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Abstract

Multi-stage additive tests are commonly used in applications. Appropriate definition of its

test decisions, however, turns out to be challenging. There are a number of existing methods

for this purpose, mainly by combining p-values of individual tests using a conditional error

probability function. While these methods are flexible enough to use in most applications, their

results depend on the conditional error probability function and selection of this function is often

subjective. Motivated by a research problem regarding comparison of two survival hazard rate

functions, in this paper, we suggest using an alternative and simpler definition of the overall

p-value of a multi-stage additive testing procedure. By this definition, no conditional error

probability function needs to be chosen, the entire testing procedure is easy to interpret, and

the overall p-value has an explicit formula for a general multi-stage additive testing procedure.

Key Words: Combination test; Crossing hazard rates; Group sequential test; Overall p-value;
Significance level; Survival Analysis; Two-stage test.
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1 Introduction

Multi-stage additive tests become popular in applications, especially in the field of clinical trials,

for achieving maximal flexibility in trial conduct and minimal patient exposure and economic

expenditure (e.g., Pocock 1977, O’Brien and Fleming 1979, DeMets and Ware 1980, 1982, Wang

and Tsiatis 1987, Pampallona and Tsiatis 1994). Appropriate definition of their decision rules

and overall p-values, however, turns out to be challenging (e.g., Cui et al. 1999, Lehmacher and

Wassmer 1997, Brannath et al. 2002). This paper focuses on this problem.

In the literature, there are some existing methods for defining decision rules and overall p-

values of multi-stage additive tests, by combining p-values of tests in individual stages (e.g., Bauer

and Köhne 1994), or by specifying a conditional error probability function (e.g., Proschan and

Hunsberger 1995). While these methods are flexible enough to use in most applications, their results

depend on the conditional error probability function or the function for combining the p-values of

individual tests. Selection of such functions and the parameters involved is often subjective. Due

to the relatively complicated structure of these methods, the parameters involved may not be easy

to interpret, and sometimes the overall p-values are not convenient to compute when the number

of stages is large. More introduction about existing methods can be found in Section 2.2.

In this paper, we suggest using an alternative and simpler definition of the overall p-value

for a multi-stage additive testing procedure in cases when the individual tests are independent

or when they have the property of p-clud (cf., Section 2.1 for introduction). This definition is

based mainly on properties of conditional probabilities when multiple events are involved. By this

method, the overall p-value of a multi-stage additive testing procedure has an explicit formula;

thus, it is convenient to compute. That formula does not depend on any extra parameters, besides

the significance levels of tests in individual stages, which are also used in most existing methods.

The proposed method is described in detail in Section 2. Connections and differences between

this method and some existing methods are also explained there. Then, it is demonstrated in the

example to compare two hazard rates of survival data in Section 3. Finally, some remarks conclude

the article in Section 4.
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2 Significance Level and p-Value of A Multi-Stage Additive Test

This section is organized in two parts. The proposed method for defining decision rules of a multi-

stage additive test is introduced in Section 2.1, and its connection to some existing methods is

described in Section 2.2.

2.1 The proposed method

Suppose that the significance level of a k-stage procedure is α, for an integer k ≥ 2, and the

significance levels of the tests in the individual stages are α1, α2, . . . , αk, respectively. Then, the

k-stage procedure rejects H0 if and only if the test in the first stage rejects H0, or it fails to reject H0

but the test in the second stage rejects H0, or both the first two tests fail to reject H0 but the test

in the third stage rejects H0, and so forth. If the tests in the individual stages are independent of

each other, then by the definition of these significance levels and by recursively using the properties

of conditional probabilities, we have

k
∑

j=1

αjΠ
j−1
ℓ=1(1 − αℓ) = α, (2.1)

where α0 = 0. Therefore, as long as tests in the individual stages of a k-stage procedure are

independent of each other and the significance levels of the individual tests satisfy equation (2.1),

the overall significance level of the k-stage procedure would be controlled at α.

To define the overall p-value of the k-stage procedure, let p1, p2, . . . , pk be the p-values of the

tests in the k individual stages. Then we define the following function g(p1, p2, . . . , pk) to be the

overall p-value:

g(p1, p2, . . . , pk) =































p1, if p1 ≤ α1

α1 + p2(1 − α1), if p1 > α1 and p2 ≤ α2

...
...

∑k−1
j=1 αjΠ

j−1
ℓ=1(1 − αℓ) + pkΠ

k−1
ℓ=1 (1 − αℓ), if p1 > α1, . . . , pk−1 > αk−1,

(2.2)

where α1, α2, . . . , αk ∈ [0, 1] are parameters.

From (2.2), it can be seen that, if the k individual stages of the k-stage procedure are inde-

pendent of each other, α1, α2, . . . , αk are their significance levels as specified in (2.1), then the test
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defined by (2.2) is equivalent to the one defined by (2.1). More specifically, in such cases, the test

defined by (2.2) has size α if α1, α2, . . . , αk satisfy (2.1), its overall p-value g(p1, p2, . . . , pk) has

uniform null distribution on [0, 1] if the p-values p1, p2, . . . , pk all have uniform null distributions

on [0, 1], and the parameters α1, α2, . . . , αk are the significance levels of the individual tests. This

result can be generalized to cases when the p-values p1, p2, . . . , pk have the property of p-clud (cf.,

e.g., Brannath et al. 2002) that, for any constant c ∈ [0, 1],

PH0
(p1 ≤ c) ≤ c,

PH0
(pj ≤ c|p1, p2, . . . , pj−1) ≤ c, for j = 2, 3, . . . , k. (2.3)

The p-clud property (2.3) implies that the null distribution of p1 and the null conditional distribu-

tions of pj given (p1, p2, . . . , pj−1) are all not smaller than the Uniform distribution on [0, 1]. Under

this assumption and the assumption that the parameters α1, α2, . . . , αk satisfy condition (2.1), it

can be checked that the test defined by (2.2) has size α. Namely,

PH0
(g(p1, p2, . . . , pk) ≤ α) ≤ α.

In equations (2.1) and (2.2), the parameters α1, α2, . . . , αk still need to choose when the pro-

posed method is used in an application. If we have some prior information about the sizes of the

individual tests, then such information should be used in the selection of these parameters (cf., the

example discussed in Section 3). If we do not have such prior information, then we can simply let

α1 = α2 = . . . = αk. For instance, when k = 2, α1 and α2 can be chosen to be

α1 = α2 = 1 −
√

1 − α. (2.4)

2.2 Connection to some existing methods

Let us focus on two-stage tests for simplicity. Following the notation of Brannath et al. (2002),

let α0 and α1 be two predetermined decision boundaries, satisfying 0 ≤ α1 < α < α0 ≤ 1, where

α is the size of the two-stage test. Then, most existing methods define the decision rules in the

following way. In the first stage, we reject H0 if p1 ≤ α1, and fail to reject H0 if p1 > α0. In both

cases, the whole testing procedure stops. Otherwise, if α1 < p1 ≤ α0, the second-stage proceeds

as follows. Let C(p1, p2) be a predetermined function on space (p1, p2) ∈ (α1, α0] × [0, 1], which

has the properties that (i) C(p1, p2) increases with both arguments, (ii) it is a strictly increasing
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function in at least one argument, and (iii) it is left continuous in p2. Then, in the second stage,

H0 is rejected if and only if C(p1, p2) ≤ c, where c is determined by

α1 +

∫ α0

α1

∫ 1

0
1{C(x,y)≤c} dydx = α, (2.5)

and 1{·} is the indicator function. The overall p-value of the combination test (cf., Tsiatis et al.

1984) is often defined by

q(p1, p2) =







p1, if p1 ≤ α1 or p1 > α0,

α1 +
∫ α0

α1

∫ 1
0 1{C(x,y)≤C(p1,p2)} dydx, otherwise.

(2.6)

In the literature, there are several existing methods having the framework described above.

One well known method of this type is the Fisher’s weighted product test (Fisher 1932), which

corresponds to the function

C(p1, p2) = pw
1 · p2, (2.7)

where w > 0 is an unknown parameter. Then, the constant c defined in equation (2.5) becomes

c =







α−α1

ln α0−lnα1
, if w = 1,

(α−α1)(1−w)

α1−w

0
−α1−w

1

, otherwise.
(2.8)

When α0 = 1 and w = 1, the corresponding overall p-value of this test has the form

q(p1, p2) =



















p1, if p1 ≤ α1,

α1 − p1p2 · lnα1, if p1 > α1 and p1p2 ≤ α1,

p1p2 − p1p2 · ln(p1p2), if p1 > α1 and p1p2 > α1.

(2.9)

Another example is the weighted inverse normal method by Lehmacher and Wassmer (1999),

which corresponds to the function

C(p1, p2) = 1 − Φ[w1Φ
−1(1 − p1) + w2Φ

−1(1 − p2)], (2.10)

where w1 and w2 are two positive weights satisfying w2
1 + w2

2 = 1, Φ is the cumulative distribution

function of the standard normal distribution, and Φ−1 is its inverse function.

There are some other definitions of C(p1, p2) (cf., e.g., Proschan and Hunsberger 1995). A

common feature of these existing methods is that they depend on some parameters, e.g., w in

equation (2.7) and w1 and w2 in equation (2.10). These parameters usually do not have intuitive and

simple explanations. These methods can be generalized to cases of general multi-stage procedures.
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But computation of the overall p-value in such cases is often difficult. For instance, the integration

in (2.6) may not be easy to compute if the method (2.10) is used for a k-stage procedure with k

large. Similarly, formulas (2.8) and (2.9) would become quite complicated in such cases.

As a comparison, for two-stage procedures, the proposed method corresponds to C(p1, p2) = p2

with α0 = 1, which is not included in (2.7) and (2.10) since w, w1, and w2 there can not be 0. Using

the proposed method, no extra parameters are needed, besides α1 and α2 which are significance

levels of individual stages and which are used in most existing methods (cf., equation (2.6)). When

the proposed method is used for general multi-stage procedures, its overall p-value has an explicit

formula (cf., equation (2.2)). Therefore, it is convenient to compute.

When k = 2, α = 0.05, α0 = 1, and α1 and α2 are determined by (2.4) to be both 0.0253,

Figures 2.1(a)–2.1(c) shows the overall p-values of the Fisher’s weighted product test (cf., formulas

(2.7)–(2.9)), when w = 0.1, 1, and 10, respectively. It can be seen that the shape of the overall

p-value surface depends on w. Similarly, the overall p-value surfaces by Lehmacher and Wassmer’s

method (cf., formula (2.10)) are shown in Figures 2.1(d) and 2.1(e) when w1 = 0.5, and 0.9,

respectively. Their shapes also depend on the parameter w1. The overall p-value surface of the

proposed method is shown in Figure 2.1(f).

3 Application to Comparison of Two Hazard Rates

In this section, we apply the proposed method to the problem of comparing two hazard rates. Let

h1 and h2 be the hazard rates of the survival times of subjects in the control and treatment groups,

respectively, and let [0, τ ] be the time range of interest. Then, we are interested in testing

H0 : h1(t) = h2(t), for all t ∈ [0, τ ]

vs. Ha : h1 and h2 are different on [0, τ ]. (3.1)

It is well known that conventional testing procedures, such as logrank, Gehan-Wilcoxon, and Peto-

Peto procedures (cf., e.g., Klein and Moeschberger 1997, Chapter 7), are powerful for this purpose

only when the hazard rates do not cross; some existing procedures designed for handling the crossing

hazard rates problem, including those by Anderson and Senthilselvan (1982), Breslow et al. (1984),

Lin and Wang (2004), and Liu et al. (2006), are powerful only when the hazard rates cross. To

test the general alternative in (3.1), recently Qiu and Sheng (2005) suggested a two-stage additive
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Figure 2.1: (a)-(c): Overall p-value surfaces of Fisher’s weighted product test when w = 0.1, 1,

and 10, respectively. (d)-(e): Overall p-value surfaces of Lehmacher and Wassmer’s method when

w1 = 0.5, and 0.9, respectively. (f): Overall p-value surface of the proposed method. For all

methods, α0 is set to be 1.
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procedure. In the first stage, the conventional logrank procedure is applied to detect any non-

crossing differences between h1 and h2. If we fail to reject H0 in the first stage, then, in the second

stage, a test designed for detecting crossing differences between h1 and h2 is applied, which is

proved to be independent of the conventional logrank test.

In this example, if we have some prior information about the pattern of the two hazard rates,

then α1 can be determined accordingly. In the two extreme cases that we believe based on our

past experience the two hazard rates can not cross each other or they can not run parallel to each

other, α1 can be simply chosen α and 0, respectively. If we do not have any such information, then

α1 and α2 can be chosen the same, as specified in (2.4).

Next, we apply this two-stage procedure to two real datasets, using the proposed method and

the existing methods (2.7) and (2.10), respectively, to determine its decision rules. The first dataset

is about kidney dialysis patients, which was taken from a study designed to assess the time to the

first exit-site infection (in months) in 119 patients with renal insufficiency. Among all patients,

43 of them utilized a surgically placed catheter (Group 1) and 76 of them utilized a percutaneous

placement of their catheter (Group 2). Catheter failure was the primary reason for censoring.

There were 27 censored observations in Group 1 and 65 in Group 2. This dataset is described in

detail by Klein and Moeschberger (1997, section 1.4). The second dataset is obtained from a study

about the tumorigenesis of a drug reported by Mantel et al. (1977). In the experiment, rats were

taken from fifty distinct litters and of each litter, one rat was randomly selected and given the drug,

another two rats were selected as controls and were given a placebo. All mice are females. The

number of censored observations are 29 in the treatment group and 81 in the control group. The

life-table estimators of the hazard rates in these two cases are shown in Figures 3.1(a) and 3.1(b),

respectively, from which it can be seen that they cross each other in the first case and run parallel

to each other in the second case.

When using the two-stage procedure, we let α = 0.05, and α1 = α2 = 0.0253, by equation

(2.4). The p-values p1 and p2 of the tests in the two individual stages, and the overall p-values

computed by the proposed method and the existing methods (2.7) and (2.10) using several different

parameters are shown in Table 3.1. From that table, it can be seen that, for the kidney dialysis

patients data, the first individual test is not significant and the second individual test is significant.

The overall p-value computed by the proposed method is smaller than α; but those computed by

(2.7) and (2.10) depend on their parameter values. When w and w1 are small, their overall p-values
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Figure 3.1: (a) Life-table estimators of the hazard rates for the kidney dialysis patients data. (b)

Life-table estimators of the hazard rates for the rat data.

are small than α. In cases when w and w1 are large, their overall p-values are larger than α. For

the rats data, the first individual test is significant. In such cases, the overall p-values computed

by various methods are all the same.

Table 3.1: P-values of various procedures when they are applied to the kidney dialysis patients

data (Kidney) and the rats data (Rat). The number 0.106 is put in parenthesis to denote the case

when that individual p-value does not need to compute since the whole test stops at stage one.

Dataset Stage-I Stage-II Fisher L-W New

w = 0.1 w = 1 w = 10 w1 = 0.5 w1 = 0.9 w1 = 0.99

Kidney 0.1120 0.0010 0.0262 0.0257 0.0624 0.0256 0.0264 0.0506 0.0263

Rat 0.0030 (0.1060) 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030

4 Concluding Remarks

We have presented a definition of the decision rules for multi-stage additive testing procedures,

which works well when tests in the individual stages are independent of each other or have the
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property of p-clud. Compared to some existing methods, the proposed method has the benefits

that it does not depend on any extra parameters besides the significance levels of individual stages,

and it has simpler interpretation and computation, especially when the number of stages is large.

It has been shown that this method works well in some applications including the one to compare

two hazard rate functions of a survival data.

Generally speaking, when tests in the individual stages of a multi-stage additive testing pro-

cedure do not have the p-clud property, the proposed definition of the decision rules can not be

used directly. In such cases, in order to use the proposed definition of the decision rules, some

modifications of the original additive testing procedure are possible. For instance, for a two-stage

procedure, let T1 and T2 be the test statistics in the two individual stages. When T1 and T2 are

asymptotically, jointly, Normal distributed, then it can be checked by some simple algebraic ma-

nipulations that T1 and T2 − (ρ12σ2/σ1)T1 are asymptotically independent of each other, where σ1

and σ2 are standard deviations of T1 and T2, respectively, and ρ12 is their correlation coefficient.

Therefore, the proposed definition of the decision rules can still be used in such situations, if the

test statistic used in the second-stage of the two-stage procedure is replaced by T2 − (ρ12σ2/σ1)T1.

Of course, much future research is needed, regarding estimation of σ1, σ2, and ρ12, and regarding

both theoretical and numerical properties of such modified procedures.

In applications, when we design a specific study, sample size determination is an important

issue, about which the proposed method can be used to draw insight. To see this, let us consider

a two-stage procedure once again. For a given significance level and a desired power level of the

two-stage procedure for testing a specific alternative hypothesis, we can specify the corresponding

significance levels and power levels for the individual tests, using similar formulas to equation (2.4).

Then, sample size calculation can be done for the two individual stages. In cases for comparing

two hazard rate functions, sample size calculation in the two individual stages can usually be

accomplished using numerical simulations. See, for instance, Liu et al. (2006) for related discussion

about power calculation of a test for comparing two crossing hazard rate functions.

Acknowledgments: We thank a referee for several constructive comments.
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Bauer, P., and Köhne, K. (1994), “Evaluation of experiments with adaptive interim analysis,”

Biometrics, 50, 1029–1041.

Brannath, W., Posch, M., and Bauer, P. (2002), “Recursive Combination Tests,” Journal of the

American Statistical Association, 97, 236–244.

Breslow, N.E., Edler, L., and Berger, J. (1984), “A Two–Sample Censored–Data Rank Test for

Acceleration,” Biometrics, 40, 1049–1062.

Cui, L., Hung, H.M.J., and Wang, S. (1999), “Modification of sample size in group sequential

clinical trials,” Biometrics, 55, 321–324.

DeMets, D.L., and Ware, J.H. (1980), “Group sequential methods for clinical trials with a one-

sided hypothesis,” Biometrika, 67 651–660.

DeMets, D.L., and Ware, J.H. (1982), “Asymmetric group sequential boundaries for monitoring

clinical trials,” Biometrika, 69 661–663.

Fisher, R.A. (1932), Statistical Methods for Research Workers, London: Oliver & Boyd.

Fleming, T.R., O’Fallon, J.R., O’Brien, P.C., and Harrington, D.P. (1980), “Modified Kolmogorov-

Smirnov Test Procedures with Application to Arbitrarily Right-Censored Data,” Biometrics,

36, 607–625.

Klein, J.P., and Moeschberger, M.L. (2000), Survival Analysis, Techniques for Censored and Trun-

cated Data (2nd ed.), New York: Springer.

Lehmacher, W., and Wassmer, G. (1999), “Adaptive sample size calculations in group sequential

trials,” Biometrics, 55, 1286–1290.

Lin, X., and Wang, H. (2004), “A New Testing Approach for Comparing the Overall Homogeneity

of Survival Curves,” Biometrical Journal, 46, 489–496.

11



Liu, K., Qiu, P., and Sheng, J. (2006), “Comparing Two Crossing Hazard Rates by Cox Propor-

tional Hazards Modeling,” Statistics in Medicine, (in press).

Liu, Q., and Chi, G. (2001), “On Sample Size and Inference for Two–Stage Adaptive Designs,”

Biometrics, 57, 172–177.

Mantel, N., and Stablein, D.M. (1988), “The Crossing Hazard Function Problem,” The Statisti-

cian, 37, 59–64.

O’Brien, P.C., and Fleming, T.R. (1979), “A multiple testing procedure for clinical trials,” Bio-

metrics, 35, 549–556.

Pampallona, S., and Tsiatis, A.A. (1994), “Group sequential designs for one-sided and two-sided

hypothesis testing with provision for early stopping in favour of the null hypothesis,” Journal

of Statistical Planning and Inference, 42, 19–35.

Pocock, S.J. (1977), “Group sequential methods in the design and analysis of clinical trials,”

Biometrika, 64, 191–199.

Posch, M.A., and Bauer, P. (1999), “Adaptive Two–Stage Designs and the Conditional Error

Function,” Biometrical Journal, 41, 689–696.

Proschan, M.A., and Hunsberger, S.A. (1995), “Designed extension of studies based on conditional

power,” Biometrics, 51, 1315–1324.

Qiu, P. and Sheng, J. (2005), “A Two-Stage Procedure for Comparing Hazard Rate Functions,”

(manuscript).

Tsiatis, A.A., Rosner, G.L., and Mehta, C.R. (1984), “Exact Confidence Intervals Following a

Group Sequential Test,” Biometrics, 40, 797–803.

Wang, S.K., and Tsiatis, A.A. (1987), “Approximately optimal one-parameter boundaries for

group sequential trials,” Biometrics 43, 193–199.

Wassmer, G. (1997), “A technical note on the power determination for Fisher’s combination test,”

Biometrical Journal, 39, 831–838.

12


