m(x, y)/σ can be interpreted as

the signal-to-noise ratio (SNR), f1 can also be regarded as a function of SNR. Further, the above

expression and expression (5) imply that f and g have the following properties:

f(tσ) = σf1(t), g(sσ) = σg1(s), (7)

where g1 denotes the inverse function of f1 (i.e., g1 = f−1
1 ), and s = f1(t). Note that these

expressions are valid because f1 is a strictly increasing function (cf., Figure 2(a) below), thus f is

a strictly increasing function as well, and therefore their inverse functions g1 and g both exist. By

(6) and (7), if f1 or g1 can be properly specified, then the bias-corrected estimator of m(x, y) can

be defined by

m̂(x, y) = σ̂g1

(
m̃(x, y)

σ̂

)
, (8)

where σ̂ is a reasonable estimate of σ. Intuitively, m̃(x, y) is asymptotically equal to E(Z(x, y)) =

σf1(m(x, y)/σ); thus, m̂(x, y) in (8) is asymptotically equal to σg1(f1(m(x, y)/σ)) = m(x, y).

Therefore, this approach should work well, as long as m̃(x, y) and σ̂ estimate E(Z(x, y)) and σ

well.

The closed-form formulas of the functions f1 and g1 are difficult to derive. However, their

expressions can be approximated accurately by a numerical approach described as follows. Let

us first discuss the expression of f1(t). Because the image intensity of a real image is always

non-negative, it is reasonable to constrain ourselves to t ≥ 0. For a given t, we can generate ñ
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observed image intensity values by (2), in which m(x, y) is set to be t and N1(x, y) and N2(x, y)

are replaced by two independent random numbers from the standard normal distribution. Then, by

(5), f1(t) can be estimated by the sample mean of the ñ observed image intensity values. When ñ

is chosen large, such an estimate should be accurate by the strong law of large numbers (e.g., [22,

Chapter 5]). For instance, when ñ = 10, 000 and t changes its values in [0, 10] with a step 0.01, the

estimated f1(t) is shown in Figure 2(a) by the dark solid line. From the plot, it can be seen that it is

an increasing function when t ≥ 0, and its value when t = 0 can be easily computed to be 1.253. As

a reference, the light solid line in the plot denotes the identity transformation. As described above,

a conventional image denoising procedure has an asymptotic bias of f(m(x, y)) − m(x, y) =

σ[f1(t)− t]. Therefore, from Figure 2(a), it can be seen that (i) the conventional image denoising

procedure would have positive biases across the entire image, and (ii) the biases is larger at places

with smaller SNR values.

The estimated g1(s), which is obtained from the estimated f1(t) shown in Figure 2(a) by switch-

ing the x and y axes, is shown in Figure 2(b) by the dark solid line. As a comparison, in the

case when σ = 1, the corresponding transformations of the bias correction formulas (3) and (4)

described in Section 1, suggested by Gudbjartsson and Patz [3] and Wiest-Daessle et al. [21],

respectively, are
√
|s2 − 1| and

√
s2 − 2I(s ≥

√
2). They are also displayed in the same plot

by the long-dashed and short-dashed lines, respectively. From the plot, we can see that all three

bias correction methods try to pull down the estimated image intensities of a conventional image

denoising procedure. However, compared to the proposed formula (8), the formula (3) seems not

to correct the bias big enough especially when s ≤ 1, while the formula (4) seems to over-correct

the bias.

In practice, we need to obtain a good estimator σ̂ of σ before we can use formula (8) for bias

correction. To this end, one simple method is to use the sample variance of Z2(x, y) in the back-
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Figure 2: (a) Function f1(t) (dark solid line) estimated by simulation, and the identity transforma-

tion (light solid line). (b) Transformation function g1(s) in the proposed bias correction formula

(8) (dark solid line), the corresponding transformation functions of the formulas (3) and (4) (long-

dashed and short-dashed lines, respectively), and the identity transformation (light solid line).

ground region of an MRI image, because m(x, y) is close to zero in the background and thus the

sample variance of Z2(x, y) in that region would be approximately 4σ4. In the literature, there

are a few alternative methods for estimating σ (e.g., [17–19]); but these methods are more com-

putationally extensive. We checked the numerical performance of our proposed bias-correction

method, and found that its performance using the simple estimator σ̂ described above is similar to

its performance when we pretend that σ is known.

After σ̂ is obtained, we can compute the value of g1(s) with s = m̃(x, y)/σ̂ by an algorithm

similar to the one described above for creating Figure 2(b), after m̃(x, y) is computed by a con-

ventional image denoising procedure. However, if we can derive an explicit formula that provides

a good approximation to the transformation function g1(s), then the use of our proposed bias cor-

rection formula (8) will be greatly simplified. To this end, we suggest approximating g1(s) by the
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first-order regression spline function

β−1 + β0s+
∑̀
j=1

βj(s− vj)+,

where β = (β−1, β0, β1, . . . , β`) are coefficients, (1, s, (s − v1)+, . . . , (s − v`)+) are the basis

functions, (s− v)+ = (s− v) if s ≥ v and 0 otherwise, and (v1, v2, . . . , v`) are the set of selected

knots.

From Figure 2(b), it can be seen that g1(s) is almost straight when s > 2, and it is curved mainly

in cases when s ∈ [1.253, 2]. Therefore, the selected knots should be dense in the region [1.253, 2],

and relatively sparse in the region when s > 2. Also, our numerical study shows that g1(s) can be

simply approximated by s when s > 10, without losing any meaningful approximation accuracy.

So, we constrain ourselves to cases when s ∈ [0, 10]. Based on all these considerations and an

extensive numerical study, we choose the following set of knots:

(1.253, 1.3, 1.4, 1.5, 1.75, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0).

To estimate the above regression spline function in [0, 10], we generate the data in the same

way as we compute the estimated values of g1(s) shown in Figure 2(b), and the estimated values

of g1(s) are used as the observed data of the response variable here. Then, the regression spline

approximation, denoted as ĝS,1(s), has the expression

ĝS,1(s) = β̂−1 + β̂0s+
∑̀
j=1

β̂j(s− vj)+

where β̂ = (β̂−1, β̂0, β̂1, . . . , β̂`) is the least squares estimate of β.

With the knots specified above, the MSE of ĝS,1 in approximating g1, defined to be

MSE =
1

1000

1000∑
i=1

[
ĝS,1

(
1.253 +

i(10− 1.253)

1000

)
− g1

(
1.253 +

i(10− 1.253)

1000

)]2

,

is 2.273× 10−4, where the function g1 is the one shown in Figure 2(b). When choosing the knots,

we actually performed extensive simulations with many different sets of finer knots. With a set
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of finer knots, the improvement in the MSE is typically smaller than 10−6, and the improvement

in the MISE of the bias-corrected denoised image m̂(x, y) in (8) (see the definition of MISE in

Section 3) is typically smaller than one-fifth of the standard error of the MISE. For these reasons,

we think that the set of knots specified above is good enough for applications, and it is used in all

numerical examples in Section 3.

In the formula (4) suggested by Wiest-Daessle et al. [21], a threshold value
√

2 is used for

the ratio m̃(x, y)/σ. In cases when m̃(x, y)/σ <
√

2, that formula simply defines the corrected

image intensity to be 0. We have studied the legitimacy of the inclusion of such a threshold value

in our research, and found that the threshold value is indeed necessary, for the following reason.

In a typical MRI image, pixels with lower SNR values are usually located in the background

regions, and it is thus reasonable to set the corrected image intensities at such pixels to be 0. We

performed many numerical studies, and found that inclusion of a threshold value T in the range

of [
√

2, 1.5] would generally improve the quality of the bias-corrected MRI images (see numerical

results reported in Section 3). From Figure 2(b), “T =
√

2” corresponds to the corrected SNR

m̂(x, y)/σ of about 0.7, and “T = 1.5” corresponds to the corrected SNR of about 0.9. Based on

all the considerations described above, we suggest using the following formula for approximating

g1(s):

ĝ1(s) =


0, when s < T

ĝS,1(s), when T ≤ s ≤ 10

s, when s > 10,

(9)

where T is a threshold value. Then, by our proposed approach, bias correction of the denoised

image m̃(x, y) of a conventional image denoising procedure can be accomplished by using (8),

after g1 is replaced by ĝ1 defined in (9).
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3 Numerical Studies

In this section, we present some numerical examples to investigate the performance of our proposed

bias-correction formulas (8)-(9), denoted as NEW, in comparison with two commonly used bias-

correction methods in practice: the normal approximation formula (3), denoted as GP, and the

moment-based formula (4), denoted as WD. Both formulas (3) and (4) are described in Section 1.

The performance of all three bias-correction methods is evaluated using three popular conventional

image denoising methods: the total variance (TV) procedure by Rudin et al. [9], the anisotropic

diffusion (AD) procedure by Perona and Malik [10], and the optimized non-local means (ONLM)

algorithm by Coupe et al. [20]. For TV and AD, the MATLAB codes presented by Getreuer

[23] and Lopes [24] are used. To evaluate the performance of a bias-correction method, we use

the standard criterion of the estimated mean integrated squared error (MISE), defined as follows.

Let m(x, y) be the true image and m̂(x, y) be the bias-corrected estimate of m(x, y). Then, the

integrated squared error is estimated by

ISE =
1

N

∑
(x,y)

[m̂(x, y)−m(x, y)]2 ,

where N denotes the total number of pixels and
∑

(x,y) denotes the summation over all pixels.

Then, the MISE is estimated by the sample mean of the 100 ISE values computed from 100 repli-

cated simulations. By this criterion, the bias-correction method performs better if its MISE value

is smaller. The MISE value provides a measure of the overall performance of the denoised image

m̂(x, y) for estimating the true image m(x, y). For comparing different bias-correction methods,

it is also natural to consider the criterion

ABIAS =
1

N

∑
(x,y)

∣∣∣m̂(x, y)−m(x, y)
∣∣∣ ,
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where m̂(x, y) is the sample mean of 100 m̂(x, y) values computed from 100 replications. Because

m̂(x, y) is an estimate of E(m̂(x, y)), ABIAS is just the averaged absolute bias of the denoised

image m̂(x, y) for estimating the true image m(x, y). Note that the absolute bias |m̂(x, y) −

m(x, y)|, instead of just the bias (m̂(x, y) − m(x, y)), is used in the above definition of ABIAS

to avoid cancellation of positive and negative biases at different places of the image. In the bias-

correction literature, another popular criterion is the “contrast” of an image, defined to be the

difference between the intensities of the brightest and the darkest pixels (cf., [20]). The rationale

of this criterion is that the estimation bias caused by the Rician noise would decrease the image

contrast. So, by this criterion, a bias-correction method performs better if the contrast of its bias-

corrected image is larger. However, the contrast defined above is sensitive to outliers. To make it

more robust to outliers, in this paper, we use the trimmed contrast, defined to be the contrast of an

image, after its 1% largest and 1% smallest intensities are removed.

We first use two MRI images of a brain and an ankle as test images. The brain image has

350 × 350 pixels, and the ankle image has 432 × 432 pixels. In both images, the intensity values

range from 0 to 255. We then add the Rician noise of two different levels σ = 40 and σ = 60 to

the test images (cf., model (2)). The true and noisy test images are presented in Figures 3 and 4.

Figure 3: The true brain test image and its two noisy versions with σ = 40 and 60.

We then apply the denoising methods TV, AD, and ONLM to various test images, and then
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Figure 4: The true ankle test image and its two noisy versions with σ = 40 and 60.

use the bias-correction methods NEW, GP, and WD to correct biases of the denoised images.

When using the method NEW, the noise level estimate σ̂ used in (8) is computed using the method

described in Section 2, based on the first [1, 32]×[1, 32] pixels of each image which should be all in

background regions. We tried several different background regions for computing σ̂, and found that

σ̂ is not sensitive to the choice of the background regions. In the procedures GP and WD, a similar

estimate to σ̂ is obtained from a background region, and is used in the bias-correction formulas (3)

and (4). For each pair of the denoising and bias-correction methods, the procedure parameters are

chosen to minimize the estimated MISE value of the bias-corrected image. For the method NEW,

four values of the threshold T are considered (cf., formula (9)). They are 1.253,
√

2, 1.5, and

1.55. The four versions with these four threshold values are denoted as NEW1, NEW2, NEW3,

and NEW4, respectively. The estimated MISE values and their standard errors, the estimated

ABIAS values, and the sample mean values of the trimmed contrasts and their standard errors are

presented in Tables 1 and 2. To compare two methods with respect to the performance measure

MISE, if their estimated values of MISE are MISE1 and MISE2 with standard errors SE1 and

SE2, respectively, and MISE1 < MISE2, then a practical guideline commonly used in practice

is that we can conclude that the method 1 is significantly better than the method 2 in cases when

MISE2 −MISE1 > ν(SE1 + SE2), where ν > 0 is a given number. In practice, people often
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choose ν from the interval [1, 2]. We can make similar comparisons using the standard errors of

the estimated trimmed contrasts.

From Table 1, we can have the following conclusions. First, the bias-correction procedure

NEW3 is better than its peers GP and WD in all cases in terms of the MISE criterion. Second, the

bias-correction procedures NEW2, NEW3, and NEW4 are better than its peers GP and WD in all

cases in terms of the ABIAS criterion. Third, all four versions of NEW are better than GP and WD

in all cases in terms of the trimmed contrast. Fourth, NEW2 and NEW3 are generally better than

NEW1 and NEW4, and it seems that, NEW3 is slightly better when the noise level is relatively

low (i.e., σ = 40), and NEW2 is slightly better when the noise level is relatively high (i.e., σ = 60)

except the case with AD in terms of MISE. Similar conclusions can be obtained from the results

in Table 2.

As discussed in Section 2, the function g1(s) is defined in the interval [1.253,∞) (cf., Figure

2(b)). So, the version NEW1, in which T = 1.253, is the same as the proposed method NEW

without using the threshold value T (cf., the definition of ĝ1(s) in (9)). From the results in Tables

1 and 2, it seems that it helps by using the threshold value T , since NEW2, NEW3 and NEW4 are

better than NEW1 in all cases considered, except the case when σ = 60 in Table 2 where NEW4

is worse than NEW1 in terms of MISE and the trimmed contrast. As pointed out in the paragraph

containing the expression (9) in Section 2, the main purpose to use the threshold value T is for

handling pixels in the background. When the estimated SNR at a given pixel is low, the pixel is

most probably a background pixel and thus it is reasonable to set its bias-corrected image intensity

to be 0. When T is chosen large, it is possible that many foreground pixels would be mistakenly

treated as background pixels. On the other hand, when T is chosen small, it is possible that many

background pixels would be treated as foreground pixels and receive positive intensity values after

bias-correction. It is easy to check that the corresponding threshold values on the estimated SNR
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Table 1: Performance of the methods in the brain image example. In each cell, the first row

presents the estimated MISE value and its standard error (in parenthesis), the second row presents

the estimated ABIAS value, and the third row presents the estimated trimmed contrast and its

standard error. All results are based on 100 random simulations.

σ = 40 σ = 60

Method TV AD ONLM TV AD ONLM

607.7 (37.4) 608.0 (30.9) 592.7 (34.1) 1354.0 (95.0) 1312.0 (87.9) 1305.1 (81.6)

GP 20.0 19.3 19.2 30.5 29.0 29.1

204.5 (1.7) 217.3 (1.6) 224.2 (2.0) 182.6 (2.8) 199.3 (2.6) 212.2 (3.2)

161.4 (6.5) 179.7 (3.7) 172.5 (5.2) 327.8 (26.1) 380.6 (28.1) 373.0 (29.8)

WD 6.4 6.3 6.1 10.2 10.2 10.0

224.2 (1.1) 224.8 (1.0) 234.5 (1.0) 210.6 (1.8) 207.2 (1.6) 227.3 (1.8)

203.2 (38.9) 249.7 (31.9) 228.5 (32.2) 366.0 (75.6) 469.7 (70.4) 441.7 (74.6)

NEW1 7.9 8.6 8.2 11.4 12.1 11.7

227.5 (1.0) 227.7 (1.0) 237.6 (1.0) 218.1 (1.6) 215.1 (1.4) 234.4 (1.6)

152.4 (5.5) 197.6 (23.3) 173.7 (15.4) 271.3 (23.4) 360.4 (34.9) 328.4 (28.1)

NEW2 5.2 5.3 4.8 7.1 6.8 6.4

227.6 (1.1) 228.1 (1.0) 237.6 (1.0) 218.3 (1.7) 214.8 (1.5) 234.4 (1.6)

149.9 (2.3) 171.4 (9.0) 162.0 (4.3) 275.8 (12.0) 341.6 (11.4) 339.9 (16.4)

NEW3 5.1 4.9 4.7 7.0 6.2 6.5

227.4 (1.0) 227.9 (0.9) 237.5 (1.0) 217.9 (1.6) 214.7 (1.4) 234.2 (1.7)

151.6 (2.4) 167.6 (3.5) 164.1 (3.4) 297.4 (20.9) 359.2 (17.0) 376.4 (29.3)

NEW4 5.1 4.9 4.7 7.1 6.6 6.8

227.5 (1.0) 227.9 (1.0) 237.6 (1.0) 218.2 (1.6) 215.0 (1.4) 234.4 (1.6)
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Table 2: Performance of the methods in the ankle image example. In each cell, the first row

presents the estimated MISE value and its standard error (in parenthesis), the second row presents

the estimated ABIAS value, and the third row presents the estimated trimmed contrast and its

standard error. All results are based on 100 random simulations.

σ = 40 σ = 60

Method TV AD ONLM TV AD ONLM

531.9 (33.8) 540.9 (30.2) 538.8 (27.0) 1166.5 (81.3) 1166.9 (72.2) 1162.4 (67.2)

GP 18.4 18.6 18.7 28.6 28.2 28.1

219.4 (2.0) 231.3 (1.9) 228.5 (1.7) 202.5 (2.4) 220.0 (2.4) 217.1 (2.8)

198.9 (8.0) 215.0 (5.3) 222.7 (6.2) 381.1 (47.1) 410.4 (29.1) 433.2 (35.3)

WD 7.7 8.1 8.4 11.3 11.8 12.0

238.6 (0.8) 238.4 (0.7) 238.7 (0.8) 231.0 (1.2) 231.8 (1.1) 233.1 (1.3)

218.5 (26.0) 257.5 (22.3) 252.3 (21.5) 352.5 (55.1) 462.9 (55.2) 439.0 (53.0)

NEW1 8.1 9.2 8.9 11.0 12.1 12.0

241.5 (0.8) 241.7 (0.7) 241.7 (0.8) 238.1 (1.0) 239.0 (0.8) 240.1 (1.2)

187.7 (6.5) 229.5 (16.2) 221.0 (10.2) 297.8 (10.6) 390.1 (24.8) 380.2 (13.9)

NEW2 6.8 7.3 7.4 8.7 9.2 9.3

241.8 (0.6) 241.6 (0.6) 241.7 (0.8) 238.2 (1.1) 239.0 (0.8) 240.1 (1.2)

188.2 (2.2) 211.1 (6.7) 214.1 (2.9) 335.7 (25.7) 409.9 (18.7) 428.7 (30.9)

NEW3 6.8 7.3 7.5 9.0 9.8 10.0

241.5 (0.7) 241.4 (0.6) 241.7 (0.8) 237.8 (1.0) 238.7 (0.9) 239.9 (1.2)

192.8 (4.0) 210.5 (4.3) 217.3 (3.6) 401.5 (53.2) 464.0 (43.3) 495.1 (47.4)

NEW4 6.9 7.4 7.6 9.8 10.4 10.9

241.7 (0.7) 241.6 (0.6) 241.7 (0.8) 238.0 (1.1) 238.9 (0.8) 240.1 (1.2)
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are 0, 0.7, 0.9, and 1 in cases when T = 1.253,
√

2, 1.5, and 1.55. In our numerical studies, we

actually tried many other values of T . In all the examples considered, we found that the results

always got worse than those of NEW4 when T was chosen larger than 1.55, and the results were

between those of NEW1 and NEW2 when T was chosen between 1.253 and
√

2. Based on these

results and the results in Tables 1 and 2, it seems that the results are reasonably good when T is

chosen in the range [
√

2, 1.5]. In cases when the noise level is low, T should be chosen close to

the right end of this interval, and it should be chosen close to the left end of the interval when the

noise level is high. In cases when we are not sure about the noise level in a specific application,

we suggest choosing T = 1.5, which is used in all examples below. From these examples, it can

be seen that our proposed method using this T value performs well.

The bias-corrected denoised images of the noisy brain image with σ = 40 (cf., the middle

panel in Figure 3) are shown in Figure 5, in which rows 1–3 present the denoised images by TV,

AD and ONLM, and columns 1–3 present the bias-corrected denoised images by GP, WD and

NEW3. Row 4 shows the deviation images defined to be (bias-corrected denoised image - true

image) by the denoising procedure TV and by the bias-correction procedures GP, WD and NEW3,

respectively. From the bias-corrected denoised images, it can be seen that the ones corrected by

NEW3 are slightly sharper than the others. The deviation images show that the bias-corrected

denoised image by NEW3 has the smallest deviation, compared to the images corrected by the

other two procedures, although the difference between the second and the third images is small.

Figure 6 shows the corresponding results for the ankle test image. Similar conclusions to those

described above can be made from the results shown in Figure 6.

In the above example, the Rician noise is assumed to have a constant noise level in an entire

observed image. In practice, the noise level may change spatially. Next, we consider a case when

the Rician noise with a variable level is added to the ankle image, and the variable noise level is
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Figure 5: Bias-corrected denoised images in the brain image example with σ = 40. Rows 1-3

presents the denoised images by denoising procedures TV, AD and ONLM. Columns 1-3 presents

the bias-corrected denoised images by procedures GP, WD and NEW3. Row 4 shows the bias

images defined to be (bias-corrected denoised image - true image) by the denoising procedure TV

and by the bias-correction procedures GP, WD and NEW3, respectively.
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Figure 6: Bias-corrected denoised images in the ankle image example with σ = 40. Rows 1-3

presents the denoised images by denoising procedures TV, AD and ONLM. Columns 1-3 presents

the bias-corrected denoised images by procedures GP, WD and NEW3. Row 4 shows the bias

images defined to be (bias-corrected denoised image - true image) by the denoising procedure TV

and by the bias-correction procedures GP, WD and NEW3, respectively.
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specified by

σ(x, y) = 20 + 40 exp
(
−(x− 0.5)2/4− (y − 0.5)2/4

)
.

One noisy ankle image with this variable noise level is shown in the left panel of Figure 7, and

the three bias-corrected versions by GP, WD, and NEW3 of the denoised image by TV are shown

by the three images in the first row of Figure 8, respectively. The deviation images of the three

bias-corrected versions are shown in the second row of Figure 8. From these images, it can be

seen that the bias-corrected image by NEW3 is sharper than the other two bias-corrected images,

and the pattern in its deviation image seems to be weaker than those in the other two deviation

images. The estimated MISE values and their standard errors, the estimated ABIAS values, and

the estimated trimmed contrasts and their standard errors, based on 100 replications, are presented

in the upper part of Table 3. From the table, it can be seen that NEW3 is better than GP and WD

in this case by all three performance evaluation criteria.

Figure 7: The left panel shows a noisy version of the ankle test image with a variable noise level

across the image, and the right panel shows another noisy version of the same test image with

spatially correlated Rician noise.

In all the above examples, the Rician noise is assumed independent at different pixels. In

practice, the Rician noise might be spatially correlated. In such cases, the expression (2) still

holds, except that N1(x, y) and N2(x, y) might be spatially correlated. It can be checked that all
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Figure 8: Images in the first row show the three bias-corrected versions by GP, WD, and NEW3

of the denoised image by TV in cases when the observed image is the one shown in the left

panel of Figure 7 with variable noise level. Images in the second row show the corresponding

deviation images. Images in the third and fourth rows are the corresponding results in cases when

the observed image is the one shown in the right panel of Figure 7 with spatially correlated Rician

noise.
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Table 3: Performance of the bias-correction methods GP, WD, and NEW3 in the ankle image ex-

ample, in cases when the noise level is spatially variable and when the noise is spatially correlated.

In each cell, the first row presents the estimated MISE value and its standard error (in parenthe-

sis), the second row presents the estimated ABIAS value, and the third row presents the estimated

trimmed contrast and its standard error. All results are based on 100 random simulations.

GP WD NEW3

1192.0 (73.2) 305.0 (17.3) 303.9 (6.0)

Variable σ 28.8 9.5 8.5

205.2 (1.9) 234.6 (1.1) 240.3 (1.0)

536.0 (28.3) 199.9 (7.7) 187.9 (2.3)

Correlated noise 18.6 7.7 6.8

219.1 (1.8) 238.5 (0.8) 241.6 (0.7)

arguments about our proposed bias-correction method given in Section 2 are valid in this case.

Therefore, we expect our method still performs well. To confirm this, in the next example, we

consider adding spatially correlated Rician noise to the ankle test image, and investigating the

performance of our proposed method which does not take into account such a spatial correlation in

its construction. The spatial correlation in the Rician noise is described as follows. In model (2),

we assume that for any pixel (x, y),

Cov (N1(x, y), N1(x′, y′)) =


402 if (x, y) = (x′, y′)

0.8× 402 if |x− x′| = 1 or |y − y′| = 1

0 otherwise.

Namely, N1(x, y) is spatially correlated with the corresponding noise at the four closest pixels of
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(x, y), and independent of the noise at other pixels. The spatial correlation structure of N2(x, y) is

assumed the same as that of N1(x, y). One observed noisy test image is shown in the right panel

of Figure 7, the three bias-corrected versions by GP, WD, and NEW3 of the denoised image by

TV are shown by the three images in the third row of Figure 8, respectively, and the deviation

images of the three bias-corrected versions are shown in the fourth row of Figure 8. Again, the

bias-corrected image by NEW3 looks sharper than the other two bias-corrected images, and the

pattern in its deviation image seems weaker than those in the other two deviation images. The

estimated MISE values and their standard errors, the estimated ABIAS values, and the estimated

trimmed contrasts and their standard errors, based on 100 replications, are presented in the lower

part of Table 3. From the table, it can be seen that NEW3 is better than GP and WD in this case by

all three evaluation criteria as well.

Next, we consider a real noisy MRI image shown in Figure 9, which was also used by Marjón

et al. [25]. This image has 205 × 205 pixels with the image intensities in the range [0, 255]. In

this case, because the true image is unknown, the MISE and ABIAS criteria cannot be used here

and the trimmed contrast is the only criterion that we can compute. For the three bias-correction

methods GP, WD, and NEW3, their parameters are chosen to maximize the trimmed contrast. The

results of their trimmed contrasts are summarized in Table 4. From the table, it can be seen that

NEW3 is better than GP and WD in all cases. Their bias-corrected denoised images are shown in

Figure 10.

Since we do not know the ground truth of a real MRI image, it is difficult to make thorough

comparisons among the competing methods. Next, we downloaded a noiseless T1-weighted 3-D

brain phantom image from the BrainWeb database ([26–30]) with 40% intensity non-uniformity,

and considered one slice of that image for the purpose of comparisons. We consider intensity

non-uniformity here because it is more realistic ([26–30]). Literature ([20], [26–30]) showed that
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Figure 9: A real noisy MRI image with 205× 205 pixels.

Table 4: Estimated trimmed contrasts of the bias-correction methods GP, WD, and NEW3 in the

real noisy MRI image example.

GP WD NEW3

TV 212.9 218.2 220.2

AD 224.3 229.8 231.7

ONLM 225.2 231.0 233.0

0%− 9% Rician noise was common in real applications, although sometimes it was reasonable to

assume the noise to be as high as about 20% ([20]). By x% Rician noise we mean σ is x% of the

image contrast. In our simulations, we considered 3%, 5%, 9% and 20% Rician noise. The selected

slice of the noiseless phantom and its noisy versions are shown in Figure 11. This slice contains

217× 181 pixels, and the image intensity levels range from 0 to 1155. The bias-corrected versions

by GP, WD, and NEW3 of the denoised image by TV in the case with 3% Rician noise are shown

in the first row of Figure 12. The corresponding deviation images are shown in the second row of

the figure, from which it seems that the deviation image by NEW3 has the weakest pattern.

We then repeated the simulation 100 times. Table 5 presents the estimated MISE values and
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Figure 10: Bias-corrected denoised images in the real noisy MRI image example. Rows 1-3

presents the denoised images by denoising procedures TV, AD and ONLM. Columns 1-3 presents

the bias-corrected denoised images by procedures GP, WD and NEW3.
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Figure 11: A noiseless brain phantom image with 40% intensity non-uniformity (1st panel), and

its four noisy versions with 3% (2nd panel), 5% (3rd panel), 9% (4th panel), and 20% (5th panel)

Rician noise.

Figure 12: Images in the first row show the three bias-corrected versions by GP, WD, and NEW3 of

the denoised image by TV in the case when the observed image is the one shown in the 2nd panel

of Figure 11 with 3% Rician noise. Images in the second row show the corresponding deviation

images.
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their standard errors, the estimated ABIAS values, and the estimated trimmed contrasts and their

standard errors. It can be seen from the table that NEW3 uniformly outperforms GP and WD in

terms of both ABIAS and the trimmed contrast. In terms of MISE, NEW3 outperforms GP in all

cases, it outperforms WD when the noise level is 3% and 20%, and it is slightly worse than WD

when the noise level is 5% and 9%.

4 Conclusions

We have presented a bias-correction method for removing the bias caused by the Rician noise

that is commonly seen in observed MRI images. Our method is based on a direct expression

of the estimation bias using the function f1, and on a Monte Carlo approximation to its inverse

function g1 (cf., formulas (5)–(8)). An explicit formula for approximating the function g1 is also

provided, using the first-order regression spline smoothing. Therefore, its bias-corrected denoised

image m̂(x, y) in (8) can be easily computed. Numerical studies show that it performs well in

applications, compared to its peers GP and WD (cf., the formulas (3) and (4)).
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Table 5: Performance of the bias-correction methods GP, WD, and NEW3 on the denoised im-

ages by TV when the experiments are done on the brain phantom image with 40% intensity non-

uniformity and noise levels of 3%, 5%, 9%, and 20%. In each entry, the first row presents the

estimated MISE value and its standard error (in parenthesis), the second row presents the esti-

mated ABIAS value, and the third row presents the estimated trimmed contrast and its standard

error. All results are based on 100 replicated simulations.

GP WD NEW3

473.0 (20.0) 426.6 (11.8) 417.7 (6.9)

3% Rician noise 11.1 8.4 7.6

784.5 (3.3) 788.7 (2.9) 790.8 (2.9)

1226.7 (64.0) 855.3 (12.9) 859.6 (13.7)

5% Rician noise 20.4 11.4 10.5

764.6 (5.9) 783.0 (2.8) 788.7 (2.9)

5980.4 (173.5) 1944.7 (36.4) 1967.8 (33.1)

9% Rician noise 59.2 19.7 17.8

673.6 (7.6) 774.9 (3.6) 781.4 (3.9)

14369.0 (700.7) 6813.7 (498.3) 6094.2 (223.2)

20% Rician noise 86.4 48.5 33.9

649.7 (14.9) 739.2 (8.4) 772.0 (7.9)
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