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Abstract

True images are usually degraded during image acquisition. Image restora-
tion is for restoring true images from their observed but degraded versions; it
is often used for preprocessing observed images so that subsequent image
processing and analysis becomes more reliable. Among many different types
of degradations, point degradations (or, noise) and spatial degradations (or,
blurring) are most common in applications. This article introduces some funda-
mental image denoising and image deblurring methods.
——————————————–

Observed images generated by image acquisition devices are usually not ex-
actly the same as the true images, but are instead degraded versions of their
true images[10][19]. Degradations can occur in the entire process of image ac-
quisition, and there are many different sources of degradation. For instance, in
aerial reconnaissance, astronomy, and remote sensing, images are often de-
graded by atmospheric turbulence, aberrations of the optical system, or relative
motion between the camera and the object. Image degradations can be clas-
sified into several categories, among which point degradations (or, noise) and
spatial degradations (or, blurring) are most common in applications. Other types
of degradations involve chromatic or temporal effects. For a detailed discussion
about formation and description of various degradations, read [1].

Image restoration is a process to restore an original image f from its observed
but degraded version Z. Since edges are important structures of the true im-
age, they should be preserved during image restoration. In the literature, a
commonly used model for describing the relationship between f and Z is

Z(x, y) = h ⊗ f(x, y) + ε(x, y), for (x, y) ∈ Ω, (1)

where h is a 2-D point spread function (psf) describing the spatial blur, ε(x, y)
is a pointwise noise at (x, y), Ω is the design space, and h ⊗ f denotes the
convolution between h and f . In model (1), the spatial blur is assumed to be
linear and location invariant, and the pointwise noise is additive, which may
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not be true in certain applications. See [23] for related discussion. Generally
speaking, edge-preserving image restoration is challenging, due mainly to the
facts that spatial blur and pointwise noise often mix up, it is difficult to remove
them simultaneously, and the edge structure is hidden in the observed image
intensities. Next, we describe certain fundamental image denoising and image
deblurring methods, and provide some concluding remarks at the end.

Image Denoising

When there is no blurring in the observed image,h ⊗ f(x, y) is simply f(x, y) and
model (1) is a 2-dimensional nonparametric regression model. In such cases, our major
goal is to estimate the true imagef from its noisy versionZ, or to doimage denoising.

Image denoising is equivalent to estimating a jump surface from noisy data, because
the true image can be regarded as a surface of the image intensity functionf which has
jumps at the outlines of image objects (or, at edges). To estimatef , conventional
smoothing techniques would blur edges when removing noise.Recently,jump re-
gression analysis (JRA)[19] is under rapid development, which provides smoothing
methods that would preserve edges when estimatingf . There are two types of such
methods in the literature. By the first type, edges need to be detected before denoising.
For instance, the three-stage procedure [17] works as follows. After edge detection,
a principal component line is fitted through the center of detected edge pixels in a
neighborhood of a given point, for approximating the underlying edge segment in the
neighborhood. Then, observed image intensities on the sameside of the principal com-
ponent line, as the given point, are weighted averaged for estimating f at the given
point. By the second type of methods, images can be restored properly without detect-
ing edges explicitly (e.g., [5][8][15][18][22]). For instance, Gijbels et al. [8] define
the edge-preserving estimator off as follows. In a neighborhoodNn(x, y) of a given
point(x, y), we consider the following local linear kernel smoothing procedure:

min
a,b,c

n∑

i=1

{Z(xi, yj) − [a + b(xi − x) + c(yj − y)]}K

(
xi − x

hn

,
yj − y

hn

)
, (2)

whereK is a circularly symmetric density kernel function with unitcircular support,
andhn is a bandwidth. The solution toa of (2), denoted aŝac(x, y), is the conventional
local linear kernel (LLK) estimator off(x, y), and the solution to(b, c)′ is the LLK
estimator, denoted aŝG(x, y), of the gradientG(x, y) = (f ′

x(x, y), f ′

y(x, y))′. Then,

Nn(x, y) is divided into two halvesN (1)
n (x, y) andN

(2)
n (x, y) by a line perpendicular

to Ĝ(x, y), as demonstrated in Figure 1(a). Two one-sided surface estimatorŝa1(x, y)
andâ2(x, y) are obtained, respectively, in the two halves ofNn(x, y), by local linear
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kernel smoothing. The final surface estimator is defined by

f̂(x, y) =





âc(x, y), if dif (x, y) ≤ u

â1(x, y), if dif (x, y) > u and WRMS1(x, y) < WRMS2(x, y)
â2(x, y), if dif (x, y) > u and WRMS1(x, y) > WRMS2(x, y)
ba1(x,y)+ba2(x,y)

2 , if dif (x, y) > u and WRMS1(x, y) = WRMS2(x, y),
(3)

where dif(x, y) = max{WRMSc(x, y)−WRMS1(x, y), WRMSc(x, y)−WRMS2(x, y)},
WRMSc(x, y), WRMS1(x, y), and WRMS2(x, y) denote the weighted residual mean
squares of the corresponding fitted local planes, andu is a threshold parameter. Figures
1(b) and 1(c) show a noisy image and its denoised image by (3).For a more complete
discussion about jump surface estimation and its application in image restoration, see
[20].

(x,y)

G(x, y)

Nn
(1)(x, y)

Nn
(2)(x, y)

(a) (b) (c)

Figure 1: (a) NeighborhoodNn(x, y) of the point(x, y) is divided into two parts

N
(1)
n (x, y) andN

(2)
n (x, y) by a line perpendicular tôG(x, y); (b) a noisy image; (c)

denoised image.

In the computer science literature, image restoration by Markov Random Field (MRF)
modeling is an active research area, which can remove noise and deblur images when
the psf is known. Geman and Geman [7] provide a general framework for this approach
as follows. First, the true image is assumed to be a MRF, and the observed image in-
tensities are assumed to have a given conditional distribution conditional on the true
image. Then, the true image is estimated by maximizinga posteriori (MAP). Gener-
alizations and modifications are discussed by many authors.See, e.g., [2][9]. Other
popular denoising methods include local median filtering [13], adaptive smoothing fil-
tering [25], bilateral filtering [26], diffusion filtering [14], wavelet filtering [16], among
some others.

Image Deblurring

The image deblurring problem, described by model (1), is generally ill-posed in the
sense that (i) there might be many different sets ofh andf corresponding to the same
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observed imageZ, and (ii) the inverse problem to estimatef from Z often involves
some numerical singularities (see related discussion below). Therefore, it is difficult
to estimate bothh andf properly fromZ alone, without using any extra information
about eitherf or h or both.

Early image deblurring methods assume thath is known. In such cases,f can be
estimated based on the relationship that

F{Z}(u, v) = F{h}(u, v)F{f}(u, v) + F{ε}(u, v), for (u, v) ∈ R2, (4)

whereF{f} denotes the Fourier transformation off . In equation (4), if the noise term
is ignored, thenF{f} can be estimated easily by

F{f}(u, v) =
F{Z}(u, v)

F{h}(u, v)
. (5)

Then, an estimator off can be obtained accordingly, using an inverse Fourier transfor-
mation. However, the noise effect would dominate this estimator becauseF{h}(u, v)
usually converges to zero rapidly, asu2 + v2 tends to infinity, butF{ε}(u, v), which is
part ofF{Z}(u, v), converges to zero much slower. Consequently, the image estima-
tor by (5) would be numerically unstable. In the literature,many proposals have been
suggested to overcome this difficulty, including some non-iterative methods, such as
the inverse filtering, Wiener filtering, and constrained least squares filtering procedures
(cf., Chapter 5, [10]), and some iterative methods, such as the Lucy-Richardson proce-
dure, Landweber procedure, Tikhonov-Miller procedure, MAP procedure, maximum
entropy procedure, procedures based on EM algorithm, and soforth (e.g., [6]).

In many applications, however, it is difficult to specify psfh completely, based on
our prior knowledge about the image acquisition device. Image deblurring whenh is
unknown is often referred to as theblind image deblurring problem. In the literature,
a number of procedures have been proposed for solving this problem, which can be
grouped roughly into three categories. One type of such procedures assumes thath

can be described by a parametric model with one or more unknown parameters, and
then the parameters together with the true image are estimated by some algorithms
(e.g., [3][11]). The second type of procedures does not makerestrictive assumptions
onh, but they assume that the true image has one or more regions with certain known
edge structures (e.g., [12][21]). For instance, the methodby Qiu [21] assumes that the
true image has one or more regions in which line edges are surrounded by uniform
backgrounds. From these regions, the psfh can be estimated. Then, the entire image
can be deblurred using the estimatedh. Figure 2(a) shows a blurred and noisy image of
the words “LINE EDGE.” Figure 2(b) shows the deblurred image, using the estimated
psf obtained from a small region surrounded the letter “I.” The third type of blind image
deblurring procedures try to avoid restrictive assumptions on bothf andh. Instead,
they put certain regularization measures onf andh to make the “ill-posed” deblurring
problem solvable. For instance, thetotal variation (TV) method [4][24] formulates the
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(a) (b)

Figure 2: (a) A blurred and noisy image; (b) deblurred image using the estimated psf
obtained from a small region surrounded the letter “I”.

blind deblurring problem as

min
ef,eh

{
1

2

∫

Ω

[
(h̃ ⊗ f̃)(x, y) − Z(x, y)

]2

dxdy +

α1

∫

Ω

∣∣∣▽f̃(x, y)
∣∣∣ dxdy + α2

∫

Ω

∣∣∣▽h̃(x, y)
∣∣∣ dxdy

}
, (6)

whereα1 andα2 are two positive parameters, and|▽f̃(x, y)| is the gradient magnitude
of f(x, y). Then, solutions of (6) tõf andh̃ are used as estimators off andh, respec-
tively. Clearly, in (6), the first term measures the goodness-of-fit of the estimators, and
the second and third terms regularize their total variations.

Conclusion
Although there have been some image restoration procedures proposed in the
literature, this problem is far from being solved satisfactorily. For image denois-
ing, most existing methods can preserve edges to certain degree. But some
important edge structures, such as angles, corners, and places where edges
have large curvature, would be blurred or rounded by them. So, edge-structure-
preserving image denoising should be an interesting future research topic. For
image deblurring, most existing methods assume that the psf is the same in the
entire observed image, which may not be true in certain applications. Image
deblurring with variable psf should be an important topic for future research,
although it is technically challenging.

The current research on image restoration is often ad hoc in nature. People
usually suggest their methods based on intuition and justify their methods by
certain numerical comparisons with existing ones. In which situations would a
suggested method work? Where in a given image would the method restore
the true image well and where would it perform poorly? How should we choose
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the associated procedure parameters automatically based on observed data?
We usually do not have answers to these important questions, which requires
much future research effort.
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