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Abstract

We consider the problem of detecting jump location curves of regression surfaces. In the

literature, most existing methods detect jumps in regression surfaces based on estimation of

either the first-order or the second-order derivatives of regression surfaces. Methods based on

the first-order derivatives are usually better in removing noise, whereas methods based on the

second-order derivatives are often superior in localization of the detected jumps. There are

a number of existing jump detection procedures using both the first-order and second-order

derivatives. But they often use the two types of derivatives in separate steps, and estimation

of the derivatives is usually based on intuition. In this paper, we suggest a new procedure for

jump detection in regression surfaces, which combines the two types of derivatives in a single

criterion. Estimation of the derivatives is based on local quadratic kernel smoothing. Theoretical

justifications and numerical studies show that it works well in applications.

Key Words: Edge detection; Gradient; Image processing; Jump location curves; Nonparametric

regression; Performance measure; Surface estimation; Thresholding; Zero-crossing.

1 Introduction

Surface estimation is an important problem in many scientific areas, including image processing,

geology, meteorology, oceanography, and so forth. In many surface estimation problems, the true

surface has jumps, which are often called edges in the image processing literature. Jumps in a

surface often represent outlines of objects (e.g., boundary locations of objects in an image), or

places where structure of the related 2-D process changes abruptly (e.g., places where an equi-

temperature surface in high sky or deep ocean changes dramatically). Therefore, it is important to

locate jump positions accurately from observed data, which is the focus of the current paper.
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In the literature, most existing 2-D jump detection methods are based on the following prop-

erties of the first-order or second-order derivatives of a regression surface. Figure 1(a) shows a 1-D

profile of a surface around a jump which is slighted blurred. Its first- and second-order derivatives

are displayed in Figures 1(b) and 1(c), respectively. It can be seen from the plots that (1) the

first-order derivative peaks at the jump position, (2) the second-order derivative equals zero at

the jump position, and (3) the second-order derivative changes its signs from positive to negative

when the surface jumps from a lower level to a higher level. In the literature, the second and

third properties are called the zero-crossing properties of the second-order derivative. In the 2-D

setup, the directional first- and second-order derivatives of the regression surface in the direction

perpendicular to a given jump location curve would have similar properties. For a more detailed

discussion, see Qiu (2005, Chapter 6).
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Figure 1: (a): 1-D profile of a surface around a jump that is slightly blurred. (b): First-order
derivative of the 1-D profile. (c): Second-order derivative of the 1-D profile.

In the statistical literature, existing 2-D jump detection methods based on estimation of the

first-order derivatives include the minimax estimation procedure (Korostelev and Tsybakov 1993),

the rotational difference kernel estimation procedure (Müller and Song 1994, Qiu 1997), the es-

timation procedure using a contract statistic (O’Sullivan and Qian 1994), and the jump tracking

algorithms (Hall et al. 2001, Hall and Rau 2000, 2002), among some others. All these methods

assume that there is only one jump location curve (JLC) in the design space and the JLC satisfies

some smoothness conditions. Methods based on the first-order derivatives and capable of detecting

arbitrary jumps include the local least squares estimation procedure (Qiu and Yandell 1997), the
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wavelet transformation method (Wang 1998), and the generalized Sobel detector (Qiu 2002).

In the image processing literature, many traditional edge detectors are based on estimation

of the first-order derivatives, which include the Roberts operators, the Sobel, Prewitt, and Frei-

Chen masks, the truncated pyramid masks, the derivative of Gaussian operators, the operators

using multilevel masks, and so forth (see, e.g., Gonzalez and Woods 2002, Pratt 1991, Qiu and

Bhandarkar 1996, Rosenfeld and Kak 1982). Edge detectors using the zero-crossing properties

of the second-order derivatives are also popular. Most such methods are based on the Laplacian

operator or the Laplacian of Gaussian (LoG) operator. See Haralick (1984), Huertas and Medioni

(1986), Marr and Hildreth (1980), Nalwa and Binford (1986), Torre and Poggio (1986), Clark

(1989), among many others. It has been demonstrated that methods based on the second-order

derivatives have some good properties, compared to methods based on the first-order derivatives,

which include good localization of the detected edges and closed edge contours (e.g., Torre and

Poggio 1986). However, these methods are usually sensitive to noise, although pre-smoothing is

often performed before edge detection (e.g., Nalwa and Binford 1986). Canny (1986) suggests a

benchmark edge detector based on the first-order derivatives and his three criteria for measuring

edge detection performance. To deal with spurious edges, thin the thick edges, and produce smooth

and connected edges, the “non-maxima suppression” and “thresholding with hysteresis” techniques

are also suggested by Canny. As explained and illustrated by Fleck (1992a,b), this edge detector and

some of its alternatives have various artifacts in their outputs. To overcome this drawback, Fleck

(1992b) suggests combining finite differences with different widths in edge detection. Selection of

threshold parameters based on statistical theory is discussed by Rakesh et al. (2004). Performance

evaluation of various edge detectors is discussed by Heath et al. (1997, 1998).

Some authors in the image processing literature suggest using both the first-order and second-

order derivatives in edge detection. For instance, besides Fleck (1992b) mentioned above, Haralick

(1984) suggests detecting edges by identifying zero-crossings of the directional second-order deriva-

tive of the surface in the gradient direction. Then, a zero-crossing pixel is marked as an edge

pixel only when the directional first-order derivative in the same direction is not zero. Both the

first-order and second-order derivatives used in that procedure are estimated by local orthogonal

polynomial surfaces fitting. Clark (1988, 1989) distinguishes phantom edges from authentic edges

using both zero-crossing properties of the second-order derivatives and a contrast function defined

by the first-order derivatives.
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In this paper, we suggest a jump detection procedure using both the first-order and second-order

derivatives of the regression surface, which tries to combine the major strengths of the two types of

methods mentioned above and to overcome their major limitations at the same time. The suggested

procedure uses estimated first-order derivatives for identifying candidate edge pixels and then uses

estimated second-order derivatives to produce thin edge segments. One novelty of the procedure is

that the two types of derivatives are combined in a single edge detection criterion in a reasonable

way; thus, it is convenient to use. Instead of using finite differences to estimate derivatives as did

in some existing procedures in the image processing literature, we suggest estimating them using

local quadratic kernel smoothing, which is optimal in minimizing the mean squared errors of the

estimated derivatives under some regularity conditions (cf., Fan and Gijbels 1996, Chapter 2). To

best remove noise and detect true edges, we suggest choosing the window width using a data-driven

bootstrap procedure. After the local noise level is properly estimated, a formula for choosing the

threshold parameter used in the proposed procedure is provided. Both theoretical justifications

and numerical studies show that it would work well in applications.

The rest part of the paper is organized as follows. In Section 2, our jump detection procedure

would be described in detail. Its theoretical properties are discussed in Section 3. Numerical studies

are presented in Section 4. Several remarks conclude the paper in Section 5. Some technical details

are provided in appendices.

2 Jump Detection by Local Quadratic Kernel Smoothing

Assume that n2 observations {Zij , i, j = 1, 2, . . . , n} are generated from the following 2-D regres-

sion model:

Zij = g(xi, yj) + εij , i, j = 1, 2, ..., n, (1)

where {(xi, yj), i, j = 1, 2, ..., n} are equally spaced design points in the design space Ω = [0, 1] ×
[0, 1], {εij , i, j = 1, 2, ..., n} are i.i.d. random errors with mean 0 and unknown variance σ2, and g

is an unknown nonparametric regression function. It is further assumed that g is continuous in the

design space except at some curves, which are called the jump location curves (JLCs) hereafter.

For a mathematically rigorous definition of the JLCs, see Qiu (1998).

For a given design point (x, y) ∈ Hn = [hn, 1 − hn] × [hn, 1 − hn], we consider its circular
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neighborhood:

Nn(x, y) =
{
(u, v) : (u, v) ∈ [0, 1] × [0, 1],

√
(u − x)2 + (v − y)2 ≤ hn

}
,

where hn > 0 is a bandwidth parameter. In this neighborhood, a local quadratic surface is fitted

by the following local polynomial kernel smoothing:

min
a,b,c,d,e,f

∑

(xi,yj)∈Nn(x,y)

{Zij−[ a + b(xi − x) + c(yj − y) + d(xi − x)(yj − y) +

e(xi − x)2 + f(yj − y)2
]}2

K

(
xi − x

hn
,
yj − y

hn

)
, (2)

where K is a radially symmetric bivariate density function defined in the unit circle centered at

the origin. Let the solution to {a, b, c, d, e, f} of problem (2) be denoted as {â(x, y), b̂(x, y), ĉ(x, y),

d̂(x, y), ê(x, y), f̂ (x, y)}. Then, (̂b(x, y), ĉ(x, y)) is an estimator of the gradient of the true regression

surface g at (x, y), and (2ê(x, y), 2f̂ (x, y)) is an estimator of (g′′xx, g′′yy). Therefore, if (x, y) is on a

JLC, then the estimated gradient magnitude of g at (x, y), which is

M(x, y) =
(
b̂(x, y)2 + ĉ(x, y)2

)1/2
,

should be large; the estimator of the Laplacian of g (i.e., ∇2g(x, y) = (∂2/∂2x + ∂2/∂2y)g(x, y)),

which is

L(x, y) = 2
(
ê(x, y) + f̂(x, y)

)
,

should have the zero-crossing properties around (x, y), as discussed in Section 1.

2.1 Proposed jump detection procedure

Generally speaking, if arbitrary JLCs are detected, then estimated JLCs by procedures based on the

first-order derivatives of the regression surface are thick around the true JLCs and have breaks at

some places as well, due to the nature of local smoothing and thresholding used in such procedures.

Although there exist some edge thinning and edge linking procedures in the literature (see e.g.,

Qiu 2005, Section 6.6, Rosenfeld and Kak 1982, Section 11.2), they are often ad hoc in nature

and it is not guaranteed that we can always obtain good modified results by them. On the other

hand, estimated JLCs by procedures based on the second-order derivatives generally have good

localization and they are often closed curves in the design space as well (Torre and Poggio 1986).

However, such estimators are quite sensitive to noise. As a matter of fact, it is not difficult to
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derive the following asymptotic results:

Var(̂b) = Var(ĉ) = O

(
1

n2h4
n

)

and

Var(ê) = Var(f̂) = O

(
1

n2h6
n

)
.

Because the bandwidth hn is often chosen in a way that limn→∞ hn = 0, variability of the second-

order derivative estimators ê and f̂ is much larger than that of the first-order derivative estimators

b̂ and ĉ.

To overcome the major drawbacks of the two types of jump detection procedures mentioned

above, we suggest using properties of both the first-order and second-order derivatives of the re-

gression surface for jump detection. More specifically, in the proposed procedure, a point (x, y) is

classified as a jump point only if the estimated gradient magnitude M(x, y) is large and the esti-

mated Laplacian L(x, y) has zero-crossing around (x, y). The first condition is often used in jump

detection procedures based on the first-order derivatives, whereas the second condition is often used

in jump detection procedures based on the second-order derivatives. In the proposed procedure,

we suggest using both of them in a single criterion. Our proposed jump detection procedure is

described in an algorithm as follows.

Proposed Jump Detection Procedure

• At a given design point (xi, yj), for i, j = 1, 2, . . . , n, solve the minimization problem (2) and

obtain the solution vector {â(xi, yj), b̂(xi, yj), ĉ(xi, yj), d̂(xi, yj), ê(xi, yj), f̂(xi, yj)}.

• Define the jump detection criterion

Cij = sign(Lij)Mij ,

where Lij = L(xi, yj), Mij = M(xi, yj), and sign(x) is the sign function defined to be 1 when

x > 0, 0 when x = 0, and −1 when x < 0.

• Define the categorical version of the jump detection criterion Cij as follows:

Dij =





1, if Cij > T

−1, if Cij < −T

0, otherwise,

where T > 0 is a threshold parameter.
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• Identify detected edge pixels using zero-crossings of the categorical jump detection criterion

Dij . That is, the (i, j)th pixel is classified as an edge pixel if Dij ≤ 0 and the eight values

{Di+s,j+t : s, t = −1, 0, 1, (s, t) 6= (0, 0)} have different signs.

Note that the value of Dij is not required to be exactly 0 at a detected edge pixel in the above

procedure. Instead, it is required to be nonpositive. That is because, in discrete cases, it might

happen that no pixels have their Dij values exactly 0.

2.2 Selection of the threshold parameter

As mentioned in Section 1, jump detection based on the second-order derivatives alone is sensitive

to noise, because false zero-crossings can be easily generated by noise. To overcome this difficulty, in

our jump detection procedure, information about the first-order derivatives is used for eliminating

such false zero-crossings. More specifically, if the estimated surface gradient magnitude is smaller

than a threshold, then the detected zero-crossing is regarded as a false zero-crossing. Therefore,

selection of the threshold parameter is important, which is discussed below.

It can be shown that the estimated surface gradient (̂b(x, y), ĉ(x, y)) has the following expres-

sions:

b̂(x, y) =
1

K20

n∑

i=1

n∑

j=1

(xi − x)K

(
xi − x

hn
,
yj − y

hn

)
Zij

ĉ(x, y) =
1

K02

n∑

i=1

n∑

j=1

(yj − y)K

(
xi − x

hn
,
yj − y

hn

)
Zij ,

where Ks1s2 =
∑n

i=1

∑n
j=1(xi − x)s1(yj − y)s2K

(
xi−x
hn

,
yj−y
hn

)
, for s1, s2 = 0, 1, 2, 3, 4. Note that

some Ks1s2 values are not used here, but they will be used later. Therefore, their definitions

are also given here. From the above expressions, both b̂(x, y) and ĉ(x, y) are linear combinations

of the observations. Thus, they are asymptotically normally distributed with means g′x and g′y,

respectively (cf. Theorem 3.1 in Section 3). Furthermore, it is easy to check that b̂(x, y) and ĉ(x, y)

are asymptotically independent of each other. So,

b̂2(x, y) + ĉ2(x, y)

σ̂2
n

is approximately χ2
2(δn) distributed, where the noncentrality parameter is

δn =
(
[g′x(x, y)]2 + [g′y(x, y)]2

)
/σ̂2

n,
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and

σ̂2
n = V̂ar(̂b(x, y)) = σ̂2

∑n
i=1

∑n
j=1(xi − x)2K2

(
xi−x
hn

,
yj−y
hn

)

K2
20

.

In the above expression, σ̂2 denotes a consistent estimator of σ2, which can be obtained by proce-

dures such as the one proposed by Qiu (2004) using piecewisely linear kernel smoothing. Then, a

natural choice for the threshold value of Cij is

Tn = σ̂n

√
χ2

2,1−αn
(δn),

where χ2
2,1−αn

(δn) is the 1 − αn quantile of the χ2
2(δn) distribution. The above formula for Tn

depends on the unknown surface gradient, used in the noncentrality parameter δn, which should

be estimated from data. To this end, we suggest using the smallest estimated surface gradient

among four such gradients obtained in the four quadrants of a neighborhood of (x, y) by the local

piecewisely linear kernel smoothing procedure, as suggested by Qiu (2004).

2.3 Selection of the bandwidth

The proposed jump detection procedure described in Subsection 2.1 depends on the bandwidth

parameter hn. In 1-D cases, Gijbels and Goderniaux (2004) has demonstrated that this parameter

plays an important role in their 1-D jump detection procedure. Based on our numerical experience,

this is also true for the current 2-D procedure. In this subsection, we propose a bootstrap procedure

for choosing the bandwidth parameter hn in 2-D cases.

The 2-D bandwidth selection problem is more complicated than its 1-D counterpart. In order to

choose the bandwidth properly in 2-D cases, we first need to have a metric to measure the distance

between the pointset D of the true jumps and its estimator D̂n with the given bandwidth hn.

Qiu (2002) investigated this performance measure problem carefully, and suggested the following

performance measure:

d∗(D̂n,D;hn) = ω
|D̂n \ D|
|Ω \ D| + (1 − ω)

|D \ D̂n|
|D| ,

where 0 ≤ w ≤ 1 is a weight, Ω is the entire design space [0, 1]× [0, 1], A\B denotes the set of points

in A but not in B, and |A| denotes the number of design points in the point set A. Obviously,

d∗ is a weighted average of the false positive rate and the false negative rate of the related jump

detector. In applications, Qiu suggested using D∗ = {(xi, yi) : d((xi, yi),D) ≤ 1/(2n)} to replace

D for the purpose of calculating d∗, where d(·, ·) denotes the Euclidean distance. That is, all design
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points whose Euclidean distances to the true JLCs are less than or equal to 1/(2n) (i.e., half of the

distance between two horizontally or vertically neighboring design points) are considered in D.

Our bootstrap procedure for choosing the bandwidth hn is described in the form of a pseudo-

algorithm as follows.

Bandwidth Selection via Bootstrap

1. The proposed edge detection procedure is applied to the original dataset {(xi, yj, Zij), i, j =

1, 2, ..., n}. The estimated pointset D̂n of D is obtained in this step.

2. Construct an estimator ĝ(x, y) of the true regression function g(x, y) and define residuals

r̂ij = Zij − ĝ(xi, yj).

3. Draw with replacement a bootstrap sample of size n2, denoted as {r̂∗ij , i, j = 1, 2, ..., n}, from

the residual set {r̂ij , i, j = 1, 2, ..., n}, and then obtain a bootstrap dataset {(xi, yj, Z
∗

ij), i, j =

1, 2, ..., n}, where Z∗

ij = ĝ(xi, yj) + r̂∗ij .

4. The edge detection procedure with the same bandwidth as that used in step 1 is then applied

to the bootstrap dataset, and an estimator of D from this bootstrap dataset can be obtained.

5. Steps 3 and 4 are repeated for N times. The detected sets of jump points from the N boot-

strap datasets are denoted as D̂∗

1 , D̂
∗

2, . . . , D̂
∗

N , respectively. Then, the bootstrap estimator of

d∗(D̂n,D;hn) is defined as

d̂BT (D̂n,D;hn) =
1

N

N∑

i=1

d∗(D̂n, D̂∗

i ;hn).

The optimal bandwidth is then approximated by the minimizer of d̂BT (D̂n,D;hn) with respect

to hn.

In step 2, ĝ(x, y) can be chosen to be any jump-preserving surface estimator proposed in the

literature. In all numerical examples presented in this paper, the local piecewisely linear kernel

estimator, suggested by Qiu (2004), is used for this purpose.

9



3 Some Statistical Properties

In this section, we discuss some statistical properties of the jump detection procedure described in

Section 2.1. Lemma A.1 in Appendix A gives some asymptotic properties of the local quadratic

kernel estimators in regions where the true regression surface is continuous, whereas Lemma A.2 in

Appendix A gives some properties of these estimators in regions around the JLCs. The following

theorem shows that the set of detected jump points converges almost surely to the set of true jump

points in Hausdorff distance.

Theorem 3.1 Besides the conditions stated in Lemmas A.1 and A.2 in Appendix A, we further

assume that (log(n))
1
2+η

nhn
= o(1) for η > 0 and that the significance level αn satisfies αn = o(1) and

Z1−αn (log(n))η

nhn
= O(1). Then, 1

hn
limn→∞ dH(D̂n ∩ Ω̃ρ,D ∩ Ω̃ρ) = 0, a.s., where Ω̃ρ = [ρ, 1 − ρ] ×

[ρ, 1 − ρ], ρ > 0 is a constant, dH(A,B) is the Hausdorff distance between two point sets A and B
in the design space defined by

dH(A,B) = max

{
sup

(x,y)∈A
inf

(x′,y′)∈B
‖(x, y) − (x′, y′)‖, sup

(x,y)∈B
inf

(x′,y′)∈A
‖(x, y) − (x′, y′)‖

}
,

and ‖ · ‖ is the Euclidean distance.

After checking the conditions stated in Theorem 3.1, it can be seen that the convergence rate

of limn→∞ dH(D̂n ∩ Ω̃ρ,D ∩ Ω̃ρ) = 0, a.s., can reach o
(
n−1(log(n))

1
2
+η
)
, which is the same, up to

a logarithm factor, as the minimax convergence rate (see e.g., Korostelev and Tsybakov 1993).

4 Numerical Studies

In this section, we present some results regarding the numerical performance of the proposed pro-

cedure described in Section 2, which are organized in two subsections. Subsection 4.1 includes some

simulation examples related to edge detection by criteria M,L, and D, respectively. Subsection 4.2

compares the proposed edge detector D with Canny’s (1986) procedure using both artificial and

real images.

4.1 Numerical performance of edge detectors M, L, and D

Suppose that the true regression function is g(x, y) = −(x−.5)2−(y−.5)2+1 if (x−.5)2+(y−.5)2 <

.252 and g(x, y) = −(x− .5)2− (y− .5)2 otherwise. Then, g has a unique JLC, which is a circle with

the expression (x − .5)2 + (y − .5)2 = .252. Observations are generated from model (1) with noise
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level σ and sample size n2. The kernel function is chosen to be the following modified, bivariate,

Gaussian density function:

K(x, y) =





1
2π−3πe−.5

[
exp

(
−x2+y2

2

)
− e−.5

]
, when x2 + y2 ≤ 1

0, otherwise,

which has the support {(x, y) : x2 + y2 ≤ 1} and which is a continuous function in R2. We first let

n = 100 and σ = .25. One realization of the data is shown in Figure 2(a). In this case, it is known

that the true JLC includes 168 pixels. Figures 2(b), 2(c) and 2(d) show the detected edges by the

edge detector using the criterion L(x, y), the edge detector using the criterion M(x, y), and our

proposed edge detector D(x, y) which uses both L(x, y) and M(x, y), respectively. The first edge

detector considered is a representative of all edge detectors using second-order derivatives, whereas

the second one is a typical edge detector based on first-order derivatives. The bandwidth hn used

in each procedure is fixed to be 5 pixels. The thresholding parameter is chosen such that there are

exactly 168 detected pixels in each case. From the plots, it can be seen that detected edges in plots

(c) and (d) are less noisy than those in plot (b), and that detected edges in plot (d) are thinner

and have less breaks than those in plot (c). These results confirm our intuition and theoretical

justifications discussed before.

Next, we try to measure the performance of the related jump detectors quantitatively using

the performance measure d∗(D̂n,D;hn) defined in Subsection 2.3, in which ω is fixed at 0.5 in this

section. Without loss of generality, the bandwidth hn is assumed to take the value of k/n, where

k < n is a positive integer. We fix n = 100 and let k and σ change. Three edge detectors using

L(x, y), M(x, y), and D(x, y) are considered as before. For each edge detector, the type I error

probability αn is set to be .01. When calculating the performance measure d∗, a localization error

of Euclidean distance of 2 pixels is tolerated using the algorithm proposed by Liu and Haralick

(2002). For each σ value, the best bandwidth hn is chosen such that the performance measure d∗ is

minimized. For the proposed detector, the bandwidth selected via bootstrap is also computed. The

optimal bandwidths and the corresponding values of d∗ are presented in Table 1, when σ equals

.25, .5, .75, or 1. These results are based on 100 replications in each case. When computing the

bootstrap bandwidth, the bootstrap sample size is fixed at 50 in each replication. From Table 1, it

can be seen that (1) the proposed procedure performs much better than the other two procedures

in terms of d∗, (2) the bandwidth needs to be chosen larger for noisier data, which is especially true

for the proposed procedure, and (3) the bandwidth selection procedure via bootstrap works well,
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(a) (b)

(c) (d)

Figure 2: (a): Observed image. (b): Detected edges using criterion L(x, y). (c): Detected edges
using criterion M(x, y). (d): Detected edges by the proposed procedure.

especially when σ is small to moderate, and it provides close-to-optimal results in terms of d∗.

4.2 Comparison to Canny’s edge detector

Canny’s (1986) edge detector is well received in image analysis applications. In this subsection, we

compare our proposed edge detector D with Canny’s edge detector using both artificial and real

images. The source C codes of Canny’s edge detector used in this paper were downloaded from the

web page http://marathon.csee.usf.edu/edge/edge detection.html, maintained by Dr. M. Heath. See

Heath et al. (1997) for a detailed description about Canny’s edge detector and its implementation.

In the first example, an artificial image is generated from the following true image intensity

function: g(x, y) = 512x, when (x, y) ∈ [0, 0.5]×[0, 0.5]; g(x, y) = 250, when (x, y) ∈ (0.5, 1]×[0, 0.5];

g(x, y) = 244, when (x, y) ∈ (0.5, 1] × (0.5, 1]; and g(x, y) = 122, when (x, y) ∈ [0, 0.5] × (0.5, 1].

Then, g has the following four edge segments: (i) {(x, y) : x = 0.5, y ∈ [0, 0.5]} with constant,

12



Table 1: For each σ value and each edge detector, the bandwidth and the corresponding d∗ value
(in parenthesis) are presented.

σ 0.25 0.5 0.75 1.0

Edge detector using L 0.03 0.03 0.03 0.03
with best bandwidth (.478) (.499) (.500) (.500)

Edge detector using M 0.02 0.03 0.04 0.06
with best bandwidth (.010) (.014) (.022) (.035)

Proposed edge detector 0.05 0.09 0.10 0.12
with best bandwidth (.002) (.002) (.003) (.010)

Proposed edge detector 0.05 0.10 0.12 0.13
with bootstrap bandwidth (.002) (.002) (.004) (.011)

small jump magnitude 6, (ii) {(x, y) : y = 0.5, x ∈ (0.5, 1]} with constant, small jump magnitude 6,

(iii) {(x, y) : x = 0.5, y ∈ (0.5, 1]} with constant, large jump magnitude 122, and (iv) {(x, y) : y =

0.5, x ∈ [0, 0.5]} with variable jump magnitude −122 + 512x. Figure 3 presents g in a 3-D plot.
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Figure 3: 3-D plot of g.

When n = 128, the true image intensities {g(i/n, j/n) : i, j = 1, 2, . . . , n} are shown in Figure

4(a) by an image. We then apply both the proposed edge detector and Canny’s edge detector to

the image in Figure 4(a). The detected edges are shown in Figures 4(b) and 4(c), respectively.

In the proposed procedure, hn = 5/n and αn = 0.01. In Canny’s procedure, there are three

parameters σG, Tl, and Th, denoting the standard deviation of the Gaussian pre-filter, the low

and high hysteresis thresholds, respectively. We tried all combinations of these three parameters

listed in Table 5 of Heath et al. (1997), which were found best for the twenty-eight test images

in that paper, and selected (σG = 0.6, Tl = 0.3, Th = 0.3) that produced results with best visual

13



impression. From the plots, it can be seen that the proposed procedure detects all edges well,

except a couple edge pixels around the crossing point (0.5, 0.5) and the point (0.25, 0.5) at which

the jump magnitude is 0. Canny’s procedure has difficulty to handle these two places too; further,

the detected edge segment corresponding to the true edge segment {(x, y) : x = 0.5, y ∈ [0, 0.5]}
seems shifted several pixels to left. We then add i.i.d. random errors from N(0, 0.52) distribution

to all pixels with j ≤ n/2 and i.i.d. random errors from N(0, 102) distribution to all pixels with

j > n/2. The noisy image is displayed in Figure 4(d). The detected edges by the proposed

procedure with hn = 7/n and αn = 0.01 are displayed in Figure 4(e). From the plot, it can be

seen that, overall it detects edges well, the detected edge segments corresponding to the true edge

segments {(x, y) : x = 0.5, y ∈ [0, 0.5]} and {(x, y) : y = 0.5, x ∈ (0.5, 1]} have several breaks due

mainly to the small jump magnitudes in the true image intensities, and the breaks corresponding

to the true edge segment {(x, y) : y = 0.5, x ∈ (0.5, 1]} are wider due to the fact that the noise

level on the upper side of that segment is much larger than the noise level in the pixels around

the other edge segment. As a comparison, Canny’s procedure can not detect edges well in this

case. We tried many combinations of its three parameters, including all combinations listed in

Table 5 of Heath et al. (1997). Figure 4(f)–4(i) display its detected edges when (σG, Tl, Th) equals

(0.6, 0.3, 0.970), (1.2, 0.3, 0.974), (1.8, 0.5, 0.900), and (5.0, 0.3, 0.900), respectively. The four σG

values considered here represent different levels of pre-smoothing. From the plots, it can be seen

that the two edge segments {(x, y) : x = 0.5, y ∈ [0, 0.5]} and {(x, y) : y = 0.5, x ∈ (0.5, 1]} with

small jump magnitudes in the image intensities are completely missed by Canny’s procedure while

some false edges are detected in all four situations. This result is consistent with some of Fleck’s

(1992a, Figures 8–14) findings that Canny’s procedure is hard to detect edges at the top or bottom

of a ramp, especially when the ramp slope is relatively large and the jump magnitudes in image

intensities at the edge pixels are relatively small.

Next, we consider two real images: the cameraman image and a log-transformed C-band, HH-

polarization, synthetic aperture radar (SAR) image of an area near Thetford forest, England. The

first one is a standard test image in the computer science literature, and the second one is a standard

test image in the statistical literature (cf., e.g., Glasbey and Horgan 1995, Qiu 1992). The original

cameraman image is shown in Figure 5(a), which has 256× 256 pixels with gray levels in the range

[0, 255], and the original SAR image is shown in Figure 5(g), which has 250 × 250 pixels with

gray levels in the range [0, 255]. Their noisy versions with i.i.d. noise from N(0, 302) distribution

14



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: (a): True image when n = 128. (b): Detected edges from (a) by the proposed procedure.
(c): Detected edges from (a) by Canny’s procedure. (d): Noisy image with i.i.d. random errors
from N(0, 0.52) in all pixels with j ≤ n/2 and i.i.d. random errors from N(0, 102) in all pixels with
j > n/2. (e) Detected edges from (d) by the proposed procedure. (f)–(i): Detected edges from (d)
by Canny’s procedure in various cases.
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are shown in Figure 5(d) and Figure 5(j), respectively. The proposed edge detector and Canny’s

procedure are then applied to both original images and their noisy versions. For the proposed

procedure, αn is fixed at 0.01 and hn is respectively chosen to be 7, 7, 9, and 11 in cases with the

original cameraman image, its noisy version, the original SAR image, and the noisy SAR image.

In Canny’s procedure, its three parameters (σG, Tl, Th) are searched as in the previous example, to

be respectively (0.6,0.3,0.850), (1.2,0.2,0.800), (1.2,0.4,0.950), and (1.8,0.3,0.950) in the four cases

mentioned above. The detected edges of the proposed procedure are shown in Figures 5(b), 5(e),

5(h), and 5(k), and detected edges of Canny’s procedure are shown in Figures 5(c), 5(f), 5(i), and

5(l). From the plots, it can be seen that, in the cameraman example, Canny’s procedure detects

the camera and the cameraman reasonably well, and it fails detecting some other edges (e.g., the

tower in the right part of the image), especially when the noise level is high (i.e., in plot (f)). As

a comparison, the proposed procedure detects the major edges reasonably well, but its detected

edges have some breaks, which is partially due to the fact that we did not make any post-processing

(e.g., edge linking in the “hysteresis” step of Canny’s procedure) in our procedure. In the SAR

image example, we can see that Canny’s procedure detects some unnecessary details, especially

when noise level is high (i.e., in plot (l)). The proposed procedure, on the other hand, detects

the major edges well, but its detected edges seem not straight enough in some parts of the image.

Again, some post-processing might be helpful.

5 Conclusions

We have presented a jump detection procedure based on local quadratic kernel smoothing. It makes

use of the information about jumps contained in both the first-order and second-order derivatives of

the regression surface. A data-driven bandwidth selection procedure via bootstrap is also suggested.

Numerical examples show that the proposed jump detection procedure works well in practice.
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Appendix

A Two Lemmas

Lemma A.1 Suppose that the regression function g has continuous fourth-order derivatives in
each closed subset of [0, 1] × [0, 1] where g is continuous, E(ε2

11) < ∞, the kernel function K is
a Lipschitz-1 continuous, radially symmetric, bivariate density function defined in a unit circle

centered at the origin, the bandwidth hn satisfies the conditions that hn = o(1) and

√
log(n)

nhn
= o(1),

then

‖â − g‖Ωhn
= O(h4

n) + O

(√
log(n)

nhn

)
, a.s.,

‖b̂ − g′x‖Ωhn
= O(h2

n) + O

(√
log(n)

nh2
n

)
, a.s.,

‖ĉ − g′y‖Ωhn
= O(h2

n) + O

(√
log(n)

nh2
n

)
, a.s.,

‖d̂ − g′′xy‖Ωhn
= O(h2

n) + O

(√
log(n)

nh3
n

)
, a.s.,

‖ê − g′′xx/2‖Ωhn
= O(h2

n) + O

(√
log(n)

nh3
n

)
, a.s.,
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‖f̂ − g′′yy/2‖Ωhn
= O(h2

n) + O

(√
log(n)

nh3
n

)
, a.s.,

where Ωhn
= {(x, y) : (x, y) ∈ [hn, 1− hn]× [hn, 1− hn],

√
(x − x′)2 + (y − y′)2 ≥ hn, where (x′, y′)

is any point on the JLC}, and ‖g‖Ωhn
is defined to be max(x,y)∈Ωhn

|g(x, y)|.

Proof: It can be checked that the solution vector β̂ to β = (a, b, c, d, e, f)T of the minimization

problem (2) has the matrix expression

β̂ = (X̃T K̃X̃)−X̃T K̃Z,

where X̃ is the n2 × 6 design matrix, Z = (Z11, Z12, . . . , Znn)T , β̂ = (â, b̂, ĉ, d̂, ê, f̂)T , and K̃ is the

n2×n2 diagonal weight matrix with its [(i−1)n+ j]-th element being K
(

xi−x
hn

,
yj−y
hn

)
. Because the

design points {(xi, yj), i, j = 1, 2, ..., n} are equally spaced and the kernel function K is radially

symmetric, it can be checked that

(X̃T K̃X̃)− =
1

∆




M∗

11 0 0 0 M∗

51 M∗

61

0 M∗

22 0 0 0 0

0 0 M∗

33 0 0 0

0 0 0 M∗

44 0 0

M∗

15 0 0 0 M∗

55 M∗

65

M∗

16 0 0 0 M∗

56 M∗

66




, (3)

where M∗

ij is (i, j)-th cofactor of M = X̃T K̃X̃ and ∆ is the determinant of M . By expression (3),

we have

â(x, y) =
1

∆

n∑

i=1

n∑

j=1

{
M∗

11 + M∗

51(xi − x)2 + M∗

61(yj − y)2
}

K

(
xi − x

hn
,
yj − y

hn

)
Zij .

For any point (x, y) ∈ Ωhn
, by using the relationship between M∗

ij and Mij , it can be checked that

E(â(x, y)) = g(x, y) +
1

∆

n∑

i=1

n∑

j=1

{
M∗

11 + M∗

51(xi − x)2 + M∗

61(yj − y)2
}{ 1

24
[g(4)

x (x, y)(xi − x)4+

1

6
g(2)
x (x, y)g(2)

y (x, y)(xi − x)2(yj − y)2 + g(4)
y (x, y)(yj − y)4]

}
K

(
xi − x

hn
,
yj − y

hn

)

+o(h4
n)

and

1

∆

n∑

i=1

n∑

j=1

{
M∗

11 + M∗

51(xi − x)2 + M∗

61(yj − y)2
}

(xi − x)4K

(
xi − x

hn
,
yj − y

hn

)
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=
1

∆
{K40M

∗

11 + K60M
∗

51 + K42M
∗

61}

=
1

∆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

K40 0 0 0 K20 K02

0 K20 0 0 0 0

0 0 K02 0 0 0

0 0 0 K22 0 0

K60 0 0 0 K40 K22

K42 0 0 0 K22 K04

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= O(h4
n).

In the last equation above, we have used the results that Kij = O
(

1

n2hi+j+2
n

)
, for i, j = 0, 1, 2, 3, 4.

So E(â(x, y)) = g(x, y)+O(h4
n). It can be checked that this result is uniformly true for (x, y) ∈ Ωhn

.

Therefore, we have

‖E(â) − g‖Ωhn
= O(h4

n). (4)

On the other hand, for any (x, y) ∈ Ωhn
,

â(x, y) − E(â(x, y)) =
1

∆

n∑

i=1

n∑

j=1

{M∗

11 + M∗

51(xi − x)2 + M∗

61(yj − y)2}ǫijK

(
xi − x

hn
,
yj − y

hn

)

=
O(1)

n2h2
n

n∑

i=1

n∑

j=1

ǫijK

(
xi − x

hn
,
yj − y

hn

)

= O

(√
log(n)

nhn

)
, a.s. (5)

Then, by (4) and (5),

‖â − g‖Ωhn
= O(h4

n) + O

(√
log(n)

nhn

)
, a.s.

By similar arguments, the asymptotic properties of b̂, ĉ, d̂, ê, and f̂ stated in Theorem 3.1 can be

proved. �

From Lemma A.1, it is easy to derive the following results:

∥∥∥M −
√

(g′x)2 + (g′y)
2
∥∥∥

Ωhn

= O(h2
n) + O

(√
log(n)

nh2
n

)
, a.s.,

∥∥L −∇2g
∥∥

Ωhn
= O(h2

n) + O

(√
log(n)

nh3
n

)
, a.s.,

where M and L are the estimated surface gradient and Laplacian defined in Section 2.

Lemma A.2 Given the conditions stated in Lemma A.1, we further assume that the surface
gradient has one-sided limits at the JLCs and that the JLCs have one-sided tangent lines at each
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point on them. Let Γ be a given JLC and (x, y) be a given point in the design space. If (xτ , yτ )
is the closest point on Γ to (x, y) and the Euclidean distance between the two points is τhn, where

0 ≤ τ < 1 is a constant; Cτ > 0 is the jump size of g at (xτ , yτ ); Q
(1)
n (x, y) and Q

(2)
n (x, y) are

two different parts of Nn(x, y) separated by Γ with a positive jump at (xτ , yτ ) from Q
(1)
n (x, y) to

Q
(2)
n (x, y); Q(1) and Q(2) are the two corresponding parts of the support of K, then,

(i)

b̂(x, y) =
Cτ

K̃02hn

∫ ∫

Q(2)

uK(u, v) dudv + o

(
1

hn

)
, a.s.,

(ii)

ĉ(x, y) =
Cτ

K̃20hn

∫ ∫

Q(2)

vK(u, v) dudv + o

(
1

hn

)
, a.s.,

(iii) if τ = 0, that is, if (x, y) is on Γ, then

L(x, y) = o

(
1

h2
n

)
,

(iv) if 0 < τ < 1 and (x, y) ∈ Q
(1)
n (x, y), then

L(x, y) =
C1

h2
n

+ o

(
1

h2
n

)
,

where

C1 =
2Cτ

∆̃

(
2M̃∗

15

∫ ∫

Q(2)

K(u, v) dudv + (M̃∗

55 + M̃∗

56)

∫ ∫

Q(2)

(u2 + v2)K(u, v) dudv

)
> 0,

(v) if 0 < τ < 1 and (x, y) ∈ Q
(2)
n (x, y), then

L(x, y) = −C2

h2
n

+ o

(
1

h2
n

)
,

where

C2 =
2Cτ

∆̃

(
2M̃∗

15

∫ ∫

Q(1)

K(u, v) dudv + (M̃∗

55 + M̃∗

56)

∫ ∫

Q(1)

(u2 + v2)K(u, v) dudv

)
> 0.

In the above expressions,

K̃ij =

∫
∞

−∞

∫
∞

−∞

uivjK(u, v) dudv; M̃∗

15 = K̃3
20K̃22(K̃22 − K̃40);

M̃∗

55 = K̃2
20K̃22(K̃00K̃40 − K̃2

20); M̃∗

56 = K̃2
20K̃22(K̃

2
20 − K̃00K̃22);

∆̃ = K̃20M̃
∗

15 + K̃40M̃
∗

55 + K̃22M̃
∗

56.
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Proof: By expression (3), we have

b̂(x, y) =
1

K20

n∑

i=1

n∑

j=1

(xi − x)K

(
xi − x

hn
,
yj − y

hn

)
Zij

ĉ(x, y) =
1

K02

n∑

i=1

n∑

j=1

(yj − y)K

(
xi − x

hn
,
yj − y

hn

)
Zij

ê(x, y) =
1

∆

n∑

i=1

n∑

j=1

{M∗

15 + M∗

55(xi − x)2 + M∗

65(yj − y)2}K
(

xi − x

hn
,
yj − y

hn

)
Zij (6)

f̂(x, y) =
1

∆

n∑

i=1

n∑

j=1

{M∗

16 + M∗

56(xi − x)2 + M∗

66(yj − y)2}K
(

xi − x

hn
,
yj − y

hn

)
Zij, (7)

where M∗

15 = M∗

16 = K3
20K22(K22 − K40), M∗

55 = M∗

66 = K2
20K22(K00K40 − K2

20), and

M∗

56 = M∗

65 = K2
20K22(K

2
20 − K00K22). For a given point (x, y) ∈ Ω, if (xτ , yτ ) is the closest point

on Γ from (x, y) and their Euclidean distance is τhn, where 0 ≤ τ < 1 a constant, then, by some

similar arguments to those in the proof of Lemma A.1, we have

E(̂b(x, y)) =
1

K̃02

1

n2h4
n




∑

(xi,yj)∈Q
(1)
n (x,y)

+
∑

(xi,yj)∈Q
(2)
n (x,y)


 (xi − x)g(xi, yj)K

(
xi − x

hn
,
yj − y

hn

)

+o

(
1

hn

)

=
1

K̃02hn

g−(xτ , yτ )

∫ ∫

Q(1)
uK(u, v) dudv

+
1

K̃02hn

g+(xτ , yτ )

∫ ∫

Q(2)

uK(u, v) dudv + o

(
1

hn

)

=
Cτ

K̃02hn

∫ ∫

Q(2)

uK(u, v) dudv + o

(
1

hn

)
. (8)

Similar to (5), it can be shown that b̂(x, y)−E(̂b(x, y)) = O

(√
log(n)

nh2
n

)
= o

(
1

hn

)
, a.s. Then, result

(i) in Lemma A.2 can be obtained by combining this result with equation (8). Result (ii) in Lemma

A.2 can be obtained similarly.

By equations (6) and (7) and the relationships that M∗

15=M∗

16, M∗

55=M∗

66, and M∗

56=M∗

65, we

have

E(L(x, y)) =
1

∆

n∑

i=1

n∑

j=1

{2M∗

15 + (M∗

55 + M∗

65)((xi − x)2 + (yj − y)2)}g(xi, yj)K

(
xi − x

hn
,
yj − y

hn

)

=
Cτ

∆

∑

(xi,yj)∈Q
(2)
n (x,y)

{2M∗

15 + (M∗

55 + M∗

65)((xi − x)2 + (yj − y)2)}K
(

xi − x

hn
,
yj − y

hn

)

+o

(
1

h2
n

)
.
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It can be checked that

M̃∗

15K̃00 + M̃∗

55K̃20 + M̃∗

56K̃02 = 0 (9)

After applying result (9) to the above expression of E(L(x, y)), when τ = 0, we have

E(L(x, y)) =
2Cτ

∆̃h2
n

(
M̃∗

15K̃00 + M̃∗

55K̃20 + M̃∗

56K̃02

)
+ o

(
1

h2
n

)
= o

(
1

h2
n

)
. (10)

Similar to equation (5), it can be shown that

L(x, y) − E(L(x, y)) = O

(√
log(n)

nh3
n

)
= o

(
1

h2
n

)
, a.s. (11)

Result (iii) in Lemma A.2 can be obtained by combining equations (10) and (11).

When 0 < τ < 1 and (x, y) ∈ Q(1)(x, y), we have

E(L(x, y)) =
2Cτ

∆̃h2
n

(
2M̃∗

15

∫ ∫

Q(2)

K(u, v) dudv + (M̃∗

55 + M̃∗

56)

∫ ∫

Q(2)

(u2 + v2)K(u, v) dudv

)

+o(
1

h2
n

)

=
C1

h2
n

+ o

(
1

h2
n

)
(12)

It can be checked that,

∫ ∫
Q(2)(u

2 + v2)K(u, v) dudv

2
∫ ∫

Q(2) K(u, v) dudv
> K̃20 (13)

and

M̃∗

15 = K̃3
20K̃22(K̃22 − K̃40) < 0 (14)

So, by equations (9), (13) and (14), the quantity C1 defined in Lemma A.2 is positive. Then, result

(iv) in Lemma A.2 can be obtained by combining this result with results (11) and (12). Result (v)

in Lemma A.2 can be obtained similarly. �

From results (i) and (ii) of Lemma A.2, it can be concluded that, if the point (x, y) is close

to a JLC, then the quantities b̂(x, y) and ĉ(x, y) are large; thus, they contain jump information

around (x, y). From results (iii)–(v), the estimated Laplacian L(x, y) changes its sign from positive

to negative when the underlying regression surface g jumps from a lower level to a higher level;

thus, it has the zero-crossing properties around the JLC.
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B Proof Of Theorem 3.1

Suppose that X and Y are two independent random variables, X ∼ N(0, 1), and Y ∼ N(0, 1).

Then, it is easy to check that

σ̂2
nχ2

2(δn)
D
= σ̂2

nX2 +
(
σ̂nY +

√
(g′x)2 + (g′y)

2
)2

,

where
D
= denotes equality in distribution. Using the fact that

Z1−αn

nh2
n

= O
(

1
hn(log(n))η

)
, σ̂n =

O( 1
nh2

n
), a.s., and

√
(g′x)2 + (g′y)

2 is bounded in Ωhn
, we have

∥∥∥Tn −
√

(g′x)2 + (g′y)
2
∥∥∥

Ωhn

= O

(
1

hn(log(n))η

)
, a.s. (15)

From Lemma A.1, we also have

∥∥∥M −
√

(g′x)2 + (g′y)
2
∥∥∥

Ωhn

= O(h2
n) + O

(√
log(n)

nh2
n

)
= o

(
1

hn(log(n))η

)
, a.s. (16)

By equations (15) and (16), we can conclude that, when n is large enough, the following expression

is true for any ρ > 0:

D̂n ∩ Ωρ ⊂ Jn ∩ Ωρ, a.s., (17)

where Jn = Hn\Ωhn
and Hn = [hn, 1 − hn] × [hn, 1 − hn].

For a point (x, y) ∈ Jn, if (xτ , yτ ) is the closest point on Γ from (x, y) and their Euclidean

distance is τhn, where 0 ≤ τ < 1 a constant, then from results (i) and (ii) in Lemma A.2, we have

M(x, y) = O( 1
hn

). After combining this result with equation (15), for large enough n, we have

min
(x,y)∈Jn,τ

M(x, y) > Tn (18)

where Jn,τ = {(x, y) : (x, y) ∈ Hn,
√

(x − x′)2 + (y − y′)2 ≤ τhn, where (x′, y′) is any point on the

JLC}.

For any point (x, y) ∈ D ∩ Ωρ, we can find two points (x1, y1) ∈ Q
(1)
n (x, y) and (x2, y2) ∈

Q
(2)
n (x, y), each of which has an Euclidean distance of τhn from (x, y). By result (iv) of Lemma

A.2, we have

L(x1, y1) =
C1

h2
n

+ o

(
1

h2
n

)

and

L(x2, y2) = −C2

h2
n

+ o

(
1

h2
n

)
,
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where C1 and C2 are two positive constants defined in Lemma A.2.

When n is large enough, we have

L(x1, y1) > 0 and L(x2, y2) < 0. (19)

Now consider the circular neighborhood Pτ,hn
(x, y) = {(x′, y′) : (x′, y′) ∈ Hn,

√
(x − x′)2 + (y − y′)2 ≤

τhn}. By combining expressions (18) and (19), we have, when n is large enough,

Pτ,hn
(x, y) ∩ D̂n 6= φ. (20)

By expressions (17) and (20), we have

dH(D̂n ∩ Ωρ,D ∩ Ωρ) ≤ hn, a.s. ,

from which the conclusion of Theorem 3.1 can be obtained.
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