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Abstract

Image denoising is important in image analysis. It is often used for pre-processing

images so that subsequent image analysis is more reliable. Besides noise removal, one

important requirement for image denoising procedures is that they should preserve true

image structures, such as edges. This paper proposes a novel denoising procedure which

can preserve edges and major edge features (e.g., angles of the edges). Our method is

based on nonparametric estimation of a discontinuous surface from noisy data, in the

framework of jump regression analysis, because a monochrome image can be regarded

as a surface of the image intensity function and such a surface has discontinuities at the

outlines of objects. Numerical studies show that this method works well in applications,

compared to some existing image denoising procedures.

Key Words: Angles, curvature, edges, jump-preserving surface estimation, local smooth-

ing, nonparametric regression, surface estimation.

1 Introduction

Image denoising is often used for pre-processing images so that subsequent image analysis

is more reliable (Gonzalez and Woods 1992). Besides noise removal ability, another im-

portant requirement for image denoising procedures is that true image structures, such as

edges, should be preserved in the denoising process. In this paper, we handle the image

denoising problem in the framework of jump regression analysis (JRA), which is a research

area handling regression models involving jumps and discontinuities (Qiu 2005). In this
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framework, image denoising can be accomplished by estimating a discontinuous surface

from noisy data, because a monochrome image can be regarded as a surface of the image

intensity function and such a surface has discontinuities at the outlines of objects. A novel

procedure is suggested in this paper for estimating discontinuous surfaces from noisy data,

which can preserve edges and major edge features (e.g., angles of the edges).

In the literature, there are some existing procedures for image denoising and restoration.

One group of methods are based on Bayesian estimation, using Markov random field (MRF)

modeling and maximum a posteriori (MAP) algorithms (e.g., Besag 1974, 1986, Fessler et

al. 2000, Geman and Geman 1984, Godtliebsen and Sebastiani 1994, Marroquin et al.

2001, Moussouris 1974). Some closely related methods use the regularization approach, by

minimizing certain objective function that enforces a roughness penalty in addition to a term

measuring fidelity of an estimator to the data (e.g., Li 1995, Rivera and Marroquin 2002).

Image denoising by median filtering and robust estimation is a popular pre-smoothing tool

in image processing, because it has certain ability of preserving edges when removing noise

(e.g., Brownrigg 1984, Gallagher and Wise 1981, Hillebrand and Müller 2007, Sun et al.

1994). Other image restoration procedures include adaptive smoothing filters (e.g., Polzehl

and Spokoiny 2000, Saint-Marc et al. 1991), bilateral filtering procedures (e.g., Chu et al.

1998, Tomasi and Manduchi 1998), diffusion filtering procedures (e.g., Barash 2002, Perona

and Malik 1990), wavelet transformation procedures (e.g., Chan et al. 2000, Figueiredo

and Nowak 2001, Nason and Silverman 1994, Portilla et al. 2003), discontinuity-preserving

surface estimation procedures (e.g., Gijbels et al. 2006, Qiu 1998, 2004, 2009, Sinha and

Schunck 1992, Yi and Chelberg 1995), among some others. See Qiu (2007) for a more

detailed discussion on this topic.

Most image denoising and jump surface estimation procedures mentioned above have

ability in preserving edges at places where the edge curvature is not large. At places where

the edges have angles or where their curvature is large, however, such edges are often

blurred or rounded by these existing methods (cf., some numerical examples in Section
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3). One major reason why this would happen is that the edge structures (e.g., angles)

are hidden in observed image intensities, they are not easy to describe and measure (cf.,

Chabat et al. 1999, Yang et al. 1996), and they are even more difficult to accommodate

in the image denoising process (cf., Gijbels et al. 2006). In our opinion, edge structures

are an important part of images, because they often denote major characteristics of image

objects, and are easier to capture our visual attention than the parts of the edges with

relatively small curvature. Therefore, they should be preserved during image denoising. In

other words, a good image denoising procedure should preserve not only the parts of the

edges with small curvature but also certain major edge structures, such as angles, corners,

and other places on the edges with large curvature, although the latter goal is much more

challenging than the former.

In this paper, an image denoising procedure is suggested, which can preserve edges and

major edge structures well. Our method is based on JRA, and consists of three major steps,

outlined below. First, edge pixels are detected in the whole design space by an edge detector.

Second, in a neighborhood of a given pixel, a piecewise linear curve is estimated from the

detected edge pixels by a simple but efficient algorithm, to approximate the underlying edge

segment in that neighborhood. Finally, observed image intensities on the same side of the

estimated edge segment, as the given pixel, are averaged by the local linear kernel smoothing

procedure (cf., Fan and Gijbels 1996), for estimating the true image intensity at the given

pixel. This proposed image denoising procedure is described in detail in Section 2. Some

numerical examples are presented in Section 3, for evaluating its numerical performance, in

comparison with several existing denoising procedures. Some remarks conclude the article

in Section 4.

2 Methodology

We present our proposed methodology in three parts. In Section 2.1, 2-D local quadratic

kernel (LQK) smoothing and a corresponding edge detection procedure is introduced. Local
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approximation to edge segments and edge-structure-preserving local denoising are described

in Section 2.2. Data driven parameter selection is discussed in Section 2.3.

2.1 Edge detection by LQK smoothing

As discussed in Section 1, the first step of the proposed image denoising procedure is to

detect edge pixels using an edge detector. Theoretically speaking, any reasonable edge

detector can be used here. In the literature, most existing edge detectors are based on

estimation of the first-order derivatives (e.g., Canny 1986, Fleck 1992, Qiu 2002, Qiu and

Bhandarkar 1996) or the second-order derivatives (e.g., Clark 1989, Torre and Poggio 1986)

of the image intensity function. Recently, Sun and Qiu (2007) propose an edge detector that

combines the major strengths of the two types of edge detectors, by using both the first-

order and the second-order derivatives of the image intensity function. This edge detector

will be used in all numerical examples of this paper, and it is briefly described below.

Assume that observed image intensities {Zij , i, j = 1, 2, . . . , n} follow the following 2-D

regression model:

Zij = f(xi, yj) + εij , for i, j = 1, 2, . . . , n, (1)

where {(xi, yj), i, j = 1, 2, . . . , n} are equally spaced pixel locations, f is the unknown image

intensity function, and {εij , i, j = 1, 2, . . . , n} are independent and identically distributed

(i.i.d.) random errors with mean 0 and unknown variance σ2. At a given pixel (x, y), let

us consider a circular neighborhood O∗(x, y) = {(u, v) :
√

(u − x)2 + (v − y)2 ≤ h∗

n}, where

h∗

n > 0 is a bandwidth parameter. Then, LQK smoothing is accomplished by

min
a,b,c,d,e,f

∑

(xi,yj)∈O∗(x,y)

{Zij−[ a + b(xi − x) + c(yj − y) + d(xi − x)(yj − y) +

e(xi − x)2 + f(yj − y)2
]}2

K

(
xi − x

h∗
n

,
yj − y

h∗
n

)
, (2)

where K is a radially symmetric, bivariate density kernel function with support {(x, y) :

x2 + y2 ≤ 1}. The solution to a of the minimization problem (2) can be used as an
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estimator of the intensity f(x, y), the solution to (b, c)′ as an estimator of the gradi-

ent vector G(x, y) = (fx(x, y), fy(x, y))′, and the solution to (e, f)′ as an estimator of

(fxx(x, y), fyy(x, y))′. These estimators, denoted as f̂(x, y), f̂x(x, y), f̂y(x, y), f̂xx(x, y), and

f̂yy(x, y), are called LQK estimators in the literature (e.g., Fan and Gijbels 1996). Along the

estimated gradient direction Ĝ(x, y) = (f̂x(x, y), f̂y(x, y))′, if (x, y) is on an edge segment,

then Ĝ(x, y) would have large Euclidean length and (f̂xx(x, y), f̂yy(x, y))′ would have the

zero-crossing properties that they are zero at (x, y) and change signs on two different sides

of the edge segment. See Figure 1 for a demonstration in one-dimensional cases. Then,

a point (x, y) is flagged as a detected edge pixel if

√
f̂x

2
(x, y) + f̂y

2
(x, y) is larger than

a threshold value un and f̂xx + f̂yy demonstrates the zero-crossing properties in O∗(x, y).

A formula for the threshold value is derived in Sun and Qiu (2007), which depends on a

significance level αn. In all our numerical examples presented in Section 3, αn is fixed at

0.01.
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Figure 1: (a): 1-D profile of the image intensity surface around an edge segment. (b):

First-order derivative of the 1-D profile. (c): Second-order derivative of the 1-D profile.
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2.2 Edge structure preserving image denoising

Detected edge pixels are identified after the edge detection step discussed in the previous

part. In this part, we describe the remaining two steps of the proposed image denoising

procedure. At a given pixel (x, y), we consider its circular neighborhood

O(x, y) = {(u, v) :
√

(u − x)2 + (v − y)2 ≤ hn},

where hn > 0 is a bandwidth parameter which could be different from h∗

n used in (2).

Detected edge pixels in O(x, y) are denoted by {(wk, vk), k = 1, 2, . . . ,m}. Our major goal

here is to estimate f(x, y) from observations in O(x, y) with possible edges preserved.

From (2), the estimated gradient at a detected edge pixel (wk, vk) is Ĝ(wk, vk), for

k = 1, 2, . . . ,m. Intuitively, if the underlying edge curve in O(x, y) contains an angle, then

gradients of f along its two rays would point to two different directions. Therefore, in such

cases, we would expect that the estimated gradients {Ĝ(wk, vk), k = 1, 2, . . . ,m} can be

divided into two groups, each group corresponds to a ray of the angle, and the estimated

gradients in each group would vary around the perpendicular direction of the corresponding

ray. See Figure 2 for a demonstration.

To estimate the edge curve in O(x, y), we propose an algorithm with the following steps.

1. Compute the simple average of {Ĝ(wk, vk), k = 1, 2, . . . ,m}, denoted as G(x, y).

2. Divide {(wk, vk), k = 1, 2, . . . ,m} into two groups E = {(wk, vk) : θ(Ĝ(wk, vk), G(x, y)) ≤

0} and Ec = {(wk, vk) : θ(Ĝ(wk, vk), G(x, y)) > 0}, where θ(~u,~v) ∈ [−π/2, π/2] de-

notes the angle from vector ~u to vector ~v.

3. Compute the line L that goes through the center of E in the perpendicular direction

of GE(x, y), where GE(x, y) is the average of the estimated gradients in E.

4. Compute the line Lc that goes through the center of Ec in the perpendicular direction

of GEc(x, y), where GEc(x, y) is the average of the estimated gradients in Ec.
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Figure 2: The small dots denote detected edge pixels in O(x, y), and the dashed line denotes

the true edge curve which contains an angle. The vertical arrow in the middle denotes

G(x, y), and the two arrows on its two sides denote two typical estimated gradients of f

along the two rays of the angle.

5. Assume that L and Lc cross at point A. If A is located outside of O(x, y), then the two

line segments of L and Lc inside O(x, y) are used for estimating the edge segments in

O(x, y). In the case when A is located inside of O(x, y), L and Lc is each divided into

two half lines by A, and O(x, y) is divided into four parts by the half lines. The two

half lines, one on each of L and Lc, that contain the centers of E and Ec, respectively,

are selected for estimating the edge curve in O(x, y). Obviously, the two selected half

lines form an angle with vertex A.

The estimated edge segment(s) by the above algorithm divides O(x, y) into two or three

parts, depending on whether or not the point A defined in step 5 is located inside O(x, y).

The part containing the given pixel (x, y) is denoted as B(x, y). Then, the estimator of

f(x, y), denoted as f̂(x, y), can be defined by the solution to a of the following minimization

problem:

min
a,b,c∈R

∑

(xi,yj)∈B(x,y)

{Zij − [a + b(xi − x) + c(yj − y)]}2 K

(
xi − x

hn

,
yj − y

hn

)
. (3)

Obviously, f̂(x, y) is the local linear kernel (LLK) estimator of f(x, y), constructed from

observations in the one-sided neighborhood B(x, y).
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Next, we propose a modification to improve the performance of the proposed denoising

procedure (3) and to simplify its computation as well. In regions where the true image

intensity function f is continuous, it is desirable to use a larger bandwidth to construct an

estimator of f , compared to the bandwidth used around true edges, so that the estimator is

better in removing noise. To this end, at a given pixel (x, y), we first consider a neighborhood

Õ(x, y) = {(u, v) :
√

(u − x)2 + (v − y)2 ≤ h̃n} with a larger bandwidth h̃n (> hn). In

Õ(x, y), if the number of detected edge pixels is so small that it is unlikely to have a true

edge segment in it, then we do not implement the last two steps of the proposed denoising

procedure described above. In such cases, we can simply define f̂(x, y) to be the conventional

LLK estimator in Õ(x, y), which is the solution to a of the minimization problem (3), after

B(x, y) is replaced by Õ(x, y). To do so, there are at least two major benefits. One is that

f̂(x, y) is defined using all pixels in Õ(x, y) in such cases; its denoising ability is thus greatly

improved, compared to the estimator constructed in B(x, y). The second benefit is that

computation involved is greatly simplified. For a typical observed image, there are many

pixels at which no edge segments exist in their neighborhoods. Therefore, the above two

benefits are substantial. In all numerical examples presented in next section, if the number

of detected edge pixels is smaller than or equal to [nh̃n], where [x] denotes the integer part

of x, then we define f̂(x, y) to be the conventional LLK estimator in Õ(x, y).

When the number of detected edge pixels is larger than [nh̃n] in Õ(x, y), the chance

is high that there is a true edge segment in the neighborhood. In such cases, we consider

using a smaller bandwidth hn (< h̃n) to deal with the potential edges. In neighborhood

O(x, y) with bandwidth hn, if the number of detected edge pixels is smaller than or equal

to [nhn], then f̂(x, y) is defined by the conventional LLK estimator in O(x, y). Otherwise,

f̂(x, y) is defined by procedure (3). The entire proposed image denoising procedure can now

be summarized as follows.

Proposed Image Denoising Procedure

• Detect edge pixels using an edge detector such as the one described in Section 2.1.
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• For a given pixel (x, y), count the number of detected edge pixels in neighborhood

Õ(x, y). If this number is smaller than or equal to [nh̃n], then define f̂(x, y) to be the

conventional LLK estimator in Õ(x, y), and continue the denoising procedure for the

next pixel. If this number is larger than [nh̃n], then consider a smaller neighborhood

O(x, y) and count the number of detected edge pixels in that neighborhood. If the

number is smaller than or equal to [nhn], then f̂(x, y) is defined to be the conventional

LLK estimator in O(x, y). Otherwise, estimate the edge segment in O(x, y) using the

algorithm described three paragraphs above, and proceed to the next step.

• Compute f̂(x, y) using (3), and continue the denoising procedure for the next pixel.

2.3 Selection of procedure parameters

In the proposed image denoising procedure, there are four parameters un, h∗

n, h̃n and hn (cf.,

expressions (2), (3), and the related discussion). They should be chosen properly because

performance of the proposed procedure depends on their values. For instance, if un is

chosen too large, then some real edge pixels would be missed by the edge detector discussed

in Section 2.1. Consequently, some jumps in f would be blurred in the denoising process.

Similarly, the bandwidths h∗

n, h̃n and hn also play an important role in image denoising.

Theoretically speaking, we can choose these parameters by minimizing the Mean Integrated

Squared Error (MISE) of the surface estimator, defined by:

MISE(f̂ , f) = E

[∫ 1

0

∫ 1

0

(
f̂(x, y) − f(x, y)

)2
dxdy

]
, (4)

where E denotes the expectation with respect to the probability distribution of f̂(x, y).

In practice, because f is unknown, this method can not be actually used. In this paper,

we suggest using a modified version of the conventional cross-validation (CV) procedure.

Remember that, in the proposed denoising procedure, neighborhoods of two different sizes

(i.e., h̃n and hn) are used. For pixels that are quite far away from true edges, their neigh-

borhoods have width h̃n. For the other pixels, their neighborhoods have width hn. Let I
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be the set of pixels whose neighborhoods have width hn, |I| be the number of pixels in I,

and

CV (un, h∗

n, h̃n, hn) =

λ

|I|
∑

(xi,yj)∈I

[
Zij − f̂−i,−j(xi, yj)

]2
+

1 − λ

n2 − |I|
∑

(xi,yj)∈Ic

[
Zij − f̂−i,−j(xi, yj)

]2
, (5)

where Ic denotes the complementary set of I, f̂−i,−j(xi, yj) is the “leave-one-out” estimator

of f(xi, yj) obtained by (3) when the (i, j)th observation is not used (cf., Section 2.4.4 in

Qiu (2005)), and λ is a weighting parameter. It should be pointed out that both I and Ic

depend on un, h∗

n, h̃n and hn, although it is not explicit in notation. From (5), we can see

that λ controls the trade-off between edge-preservation and noise removal when choosing

the parameters. In the extreme case when λ = 1, the second term on the right hand side of

(5) would disappear. In such cases, the parameters are chosen to best preserve the edges,

and the performance of the denoised image in continuity regions of f are actually not taken

into account. In the other extreme case when λ = 0, the first term on the right hand

side of (5) would disappear and the parameters are actually chosen to best remove noise in

the continuity regions of f . In practice, one natural choice for λ is |I|/n2, in which case

procedure (5) becomes the conventional CV procedure. By (5), selected parameter values

are those minimizing CV (un, h∗

n, h̃n, hn) under the constraint that h̃n > hn. It should be

pointed out that, in all our numerical studies presented in next section, we actually did not

put the above constraint when searching for the parameter values by CV. From the results

(cf., Tables 1–3 in Section 3), we can see that searched values of h̃n and hn satisfy the

condition that h̃n > hn in all cases, which implies that this intuitively reasonable constraint

is indeed reasonable in practice.

3 Numerical Examples

In this section, we present some numerical results regarding the performance of the pro-

posed image denoising procedure (denoted as NEW), in comparison with several existing
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image denoising methods. Four existing methods are considered here, including a recent

denoising procedure based on gradient estimation and one-sided surface estimation (de-

noted as GE, Gijbels et al. 2006), a denoising method based on MRF modeling (denoted

as MRF, Godtliebsen and Sebastiani 1994), a wavelet transformation method (denoted as

WT, Portilla et al. 2003), and the conventional local median filter (denoted as MED).

First, we present some simulation results when the true image intensity function is one

of the following three functions:

f1(x, y) = −2(x − 0.5)2 − 2(y − 0.5)2 + φ(x ≥ 0.4)φ(y ≥ 0.3)φ(2x + y ≤ 1.6),

f2(x, y) = −2(x − 0.5)2 − 2(y − 0.5)2 +

φ
(
φ(y ≥ 0.3)φ(y −

√
3x ≤ 0.8 − 0.5

√
3)φ(y +

√
3x ≤ 0.8 + 0.5

√
3)+

φ(y ≤ 0.7)φ(y −
√

3x ≥ 0.2 − 0.5
√

3)φ(y +
√

3x ≥ 0.2 + 0.5
√

3) > 0
)

,

f3(x, y) = 0.5(1 − x)y + (1 − 0.5(1 − x)y)φ(y ≤ 3(0.25 − (x − 0.5)2))φ((x − 0.5)2 + y2 ≥ 0.3)

+(1 − 0.5(1 − x)y)φ(0.48 ≤ x ≤ 0.52)φ(0.25 ≤ y ≤ 0.5),

where φ(a) is the indicator function which equals 1 when a =“True” and 0 otherwise. One

realization of these three functions from model (1) when n = 256 and σ = 0.5 is presented

in the first column of Figure 3. From the plots, we can see that edges of f1 have three angles

of different sizes, edges of f2 have twelve angles, and edges of f3 have different curvature

at different places. In model (1), random errors are generated from distribution N(0, σ2).

We consider three σ values 0.25, 0.5, and 0.75, representing low, medium, and high noise

levels, and two n values 128 or 256, denoting two different image resolutions.

In method NEW, to save some computation, parameter αn used for determining the

threshold value un for edge detection is fixed at 0.01. In such cases, detected edges look

reasonably well. Based on our numerical experience, as long as detected edges are reasonably

good, their effect on denoised image is minimal. Besides un, procedure NEW has another

three parameters, h∗

n, h̃n and hn, to choose. The method GE has three parameters: a

bandwidth parameter, and two threshold parameters used in surface estimation and corner
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Figure 3: The first column denotes three noisy images when f equals f1, f2, or f3, n = 256,

and σ = 0.5. The remaining five columns denote denoised images by the methods NEW,

GE, MRF, WT, and MED, respectively, when their procedure parameters are chosen to be

the corresponding ones listed in Tables 1–3.

preservation, respectively. The MRF method combines the ideas of using a discontinuity

labeling process (Geman and Geman 1984) and the iterated conditional modes algorithm

(Besag 1986). This procedure assumes that a binary line component exists between any two

vertically or horizontally neighboring pixels, with 1 denoting an existing edge between the

two pixels and 0 denoting no edge. In a 3×3 neighborhood of a given pixel, there are 12 line

components and 212 possible configurations of these components. To use this procedure,

probabilities of the 212 possible line configurations need to be specified. In this section,

these probabilities are estimated from the true image intensity function values at the design

points, which is in favor of this procedure. Besides the line configurations, it has three

positive procedure parameters α, β and λ to determine. In the method WT, the default

family of wavelets (which is Daubechies’ “extremal phase” wavelet), the “full steerable

pyramid” image decomposition procedure, the “Bayes least square (BLS)” solution, and
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the “symmetric” boundary handling condition are used. Other parameters are chosen to be

the ones suggested by Portilla et al. (2003). The method MED defines the surface estimator

by the sample median of the observed image intensities in a circular neighborhood of a given

pixel. So, it has one parameter (i.e., the bandwidth) to choose. Because it is simple to use

and has certain ability in preserving edges while removing noise, it is widely used as a

pre-smoothing procedure (cf., Gonzalez and Woods 1992, Chapter 4).

For each denoising method considered, 100 replications are performed in each combi-

nation of f , σ, and n. Their parameter values are searched so that the MISE value (cf.,

expression (4)), estimated by the sample mean of

ISE(f̂ , f) =
1

n2

n∑

i=1

n∑

j=1

[f̂(xi, yj) − f(xi, yj)]
2

over 100 replications, reaches the minimum. The estimated MISE values and the corre-

sponding standard errors of ISE of various methods are presented in Tables 1–3, along with

searched parameter values, for cases when f equals f1, f2, and f3, respectively. For investi-

gating ability of various methods in preserving edge structures, their estimated local MISE

values, computed in circular neighborhoods of radius 0.1 when n = 128 and radius 0.05

when n = 256 of edge angles, along with the corresponding standard errors of local ISE

are also presented in the tables. From the tables, it can be seen that the proposed method

NEW is uniformly better in quite large margins than the remaining methods, in terms of

both estimated MISE and estimated local MISE, when noise level is medium to high (i.e.,

σ = 0.5 or 0.75). When the noise level is low (i.e., σ = 0.25), it seems that procedure MRF

always performs the best, which is consistent to the findings in Gijbels et al. (2006). For

the observed images presented in the first column of Figure 3 when n = 256 and σ = 0.5,

the denoised images by various methods when their parameters are chosen to be the ones

corresponding to the results presented in Tables 1–3 (cf., columns corresponding to cases

when n = 256 and σ = 0.5) are presented in columns 2–6 of Figure 3. From the plots, we

can see that certain methods (e.g., GE, MRF, WT) either do not preserve angular edges

well, or do not remove noise sufficiently. Method MED blurs all edges to a certain degree
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when removing noise. As a comparison, the denoised images by the proposed method (cf.,

the 2nd column in Figure 3) preserve all edges reasonably well when most noise has been

removed. As a side note, for the observed triangle image shown in the (1,1)-th panel of

Figure 3, the estimated gradients at the detected edge pixels around the lower-left angle

by the proposed method are shown in Figure 4. From the figure, it can be seen that the

detected edge pixels around that angle can indeed be divided into two groups using the

estimated gradients for approximating the true edge curve, as demonstrated in Figure 2.

Figure 4: The estimated gradients at the detected edge pixels around the lower-left angle

of the triangle image shown in the (1,1)-th panel of Figure 3.

Next, we consider a real test image including a maple leaf in the middle. The image

intensities are in the range [0, 255], and the image has 160 × 160 pixels. A noisy version

of this image with i.i.d. noise from N(0, 1002) is presented in the (1,1)-th plot of Figure 5,

from which we can see that the boundary of the maple leaf has a number of quite sharp

angles. We then apply the methods NEW, GE, MRF, WT, and MED to this example.

Their parameters are searched by minimizing the estimated MISE values obtained from 100

replications, as in Tables 1–3. The estimated MISE values, their standard errors, and the

search parameters values are presented in the first column of Table 4, from which we can
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Table 1: In each entry, the first line presents the estimated MISE value from 100 simulations

and the corresponding standard error of ISE (in parenthesis), the second line presents the

estimated local MISE value and the corresponding standard error of local ISE computed

in circular neighborhoods of true edge angles with width 0.1 when n = 128 and width 0.05

when n = 256, and the third line presents the searched procedure parameter values. This

table considers the case when f = f1.

n=128 n=256

Method σ = .25 σ = .5 σ = .75 σ = .25 σ = .5 σ = .75

NEW .0029 (.0003) .0043 (.0005) .0061 (.0006) .0016 (.0001) .0025 (.0003) .0034 (.0003)

.0118 (.0013) .0172 (.0032) .0246 (.0028) .0128 (.0018) .0202 (.0036) .0303 (.0035)

.023,.070,.023 .023,.086,.031 .031,.102,.047 .012,.047,.012 .012,.051,.020 .016,.055,.027

GE .0022 (.0002) .0080 (.0007) .0134 (.0006) .0011 (.0001) .0043 (.0003) .0081 (.0002)

.0108 (.0011) .0311 (.0033) .0475 (.0028) .0201 (.0014) .0355 (.0032) .0494 (.0030)

.031, .04, .4 .047, .06, .4 .055, .14, .8 .020, .04, .6 .027, .06, .6 .027, .16, .6

MRF .0013 (.0002) .0100 (.0004) .0137 (.0008) .0009 (.0001) .0067 (.0003) .0091 (.0004)

.0035 (.0015) .0329 (.0013) .0431 (.0025) .0040 (.0019) .0417 (.0039) .0482 (.0034)

1, 40, 1 15, 5, 15 15, 4, 20 .5, 35, 1 .5, 10, .5 10, 5, 10

WT .0030 (.0001) .0098 (.0005) .0200 (.0013) .0020 (.0001) .0069 (.0002) .0149 (.0006)

.0084 (.0007) .0213 (.0018) .0356 (.0037) .0089 (.0001) .0214 (.0016) .0354 (.0032)

– – – – – –

MED .0050 (.0002) .0112 (.0005) .0160 (.0008) .0028 (.0001) .0067 (.0002) .0098 (.0003)

.0169 (.0010) .0338 (.0019) .0495 (.0025) .0255 (.0010) .0464 (.0019) .0566 (.0028)

.023 .039 .055 .020 .027 .031
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Table 2: In each entry, the first line presents the estimated MISE value from 100 simulations

and the corresponding standard error of ISE (in parenthesis), the second line presents the

estimated local MISE value and the corresponding standard error of local ISE computed

in circular neighborhoods of true edge angles with width 0.1 when n = 128 and width 0.05

when n = 256, and the third line presents the searched procedure parameter values. This

table considers the case when f = f2.

n=128 n=256

Method σ = .25 σ = .5 σ = .75 σ = .25 σ = .5 σ = .75

NEW .0052 (.0004) .0085 (.0006) .0122 (.0008) .0027 (.0001) .0043 (.0003) .0062 (.0003)

.0131 (.0011) .0209 (.0015) .0290 (.0021) .0137 (.0009) .0227 (.0013) .0310 (.0016)

.023,.063,.023 .023,.086,.039 .031,.094,.055 .012,.043,.012 .012,.109,.023 .016,.055,.027

GE .0050 (.0002) .0128 (.0007) .0197 (.0007) .0020 (.0001) .0064 (.0003) .0118 (.0003)

.0104 (.0006) .0280 (.0018) .0413 (.0014) .0115 (.0006) .0257 (.0016) .0404 (.0013)

.023, .04, .4 .047, .06, .4 .047, .14, .8 .020, .04, .6 .027, .06, .6 .027, .16, .6

MRF .0021 (.0003) .0152 (.0004) .0221 (.0009) .0012 (.0001) .0096 (.0002) .0131 (.0004)

.0042 (.0008) .0349 (.0010) .0509 (.0019) .0043 (.0008) .0358 (.0011) .0519 (.0015)

.5, 45, 1 .5, 5, 15 1, 5, 20 .5, 35, 1 2, 5, .5 10, 5, 5

WT .0048 (.0002) .0132 (.0006) .0247 (.0014) .0029 (.0001) .0089 (.0002) .0178 (.0006)

.0101 (.0004) .0235 (.0011) .0382 (.0023) .0105 (.0004) .0239 (.0010) .0387 (.0019)

– – – – – –

MED .0071 (.0002) .0161 (.0005) .0229 (.0009) .0042 (.0001) .0097 (.0002) .0140 (.0004)

.0156 (.0005) .0316 (.0012) .0462 (.0020) .0189 (.0005) .0397 (.0010) .0530 (.0015)

.023 .031 .047 .016 .023 .027
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Table 3: In each entry, the first line presents the estimated MISE value from 100 simulations

and the corresponding standard error of ISE (in parenthesis), the second line presents the

estimated local MISE value and the corresponding standard error of local ISE computed

in circular neighborhoods of true edge angles with width 0.1 when n = 128 and width 0.05

when n = 256, and the third line presents the searched procedure parameter values. This

table considers the case when f = f3.

n=128 n=256

Method σ = .25 σ = .5 σ = .75 σ = .25 σ = .5 σ = .75

NEW .0034 (.0002) .0055 (.0004) .0085 (.0007) .0018 (.0006) .0030 (.0002) .0048 (.0003)

.0115 (.0007) .0190 (.0016) .0272 (.0028) .0110 (.0006) .0183 (.0015) .0296 (.0022)

.023,.070,.023 .023,.102,.039 .031,.109,.047 .012,.047,.012 .012,.051,.020 .016,.055,.031

GE .0046 (.0002) .0118 (.0006) .0165 (.0007) .0018 (.0001) .0057 (.0002) .0100 (.0003)

.0106 (.0010) .0283 (.0020) .0381 (.0020) .0126 (.0007) .0217 (.0019) .0284 (.0022)

.023, .04, .4 .039, .08, .4 .039, .22, .6 .023, .02, .4 .031, .04, .4 .035, .09, .4

MRF .0020 (.0003) .0122 (.0004) .0165 (.0008) .0014 (.0001) .0077 (.0002) .0105 (.0004)

.0050 (.0011) .0325 (.0013) .0421 (.0025) .0048 (.0012) .0339 (.0014) .0425 (.0025)

1, 45, .5 .5, 4, 5 .5, 3, 1 .5, 30, .5 .1, 6, 10 .1, 4, 15

WT .0042 (.0001) .0116 (.0006) .0224 (.0013) .0026 (.0001) .0080 (.0003) .0163 (.0006)

.0098 (.0005) .0224 (.0016) .0363 (.0034) .0094 (.0006) .0214 (.0015) .0346 (.0029)

– – – – – –

MED .0062 (.0002) .0135 (.0005) .0190 (.0008) .0037 (.0001) .0080 (.0002) .0113 (.0003)

.0185 (.0009) .0347 (.0019) .0518 (.0023) .0192 (.0007) .0367 (.0017) .0470 (.0027)

.023 .031 .047 .016 .023 .027
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see that the method NEW has the smallest MISE value. The denoised images by these

methods with the parameters chosen to be the ones in Table 4 are presented in Figure 5.

We can see that method NEW preserves the edge structure and removes the noise well,

compared to its peers.

Figure 5: The noisy maple leaf image and its denoised images by methods NEW, GE, MRF,

WT, and MED. The noise is from N(0, 1002).

We next consider a magnetic resonance image (MRI) of a knee part of human body

with 128 × 128 pixels. The image intensity levels range from 0 to 255 as usual. A noisy

version with i.i.d. noise from N(0, 1002) is presented in the (1,1)-th plot of Figure 6. As

in the previous example, the searched parameters and the estimated MISE values of the

methods NEW, GE, MRF, WT, and MED, based on 100 replications, are presented in the

second column of Table 4. From the table, it can be seen that method WT performs the

best, and method NEW is better than the remaining three methods. The denoised images

by these methods from the one shown in the (1,1)-th plot are presented in the next five

18



Table 4: The first line in each entry presents the estimated MISE value from 100 simulations

and the corresponding standard error of ISE (in parenthesis), and the second line presents

the searched procedure parameter values. The five columns are for cases of the leaf image,

the knee image with Gaussian noise (GN), the knee image with double exponential noise

(DEN), the knee image with variable noise (VN) level, and the knee image with 30% salt-

and-pepper noise (SPN), respectively.

Method Leaf Knee (GN) Knee (DEN) Knee (VN) Knee (SPN)

NEW 431.52 (13.65) 855.90 (21.89) 762.40 (19.44) 846.07 (29.80) 1314.68 (40.38)

.019,.063,.025 .032,.070,.032 .032,.070,.032 .032,.070,.032 .032,.078,.032

GE 713.54 (13.47) 941.48 (17.71) 872.88 (14.04) 869.67 (16.64) 3041.21 (80.12)

.019,20000,0.8 .023,30000,1 .023,10000,1 .023,30000,1 .023,10000,1

MRF 576.51 (38.84) 920.75 (18.23) 1469.46 (81.40) 1213.01 (111.00) 1813.47 (76.29)

1,.0002,.16 1,.0001,20 .25,.0001,20 .5,.0001,20 1,0.0001,20

WT 586.58 (18.66) 840.14 (28.88) 825.54 (39.05) 1233.66 (104.63) 1375.81 (52.12)

– – – – –

MED 783.92 (19.32) 1151.27 (21.52) 763.72 (14.23) 989.26 (19.57) 556.82 (19.74)

.025 .023 .016 .023 .016
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plots of Figure 6, from which we can see that both methods NEW and WT preserve edges

well, compared to the remaining three methods. It seems that method NEW preserves edge

structures a little better than method WT (cf., the edge segment surrounding the central

white part in the image).

Figure 6: The noisy knee magnetic resonance image and its denoised images by methods

NEW, GE, MRF, WT, and MED. The noise is from N(0, 1002).

The WT method considered here is designed for handling Gaussian noise. So, it is

not surprising that it would perform well in the example of Figure 6 where noise is from

a Gaussian distribution. Next, we consider the same MRI image, but add noise from a

Double Exponential distribution with location parameter 0 and scale parameter 60. The

corresponding results are shown in the third column of Table 4 and in Figure 7. We can

see that WT does not perform well in this case in terms of the estimated MISE.

In the above examples, noise level is homogeneous in entire observed images, for sim-

plicity. It should be pointed out that the proposed procedure can also handle cases when
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Figure 7: The noisy knee magnetic resonance image and its denoised images by methods

NEW, GE, MRF, WT, and MED. The noise is from a Double Exponential distribution with

location parameter 0 and scale parameter 60.

the noise level depends on location. As an example, suppose that the noise level has the

expression

σ(x, y) = 40 exp
(
3.5(x − 0.5)2 + 3.5(y − 0.5)2

)
.

Obviously, σ(x, y) is small in the central region of the image and large in the border region.

An observed noisy knee image with i.i.d. noise from distribution N(0, σ2(x, y)) is shown in

the (1,1)-th plot of Figure 8. The estimated MISE values and denoised images of various

methods are presented in the fourth column of Table 4 and in Figure 8, respectively. It can

be seen that method NEW performs the best in this case.

Finally, we consider adding salt-and-pepper noise to 30% randomly selected pixels of

the knee image. The added noise is binary. It equals either the maximum intensity level of

the true knee image or the minimum intensity level, by random. The noisy image is shown
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Figure 8: The noisy knee magnetic resonance image and its denoised images by methods

NEW, GE, MRF, WT, and MED. The noise level changes with location by σ(x, y) =

40 exp
(
3.5(x − 0.5)2 + 3.5(y − 0.5)2

)
.

in the (1,1)-th plot of Figure 9. The estimated MISE values and the denoised images of

various methods are presented in the last column of Table 4 and in Figure 9, respectively.

We can see that the median method MED performs the best in such a case, as expected,

because median methods are robust to a small amount of large or small intensity values

such as those with salt-and-pepper noise added. When the percentage of pixels with salt-

and-pepper noise added increases, its performance becomes worse and worse, which has

been numerically confirmed by us, although the results are skipped here. Method NEW

performs better than the remaining three methods in this case.
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Figure 9: The noisy knee magnetic resonance image and its denoised images by methods

NEW, GE, MRF, WT, and MED. Only 30% randomly selected pixels are added salt-and-

pepper noise.

4 Summary and Concluding Remarks

We have presented an image denoising procedure in the framework of jump regression

analysis. The new procedure can efficiently preserve both the parts of edges with small

curvature and the parts of edges with large curvature. Numerical examples show that it

performs well in various cases. From the construction of the proposed method, it can be

seen that this method would not work well at places where two or more edge segments

cross, because the true edge curves can not be approximated well by two half lines around

a crossing point of several edge segments (cf., Figure 2). It requires much future research

to denoise images properly in such cases. The proposed method consists of three steps.

Although each step is based on local smoothing and the corresponding computation is thus

fast, it is ideal to simplify the method by skipping or combining certain steps without
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sacrificing much of its denoising and edge structure preserving ability. In some applications

(e.g., MRI, fMRI image analysis), denoising of 3-D images is necessary. In such cases, one

possibility is to slide the 3-D image first and then denoise individual 2-D images slice by

slice. But this would not be an efficient way of denoising 3-D images, because information

in neighboring slices is not shared when individual 2-D slices are analyzed. It may not be

straightforward to generalize the current method to 3-D cases due to the fact that edge

structure becomes much more complicated in 3-D images. This topic also requires much

future research.

As pointed out in Section 1, most existing image denoising procedures in the literature

can not preserve certain edge structures well. For instance, the anisotropic diffusion filters

control the degree of smoothing around a given pixel by a nonhomogeneous diffusivity which

is often chosen to be a decreasing function of an estimated gradient (cf., Section 7.5, Qiu

2005). So, if the given pixel is close to an edge curve, then the estimated gradient would

be large and consequently there would be less smoothing around that pixel. However, in

order to remove noise, some smoothing is still necessary around edge curves. Therefore, a

certain degree of edge blurring is inevitable by the diffusion filters. Because the diffusion

filters usually do not take the shape of the edge curves into consideration, they could not

preserve certain edge structures (e.g., angles) well. These comments can also be applied

to the bilateral filters (e.g., Tomasi and Manduchi 1998), because Barash (2002) showed

that bilateral filters were just special diffusion filters. Hillebrand and Müller (2007) recently

demonstrated that the M-filter discussed by Chu et al. (1998) cannot handle isolated outliers

well when denoising, and they proposed a modification to overcome that limitation by

combining the ideas of robust estimation and trimming. Although proper selection of certain

parameters needs to be further addressed, this modification makes a good contribution to

the image denoising literature. Much future research is required to modify other existing

denoising methods so that edge structures can be better preserved while noise and other

possible contaminations are better removed.
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