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 Neuropsychological impairments are common in many epilepsy syndromes, and 

are related to clinical factors such as seizure frequency and severity, age of seizure 

onset, as well as the underlying pathologic substrate.  It is beyond the scope of this 

chapter to provide a comprehensive review of all epilepsy syndromes and their patterns 

of neuropsychological impairment.  However, there are several consistent 

neuropsychological principles that we will highlight. 

As described by Hughlings Jackson, there are significant and independent 

contributions of both static and dynamic factors that affect brain function, and by 

extension, neuropsychological abilities.  Morphological or structural lesions are 

associated with relatively non-modifiable neuropsychological deficits.  In contrast, EEG 

discharges, seizures, and epilepsy treatment are associated with more dynamic brain 

changes that, to varying degrees, are modifiable and are under direct physician 

management.  Depending on epilepsy type (idiopathic vs. symptomatic), the relative 

contributions of specific factors will differ.   

Disentangling the stable and dynamic cognitive influences in epilepsy often 

poses a major challenge since causes of impaired neuropsychological function are not 

fully independent of each other.  Treatment effects, for example, act upon and interact 

with morphology and epilepsy.  Although altered brain structure and function may result 

in epilepsy, epilepsy and its underpinnings may also alter functional cerebral 

organization.  Finally, at the highest level, epilepsy related cognitive impairment must be 

evaluated within the patient’s developmental context.  Certain seizure syndromes show 

peaks at specific developmental stages, and etiology is associated with age at seizure 

onset.  Cognitive profiles vary depending on age of seizure onset, with difference 

apparent depending on whether epilepsy develops in the maturing brain vs. mature brain 

vs. aging brain.  However, age of seizure onset may simply reflect the expression of 

dysfunctional brain maturation.  
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Epilepsy is often dichotomized according to whether the EEG abnormalities 

involve the entire cerebrum (generalized epilepsy) or begin focally (partial epilepsy).  

Generalized epilepsy includes tonic clonic seizures, juvenile absence epilepsy, and 

myoclonic epilepsy.  Partial epilepsy includes a variety of seizure types including the so 

called “benign” partial epilepsy (e.g., benign epilepsy with centro-temporal spikes, or 

BECTS) as well as symptomatic focal epilepsy (e.g., mesial temporal lobe epilepsy and 

neocortical epilepsy).  We will describe disease effects on cognition as a function of 

epilepsy syndromes, age of onset, and epilepsy course.  We will also discuss the 

complex issue of whether poorly controlled seizures are associated with progressive 

cognitive decline.  For ease of discussion, we will categorize epilepsy subtypes 

according to whether they are considered to be idiopathic of symptomatic. 

 

Idiopathic epilepsy  

Idiopathic epilepsy, including both generalized and partial epilepsy expression, is 

characterized by a genetic predisposition and the absence of readily identifiable brain 

lesions.  Although not completely silent behaviorally or cognitively, idiopathic epilepsy is 

generally easy to treat and is associated with less severe cognitive impairments than 

other seizure types.  Idiopathic generalized epilepsy (IGE) is characterized by 

generalized EEG abnormalities involving the entire cerebral cortex whereas idiopathic 

partial epilepsy (IPE) is associated with regional EEG abnormalities (e.g., centro-

temporal EEG in rolandic epilepsy).   

As would be predicted from generalized EEG abnormalities, diffuse and 

generalized cognitive impairments is present including deficits in attention, psychomotor 

speed, visuo-spatial skills, and nonverbal memory.  Language and verbal memory, in 

contrast, appear unaffected (1-3).  
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The epileptiform discharges and cognition are also closely related.  Not only does 

cognitive impairment vary as a function of seizure activity, but cognition may also induce 

seizures and seizure discharges (4).  Although this relationship has been described in 

patients with symptomatic temporal lobe epilepsy (5), patients with IGE are particularly 

likely to show neuropsychological EEG activation.  Negative effects of spike-wave bursts 

exist for sensory and executive functions.  Therefore, tasks requiring sustained attention 

are best suited to detect cognitive effects of EEG changes in IGE (2).  Although 

cumulative attentional effects may ultimately result in diminished level of function when 

they occur over long periods, decreased IQ is not a primary feature of the disease with 

developmental delay and retardation developing from interference with cognitive 

functions over a long period of time.  Absence epilepsy developing in early childhood is 

generally associated with poorer outcome than juvenile absence epilepsy. 

Benign childhood epilepsy with centrotemporal spikes (BECTS) is common 

epilepsy syndrome (10-15%) beginning between 5 and 9 years of age and extending into 

adolescence.  It has a favorable prognosis and most patients become seizure free after 

puberty.  Its neuropsychological prognosis, however, is less benign.  During its active 

phase, neuropsychological deficits may include attention, motor functions, short-term 

memory, visual and perceptive abilities.  Language difficulty relating to the interictal 

dysfunction of perisylvian language areas, however, is a major characteristic of BECTS 

(2).  Learning disabilities are common in BECTS (6), although they are not progressive 

in nature.  Although children rapidly improve in most areas following seizure remission, 

minor problems in executive functions and verbal comprehension persist (7, 8).  

Complete seizure remission is generally needed for a favorable cognitive outcome. 

Juvenile myoclonus epilepsy (JME) generally begins between 12 - 18 years of 

age, and is characterized by neuropsychological and behavioral features associated with 

frontal dysexecutive impairment such as reasoning difficulty, poor concept formation, 
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and decreased mental speed and flexibility (2, 9-12). Of course, frontal lobe dysfunction 

is not specific for JME.  Whether frontal lobe cognitive dysfunction together with 

personality change (e.g., limited self-control, suggestibility, indifference, rapid mood 

changes) form a syndrome characteristic of JME merits further study (10).  The 

presence of more focal impairments in addition to generalized slowing are consistent 

with the view that IGE should no longer be considered purely a “generalized” epilepsy.  

EEG, histological, structural and functional imaging studies suggest a specific 

involvement of frontal lobes, thalamus, and thalamo-cortical loops in IGE (13-17). 

In conclusion, a wide range of rather mild impairments may be associated with 

idiopathic generalized or idiopathic partial epilepsy.  Mild generalized impairment and 

learning difficultly have been observed.  These are best understood from the close 

relationship between active epileptic processes interfering with cognitive networks of 

lower order functions, on perceptive and executive functions, and on the interference of 

epilepsy with critical periods of cognitive development (i.e., before, during, or after 

language acquisition, or at the time before or when frontal executive functions are 

developing).  Frontal/executive functions are the last to fully develop and therefore may 

represent a common endpoint for impairments seen in idiopathic epilepsy.  Following 

epilepsy remission, neuropsychological recovery from active epilepsy driven impairment 

can be observed.  However, some long-term residual deficits may persist, particularly 

when epilepsy has significantly interfered with cognitive development. 

 

Focal symptomatic epilepsy 

In contrast to idiopathic epilepsy, the cognitive profiles of with symptomatic 

epilepsy are more strongly related to epilepsy location and etiology.  The temporal lobes 

and temporo-mesial structures are particularly vulnerable to seizure development, and 

temporal lobe epilepsy (TLE) accounts for approximately 70% of chronic symptomatic 
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epilepsy.  Approximately half of TLE patients have hippocampal sclerosis or 

hippocampal atrophy, although whether mesial TLE represents a distinct nosological 

entity or a syndrome is still a matter of debate (18).  Mesial TLE is characterized by 

impaired declarative memory (19).  Patients with earlier seizure onset tend to have lower 

IQs, reflecting the interference of seizures and perhaps its treatment with antiepileptic 

medications with normal cognitive and brain development (20).  Accompanying the IQ 

with earlier seizure onset is a reduction of total brain volume, including both grey and 

white matter (20).  Memory impairment occurs independent of the age of seizure onset, 

although the nature of the memory impairment depends on when seizures begin.  A 

more generalized memory impairment with earlier seizure onset, whereas a more focal 

and material-specific memory impairment that varies according to seizure onset laterality 

is seen with later seizure onset (21). 

With later seizure development, left temporal/left temporo-mesial epilepsy is 

associated with material-specific impairment of verbal learning and memory.  Mesial and 

neocortical structures differentially contribute to verbal memory, with mesial structures 

subserving consolidation and retrieval and neocortical structures more associated with 

content processing.  Thus, impaired delayed recall is more indicative of mesial rather 

than neocortical temporal lobe damage (22).  Impairment of verbal learning, short-term 

memory, and naming (i.e., semantic memory) are less specific but also may reflect left 

infero-temporal or temporo-lateral lesions (23-27).  Naming impaired is associated with 

hippocampal volume (28) and also related to functional activity reflected by spectroscopy 

(29).  Like memory, the magnitude of naming impairment is strongly associated with 

seizure onset age.   

In contrast to left TLE, right TLE tends affect performance on figural or non-

verbal memory tasks (30).  However, this relationship is less consistent than that 

between left TLE and verbal memory (31), an effect that has been attributed to 
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nonverbal memory networks being more bilaterally distributed than verbal memory, 

covert verbalization during task performance, or the type of the test and test materials 

(abstractness, complexity).  Consequently, using figural memory tests to infer mesial 

temporal dysfunction will often falsely lateralize seizure onset.  However, false 

lateralizing figural memory impairment in left TLE may also reflect atypical language 

dominance or sex differences (21).  

Even though the area of seizure onset in focal TLE is limited, neuropsychological 

impairment often extends beyond the seizure onset zone (32, 33).  These “frontal” 

deficits imply impaired functional connectivity that is disrupted with a temporal lobe 

focus, and may be considered to reflect “nociferous cortex” effects in which the negative 

effects associated with ongoing seizure discharge impair brain function at some distance 

away from the active seizure focus (34).  However, MRI volumetrics have demonstrated 

prominent disruption in ipsilateral hippocampus and neural connectivity (i.e., white 

matter volume loss) that extends beyond the temporal lobe, affecting both ipsilateral and 

contralateral hemispheres (35).  TLE patients with secondary generalized seizures are at 

higher risk of additional general neuropsychological impairment (36). 

  Frontal lobe epilepsy (FLE) is seen in approximately 20% of patients with partial 

onset seizures, and is associated with a less consistent neuropsychological profile than 

TLE.  In contrast to TLE in which hippocampal sclerosis is the predominant 

morphological feature, frontal lobe epilepsy is associated with a more heterogeneous 

array of etiological factors.  Moreover, executive functions mediated by the frontal lobe 

contribute to most other cognitive functions, resulting in diffuse and non-specific 

neuropsychological impairments.  Patients suffer from attention problems, problems with 

working memory, mental flexibility, response inhibition, or planning.  Tests of motor 

coordination appear particularly sensitive to frontal lobe epilepsy.  At the highest level, a 

dysexecutive syndrome may comprise problems with response selection, initiation, 
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execution and inhibition.  No consistent lateralized impairment has been associated with 

focal left vs. right FLE (37-40). 

The neuropsychological characteristics of parietal lobe epilepsy and occipital 

lobe epilepsy have rarely been described in a series with adequate sample sizes.  Acute 

parietal or occipital neuropsychological symptoms become evident in seizure semiology, 

but in chronic epilepsy, most with early lesions or malformations, the classic posterior 

symptoms of aphasia, alexia, agraphia, acalculia, agnosia, and neglect are very 

uncommon.  Primary or secondary perceptive and sensory problems that may be 

evident at the beginning of epilepsy are often well compensated for behaviorally.  

Impairments are diffuse, and, as it has been described with seizure semiology and EEG, 

often mimic frontal or temporal lobe dysfunction (41, 42).  Nevertheless, tests of 

stereognosis or haptic search may be sensitive to parietal lobe epilepsy (43, 44). 

 

Etiology.  Partial epilepsy is associated with a variety of etiologies.  Lesions 

include stationary lesions such as developmental malformations, hippocampal sclerosis 

or atrophy, traumatic brain injury or vascular malformations, as well as potentially 

progressive defects such as neoplastic and paraneoplastic tumors, CNS infections, 

inflammatory and autoimmunological processes.  Independent of seizure effects, these 

lesions themselves are associated with cognitive impairments that range from mild 

impairment in circumscribed domains to severe generalized neuropsychological 

impairment.  However, cognitive impairments in symptomatic epilepsy are not lesion 

specific, but rather differ according to age at the lesion onset, differences in functionality 

of the affected tissues, differences in the course and dynamics of the underlying 

disease, and finally differences in lesion lateralization and localization (45).  Although the 

lesions themselves and generally not associated with ongoing cognitive function, 

activation of heterotopic grey matter has been demonstrated using fMRI (46).  
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A major concern is the cumulative effects of chronic epilepsy on the brain and 

cognition.  Seizures, and in particular severe seizures, may result in significant damage, 

although this is more of an individual patient concern than a concern across all patients.  

For example, multiple reports exist describing amnestic syndromes following either 

status epilepticus or a series of generalized tonic clonic seizures.  The cumulative effect 

of less severe seizures on cognition, however, is less well clear-cut.  In a review of 20 

longitudinal studies in children-adults, 12/20 reported a relationship between duration of 

poorly controlled seizures and neuropsychological decline, 5/20 described mixed results, 

and 3/20 no relationship (47).   For those studies reporting an effect, lower IQ with 

associated increased seizure frequency, greater performance “improvement” in controls 

than patients, and more importantly, neuropsychological declines were associated in 

non-memory domains. 

Cross-sectional studies of chronic uncontrolled temporal lobe epilepsy suggest a 

significant IQ decline after three decades (48).  Comparison the age regressions of 

memory in healthy subjects to those from epilepsy patients puts such finding into 

perspective (49).  In chronic uncontrolled TLE, memory decline in a longitudinal design is 

very slow and individually proceeding cognitive decline can be suggested.  Presumably, 

this applies for chronic focal epilepsy, but it remains whether specific domains are 

affected or whether decline is diffuse and non-specific.  Impairment may be seen in 

patients with symptomatic focal epilepsy even prior to the onset of epilepsy, and 

cognitive impairment may develop from the interference of lesions/epilepsy with brain 

maturation and cognitive development.  The impact of additional lesions and the 

interaction of aging with pre-existing damage appear much more relevant for individual 

cognitive change than accumulation of seizures alone (21, 45). 

 

Antiepilepsy Drug Effects 
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Given the many potential influences on cognition for patients with epilepsy such 

as age of onset, disease substrate, or seizure frequency and severity, antiepilepsy drugs 

(AEDs) occupy a unique position since they are under the direct control of the treating 

physician and their patients.  Although choice of specific AED is guided by seizure type 

and epilepsy syndrome (50), within seizure/syndrome categories, AED selection is 

typically based upon clinical experience rather than evidence-based practice.  Most 

major AEDs used to treat partial epilepsy have comparable efficacy (51), although many 

recently introduced AEDs are associated with move favorable tolerability profiles that 

includes less neuropsychological impairment (52).   

Because AEDs decrease membrane excitability, increase postsynaptic inhibition, 

or alter synchronization of neural networks, they are often associated with 

neuropsychological side effects including decreased motor/psychomotor speed and 

attention (53).  Adverse AED effects are a significant component of treatment 

effectiveness.  The landmark VA Cooperative study reported that standard AEDs 

including CBZ are associated with significant adverse effects that contribute to initial 

treatment failure in more than 40% of patients (54), and a separate European trial 

reported that tiredness was described by more than 50% and sleepiness by more than 

35% of patients on PHT or CBZ monotherapy (55).  Adverse AEDs effects are strongly 

associated with poor health reported by patients (56) and with decreased health-related 

quality of life (57).  After seizure control, the most important aspect of AED treatment is 

the side effect profile, including problems with cognition, energy level, school 

performance, childbearing, coordination, and sexual function.  Because of side effects, 

20% of patients adjusted their AED dosing (58).   

In young adults, neuropsychological AED profiles are generally comparable for 

the older generation AEDs carbamazepine (CBZ), phenytoin (PHT), and valproate 

(VPA), with each AED associated with modest psychomotor slowing accompanied by 
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decreased attention and memory (53).  Neuropsychological side effects generally 

emerge according to a dose-dependent relationship (53); however, both quality of life 

(59) and memory may be affected, even when AED blood levels are within standard 

therapeutic ranges.  CNS effects of AEDs are reflected by EEG slowing that not only is 

correlated with short-term neuropsychological decline (60, 61), but is also related to 

poorer neuropsychological outcome following one year of treatment (62).  With the 

exception of topiramate (TPM) (53, 63-65) and possibly zonisamide (ZNS) (66, 67), most 

newer generation AEDs have more favorable tolerability and neuropsychological profiles 

than their predecessors (68-71).   

Although direct head-to-head comparisons examining the neuropsychological 

profiles of newer AEDs have not typically included medications thought to have 

favorable neuropsychological outcomes, there are data to suggest differences in this 

regard.  For example, in one study, OXC was associated with both neuropsychological 

impairment and EEG slowing in healthy volunteers (72).  Thus, there are data to suggest 

that there may be important AED differences, even across newer AEDs considered to 

have favorable neuropsychological side effect profiles.  Several recent Class I healthy 

volunteer studies suggested increased risk of cognitive impairment associated with TPM 

(71, 72).  Because there may be individuals who are at greater risk for developing 

cognitive impairment, it may be possible to ultimately predict individuals at increased risk 

for developing treatment-emergent side effects based upon pharmacogenetic or 

pharmacokinetic patient characteristics. 

 

Subjective report versus objective performance 

 In addition to poor performance on memory tests and other neuropsychological 

measures, epilepsy patients often complain of poor memory (73).  Although both 

subjective and objective memory findings indicate decreased memory, subjective 
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memory ratings and objective memory performance are poorly correlated (74-78).  In 

studies with sufficient sample sizes, statistically significant relationships between 

objective and subjective performances have been reported, although these correlations 

are generally small and account a small portion of the variance.  In contrast, subjective 

memory correlates much more highly with mood (73, 76, 79-81).  Depressed or anxious 

patients tend to rate their memory as poor, whereas patients less burdened by poor 

mood states rate their memory more favorably.  Correlations generally account for 

approximately half of the variance (81, 82) with mood being the single best predictor of 

subjective memory functioning (76, 79, 83). 

 The association between subjective memory and mood is informative, yet, a 

large portion of the variance remains to be explained.  Most studies show no significant 

relationship between subjective memory and clinical factors such as sex, gender, 

chronological age, seizure onset age, seizure type, seizure frequency, region of seizure 

onset, and number of AEDs (79, 80).  However, memory “complainers” may have a later 

age of seizure onset (73), and a small inverse relationship between age and subjective 

memory reports has been described (81, 83).  There is a tendency for patients on 

polytherapy to report greater cognitive difficulty than patients on monotherapy (83), 

although this relationship is well-established with formal neuropsychological measures 

(53).  Although most studies are restricted to TLE patients, those that included both 

temporal and extra-temporal patients report greater reports of memory impairment in 

TLE (73).  Although some investigators report no influence of seizure laterality (82), 

others have found significant associations between perceived memory and objective 

verbal memory in left patients, and with objective nonverbal memory in right TLE 

patients (84).  Although there are reports of a relationship between perceived and 

objective language performance (84), others have not observed this relationship (82).  
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Ecological validity of objective measures 

   Formal neuropsychological measures are established indicators of lateralized or 

localized cognitive dysfunction (85).  However, the modest correlation between 

subjective and objective results raises questions regarding ecological validity of 

conventional memory tests.  Neuropsychological memory tests typically require learning 

and recall of word lists or abstract designs, whereas ‘everyday memory’ typically 

requires incidental memory for complex events in which individual is personally involved 

(86).  In two independent studies utilizing memory tests simulating everyday memory 

demands (79, 86), more ecologically valid tests correlated weakly with subjective ratings, 

but correlated more highly with conventional test performance.  Although a small but 

significant correlation was found between ecologically valid memory performance and 

subjective report in patients “without” memory impairment (86), the absence of a 

significant correlation in the “impaired” group may be related to the more restricted 

performance range. 

  The demands of various activities differ considerably, and cognitive deficits may 

be more apparent in high versus low demand situations.  In one post-operative series, 

patients staying at home (“low demand”) reported greater subjective complaints than 

employed subjects (“high demand”) (87), and this corresponded with objective memory 

performance as well (i.e., weaker objective memory in the low-demand).  Although 

patients were self-selected for group assignment, these data suggest that patients with 

poorer objective memory were in less demanding situations due to their genuine 

memory deficits, as well as feeling more impaired.   

Tip-of-the-tongue phenomena (TOT) or “word finding difficulty” is one of the top 

three cognitive complaints among epilepsy patients (88), although the relationship 

between objective performance using confrontation naming tests (73) or language 

composite scores (76) ; (82) with patient self-report is low or nil.  However, the absence 
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of a stronger relationship may result from language test selection using measures that 

poorly correlate with word finding difficulty.  For example, in a study addressing the 

ecological validity of object naming measures, no correlation between self reported word 

finding difficulty and traditional visual object naming, although a small but significant 

correlation with auditory description naming, a task developed to better simulate word 

finding in the context of everyday speech (27). 

 

Subjective memory “theories” 

 Several studies suggest that that lay-persons, (i.e., patients, proxies and normal 

controls) have a broader definition of “memory” than that of neuropsychologists and 

neurologists.  Specifically, performances on various language tasks, such as word 

fluency, expressive vocabulary, and naming, correlate significantly with subjective 

memory ratings (77, 81, 89).  Thus, when persons are asked to rate their memory, they 

often consider language fluency and word finding difficulty as well as declarative 

memory processes.   

 The poor relationship between subjective performance ratings and objective test 

results raises the question of whether impaired deficit recognition (e.g., anosognosia) 

exists.  A problem in assessing subjective memory in a population with genuine memory 

deficits is that the task is retrospective, and therefore, a memory tasks itself (77, 86).  

The discrepancy between objective and subjective scores is greater in patients with right 

hemisphere seizure onset, with a greater tendency to overestimate their genuine 

memory abilities (90).  This pattern is consistent with the specialized role of the right 

hemisphere in deficit awareness reported in lesions of other etiology. 

 It has been suggested that some patients, unaware of their real memory 

conditions, exaggerate their memory failures and report this inaccurate self-perception in 

questionnaires (80).  Although epilepsy patients with and without memory complaints 
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obtain comparable scores across a range of neuropsychological measures, the 

‘complaint’ group scored significantly higher in neuroticism (75).  Thus, both disease-

related and personality factors reduce self-awareness, thereby contributing to the 

discrepancy between subjective complaints and objective performance.   

 

Subjective change in postoperative patients 

  Whereas pre-  (or non-) surgical epilepsy patients tend to “over-report” memory 

deficits, the prevalence of memory complaints among patients following temporal lobe 

resection is quite low (91, 92).  In fact, postoperative patients tend to report improved 

memory functioning despite evidence of memory decline on objective measures (93, 94).  

Accordingly, most studies report little correlation between changes in objective 

performance and changes in subjective ratings following surgery.  Rather, subjective 

memory ratings in postoperative patients correlate significantly with seizure outcome 

(i.e., good seizure outcome associated with improved subjective ratings) (92-95), AED 

side effects, and, similar to that demonstrated in preoperative patients, with mood  (92, 

94) and neuroticism (96).  Although a higher prevalence of subjective decline might be 

expected following left ATL rather than right ATL given the more consistent objective 

decline following left surgery (85), subjective complaints do not appear to predict surgical 

laterality (78, 92-94, 96).  Because of the overall poor correspondence between 

performance and complaints after surgery, postoperative memory complaints might be 

considered a marker of depression or other mood disorder (92).  Nonetheless, there is 

general agreement that, despite these group findings, individual cognitive complaints 

should be followed up with both formal mood assessment and neuropsychological 

evaluation.   

Practical implications 
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 The poor correspondence between subjective report and objective performance 

suggests caution when drawing conclusions from subjective complaints.  This is 

obviously a concern to the treating physician since, in most cases, the presence or 

absence of memory complaint is based upon questioning the patient rather than formal 

memory assessment.  Factors to consider include emotional and psychosocial factors, 

the potentially broader definition of “memory” held by patients and their relatives, the 

patient’s level of daily cognitive demands, and seizure onset laterality.  For postoperative 

patients, one should additionally consider seizure outcome and AED burden.  Each of 

these factors carries a potential influence on cognitive self-appraisal; distinguishing 

among them on an individual basis is critical, as each would implicate a different 

treatment approach. 

 

Wada testing and functional imaging 

One of the primary goals in the preoperative evaluation is to identify patients who 

may be at increased risk for developing significant post-operative neuropsychological 

impairment.  Patients undergoing TL resection in the language dominant hemisphere are 

at higher risk for experiencing postoperative memory decline than those undergoing non-

dominant ATL, and knowledge about language dominance and memory representation 

is important to establish the relative risks to memory associated with temporal 

lobectomy. 

The Wada test is one of the major procedures to establish relative memory risk 

following anterior temporal lobectomy, although not all epilepsy surgery centers perform 

this procedure routinely on all ATL candidates (97).  Wada testing to assess both 

language and memory function emerged in the 1950s when structural and functional 

imaging was almost non-existent.  Although variability in specific protocols exist, the 



Neuropsychology Evaluation - Adults, page 17 

technique generally involves the introduction of amobarbital (or other anesthetic agent) 

through a transfemeral catheter into the internal carotid artery, which temporarily 

anesthetizes the distribution of the anterior and middle cerebral arteries.  During the 

period of hemispheric anesthesia, the patient is presented with language and memory 

acquisition tasks, with memory tested after the drug effects have worn off.  Although the 

memory component of this task was developed to avoid developing a significant post-

operative amnesia, this role has largely been supplanted by current functional 

neuroimaging using MRI, PET, and SPECT.  Wada memory results, however, are often 

now often used to indicate risk of significant memory decline that may interfere with a 

patient’s overall quality of life (98). 

The Wada test differs from all other approaches to functional assessment, 

including neuropsychological testing, in that it tests each hemisphere in isolation.  By 

doing so, it helps to therefore disentangle the effects of large scale distributed brain 

networks and can assess the specific contributions of the anesthetized region and their 

functional connections to language and memory function.  When the hemisphere 

ipsilateral to a medial temporal lobe focus is anesthetized, the reserve capacity of the 

contralateral temporal lobe to sustain memory function in isolation is assessed (99).  

There are multiple reports that demonstrate the contribution of Wada memory results to 

memory outcome prediction (100-106).  There is an aphasia confound when testing 

memory following dominant hemisphere injection, and because of this confound, a 

selective procedure anesthetizing the distribution of the posterior cerebral artery may be 

used (107), although this approach is associated with a greater risk of stroke and 

consequently in generally not employed routinely (108).  Selective procedures involving 

other vascular distributions may be performed based upon clinical indications (109, 110). 
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Because the Wada procedure is invasive, functional MRI of MEG are advanced 

as a non-invasive alternatives.  There are many language fMRI paradigms that reliably 

identify language representation, and the use of fMRI has decreased the frequency of 

Wada use in some epilepsy centers (111).  Magnetoencephalography is an alternative 

measure of functional imaging that, unlike fMRI which relies on indirect measures of 

neural activity based upon blood flow changes, is a direct measure of neuronal function.  

MEG is also a reliable non-invasive measure of language lateralization (112, 113).  

Imagining the medial temporal lobes has proven to be more difficult.  However, 

there are several reports demonstrating the effectiveness of fMRI related to seizure 

onset laterality (114-116) as well as memory outcome following surgery (117, 118).  As 

the components needed for successful hippocampal activation continue to be undersood 

(119), it is likely the fMRI will increasingly be used in pre-operative epilepsy evaluation 

with a corresponding decrease in Wada use.  

Postoperative Outcome 

Up to 80% of those patients undergoing anterior temporal lobe resection will 

become seizure free following surgery (120), although some patients will experience 

specific declines in memory, language, or some other aspect of cognitive functioning.  A 

literature has now developed demonstrating how results from presurgical 

neuropsychological testing, combined with demographic variables and other 

neurodiagnostic findings, can predict patients who are at greatest risk for developing 

postoperative decline.  

 One of the earliest findings from neuropsychological studies is that epilepsy 

surgery results in very little change in IQ (111). The view that patients with lower IQ 

levels, which can suggested greater generalized brain impairment, do not benefit from 

surgery has been dispelled by research findings comparable seizure outcomes in both 
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low and high IQ groups (111, 121).  Patients with higher IQ levels and memory 

performance tend to experience a greater cognitive declines following surgery, although 

they also continue to exhibit a higher level of postoperative functioning than patients with 

lower presurgical cognitive performance (122).  These results support the model of 

cognitive reserve that has gained acceptance in the fields of dementia and traumatic 

brain injury (123, 124).  

 The majority of epilepsy surgeries are anterior temporal lobectomies (ATL) that 

involve resection of areas considered important for normal memory processing, and 

consequently predicting memory outcome has been emphasized.  Different rates of 

memory decline ranging from 10 to 60% following ATL have been reported. The 

prediction of memory decline has been guided by two basic theoretical approaches. The 

first model is based upon Milner’s (125) original observation that material-specific 

memory deficits in verbal and nonverbal memory are associated with ATL of the left 

(dominant) and right (non-dominant) temporal lobes respectively. The second approach 

is based on more recent model, predicting that the degree of postoperative memory 

deficit, as well as seizure outcome itself, will be determined by the “functional adequacy” 

of the tissue to be resected (99, 106). The type of surgical procedure (e.g., “standard” 

ATL vs. selective amygdalohippocampectomy) and post-operative seizure status also 

contribute to postoperative cognitive outcome (111). 

Laterality Effects 

Analyses of material-specific memory findings are included in nearly every 

neuropsychological study of post-operative outcome. The conclusion drawn from recent 

literature reviews is that there is strong empirical support for the link between surgery on 

the left temporal lobe and postoperative deficits in verbal memory (126). There is, 

however, substantially less support for the proposed relationship between nonverbal 

memory impairment and surgery on the right temporal lobe (126, 127).  
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There has been a recent trend moving from group methods of analysis towards 

predicting the risk of postoperative change in individual patient prediction. To optimize 

the prediction of individual risk, investigators have been using statistical methods, such 

as the reliable change index (RCI) and standardized regression-based (SRB) methods 

to control for the reliability of the instruments, practice effects, and regression to the 

mean. Studies using this methodology have reported that the risk for postoperative 

decline in verbal memory ranges from 40 to 60% in patients undergoing left ATL while 

the risk for decline patients undergoing right ATL ranges from 10 to 30% (128, 129).  

Significant declines following right ATL are not are clearly not explained by any simple 

version of the material-specific memory model. Much less is known about the risk of 

experiencing a decline in nonverbal memory as a result of methodological factors and 

small effect sizes.  

 Language dominant ATL has been associated with postoperative naming deficits, 

although details regarding these deficits are less well known than those associated with 

memory.  Postoperative naming impairment is generally thought to occur in only a 

minority of patients (130), although at least one study has found naming declines in 40% 

of their left ATL sample versus none of those patients undergoing right ATL (129).  The 

ability to predict postoperative naming deficits through presurgical language mapping 

using intraoperative or extraoperative methods have been inconsistent.  One multicenter 

study found that the rate of postoperative naming decline was not influenced by the 

availability of mapping data (131). Others have found that identification of mapping sites 

critical for auditory descriptive naming is important for predicting both auditory and visual 

naming outcome (25).  

There are no consistent findings demonstrating deficits in visual perceptual or 

spatial functions associated with right ATL. Surgical procedures conducted on patients 

with frontal lobe epilepsy and other forms of extratemporal epilepsy have been 
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associated with only mild declines in memory, language, or other cognitive functions 

unless areas of eloquent cortex are involved specifically (132, 133). Laterality effects on 

cognitive functioning are considered to be less of an issue with pediatric patients than 

with adults (45).  

 

Functional Adequacy Model 

The functional adequacy model predicts less postoperative memory decline, as 

well as a greater likelihood for seizure reduction, will be observed in patients exhibiting 

lower levels of presurgical functioning in the mesial temporal lobe ipsilateral to seizure 

onset (99, 106).  Functional adequacy is established using both neuropsychological 

methods as well as measure of structural pathology using preoperative neuroimaging.  

Most research findings have supported this model, as opposed to a competing 

“functional reserve” model predicting that postoperative memory is best predicted by the 

functional and structural integrity of the contralateral temporal lobe.   

Presurgical Neuropsychological Performance. Evidence supportinig the 

functional adequacy model was initailly provided by the findings that patients with higher 

memory performance on presurgical testing were more likely to demonstrated significant 

memory decline following ATL those (134, 135).  These results are not simply the result 

of statistical “regression to the mean,” but rather reflect the tendency for the most 

functional patients at baseline to be more vulnerable to experiencing postoperative 

memory loss (136).  This is a robust pattern of change following ATL, and has been 

observed in many independent series (105, 137, 138). 

Findings from MRI and Other Studies.  Neuropathological studies have 

consistently demonstrated that memory outcome varies according to the presence of 

hippocampal sclerosis (HS) ipsilateral to seizure onset (85, 139, 140). Not only do 

individuals with severe unilateral HS exhibit lower levels of preoperative memory, but 
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they are also less likely to exhibit memory decline following surgery (141). Similar 

findings have been observed using MRI measures of hippocampal pathology (142, 143). 

Resection of a relatively nonatrophic left hippocampus generally results in greater 

memory decline, although memory loss may also occur some patients with severe 

presurgical HS (144). Surgery in patients with bilateral hippocampal pathology, however, 

does not necessarily cause global amnesia, although greater rates of memory decline 

are seen in patients with bilateral hippocampal atrophy who undergo dominant 

hemisphere ATL (144).  Normal verbal memory in the presence of hippocampal atrophy 

may also be associated with significant post-operative memory decline (98).  Thus, 

functional integrity of the left temporal lobe plays a critical role in predicting memory 

outcome independent of the presence of structural pathology (98, 145). 

Studies using multiple regression methods have demonstrated that prediction of 

postoperative outcome is best accomplished by a combination of both functional and 

structural indices (105, 137). The importance of functional adequacy to post-operative 

change has been demonstrated using both magnetic resonance spectroscopy (MRS) 

and Wada testing (see below) (100, 106). Functional MRI (fMRI) has been shown to be 

useful for predicting postoperative naming (146). Recent presurgical fMRI studies have 

demonstrated the ability to predict postoperative memory functions (117, 118).  

Demographic Predictors.  Developmental factors, including age at the time of 

surgery and the stage of cognitive development at the time of seizure onset, are 

important factors for predicting postoperative cognitive decline. The risk of cognitive 

decline following surgery appears to be lower in children younger than age 16 years than 

in adults (147).  In contrast, older patients may experience greater memory loss, 

consistent with a profile of accelerated aging (122). Continuing decline in memory 

performance may be seen in some individuals ten years or more following surgery (148). 

The postoperative deficit in verbal memory in patients who are seizure free is similar to 
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what is observed over time in nonsurgical patients that are continuing to experience 

seizures, suggesting normal age-related memory decline  (122).  

Age of seizure onset interacts with both functional and structural indices in a 

manner consistent with the functional adequacy model (99, 149). Those with a younger 

age of onset will have experienced pathology at an earlier stage of development and will 

have experienced seizures for a longer period of time. This leads to greater neurological 

compromise which is accompanied by more severe and widespread cognitive 

impairment. However, earlier seizure onset also permits a redistribution of function to 

other brain areas, which would lead to less deficit following surgery. In contrast, patients 

developing epilepsy later in life are not as compromised neurologically since it does not 

interfere with cognitive development and maturation, and consequently do not exhibit the 

same degree of cognitive dysfunction preoperatively. However, surgery involves 

resection of more functional brain tissue, which increases the likelihood of developing 

greater cognitive decline postoperatively. Support for these findings with age was 

present in some early studies, but at least one recent study has failed to find a link 

between severe hippocampal pathology, memory decline, and early onset of seizures 

(149).  

In general, cognitive deficits become more specific and less reversible with 

surgery with increasing age.  The pattern of findings involving age of onset are generally 

more consistent for cognitive functions associated with neocortical zones than for those 

associated with the mesial temporal lobe (111). For example, more severe naming 

deficits are observed in older patients. Other studies examining demographic factors 

have suggested that women, in general, exhibit less severe cognitive decline following 

surgery than men (150).  
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